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Background: Cervical cancer stem cells (CCSCs) represent a subpopulation of tumor cells that

possess self-renewal capacity and numerous intrinsic mechanisms of resistance to conventional

chemotherapy and radiotherapy. These cells play a crucial role in relapse and metastasis of

cervical cancer. Therefore, eradication of CCSCs is the primary objective in cervical cancer

therapy. Salinomycin (Sal) is an agent used for the elimination of cancer stem cells (CSCs);

however, the occurrence of several side effects hinders its application. Nanoscale drug-delivery

systems offer great promise for the diagnosis and treatment of tumors. These systems can be used

to reduce the side effects of Sal and improve clinical benefit.

Methods: Sal-loaded polyethylene glycol-peptide-polycaprolactone nanoparticles (Sal NPs)

were fabricated under mild and non-toxic conditions. The real-time biodistribution of Sal

NPs was investigated through non-invasive near-infrared fluorescent imaging. The efficacy

of tumor growth inhibition by Sal NPs was evaluated using tumor xenografts in nude mice.

Flow cytometry, immunohistochemistry, and Western blotting were used to detect the

apoptosis of CSCs after treatment with Sal NPs. Immunohistochemistry and Western blotting

were used to examine epithelial–mesenchymal transition (epithelial interstitial transforma-

tion) signal-related molecules.

Results: Sal NPs exhibited antitumor efficacy against cervical cancers by inducing apoptosis

of CCSCs and inhibiting the epithelial–mesenchymal transition pathway. Besides, tumor

pieces resected from Sal NP-treated mice showed decreased reseeding ability and growth

speed, further demonstrating the significant inhibitory ability of Sal NPs against CSCs.

Moreover, owing to targeted delivery based on the gelatinase-responsive strategy, Sal NPs

was more effective and tolerable than free Sal.

Conclusion: To the best of our knowledge, this is the first study to show that CCSC-targeted

Sal NPs provide a potential approach to selectively target and efficiently eradicate CCSCs.

This renders them a promising strategy to improve the therapeutic effect against cervical

cancer.

Keywords: nanoparticles, salinomycin, tumor-targeted delivery, cancer stem cells, epithelial

interstitial transformation

Introduction
Cervical cancer (CC) is the fourth most common cancer in women worldwide,1,2

with an estimated 570, 000 new cases and 41,000 CC-related deaths annually.3

Since the introduction of formal screening programs, the rates of CC among women
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in high-income countries have been decreasing; however,

they remain high among those in low- and middle-income

countries that lack organized screening and human papil-

lomavirus infection vaccination programs.4 Effective treat-

ments for patients with early-stage CC include surgical

resection and concurrent chemoradiotherapy,5 which can

result in a 5-year survival of ≤80%. For locally advanced

CC, the 5-year survival rates of stage IIB, IIIA, and IIIB

disease vary (58%, 35%, and 32%, respectively).6

However, 30–50% of patients ultimately develop tumor

recurrence and metastasis,6 which impairs the long-

lasting, effective treatment of CC.7,8 For this subset of

patients, systemic chemotherapy remains the cornerstone

of treatment. Notably, the combination of bevacizumab

with platinum-based chemotherapy, can improve median

overall survival by 3.5 months compared with chemother-

apy alone (16.8 vs 13.3 months, respectively).9,10

Pembrolizumab, an inhibitor of Programmed cell death 1

protein (PD-1), has received approval by the US Food and

Drug Administration for the treatment of advanced CC

with progressive disease. Although targeted therapy and

immunotherapy have shown some survival advantages in

the treatment of patients with recurrent and metastatic

disease, the cost and affordability limit their use for

patients in low- and middle-income countries.11,12 Thus,

there is an urgent need to develop novel and more effec-

tive strategies for the treatment of CC patients with pro-

gressive disease.

Cancer stem cells (CSCs) are pluripotent cells, which

account for a small proportion of cells within numerous

types of tumors or cancer cell lines. They exhibiting great

capability for differentiation into progeny of malignant

cells and are less sensitive to regular therapies, such as

radiotherapy and chemotherapy.13,14 Cervical cancer stem

cells (CCSCs) are recognized as the “seed” for cancer

metastasis and relapse.15 They were first isolated using

the spheroid method, are characterized as highly tumori-

genic and radioresistant, and possess self-renewal

properties.16 In another report, CCSCs were also asso-

ciated with tumor invasion, chemoresistance, and epithe-

lial–mesenchymal transition (EMT).17 Moreover, CCSCs

play an important role in tumor heterogeneity, which is

associated with a poor response to chemotherapy/radio-

therapy, carcinogenesis, metastasis, and recurrence.8,18,19

Therefore, the development of novel therapeutic strategies

specifically targeting CCSCs is urgently warranted to elim-

inate the cancer “seed.”

Salinomycin (Sal) is a polyether antibiotic isolated from

Streptomyces albus. In 2009, Gupta et al first demonstrated

that Sal reduced the proportion of breast CSCs by >100 fold

relative to paclitaxel.20 Since then, Sal has been reported as

an effective anti-cancer drug against various types of CSCs,

such as those of colorectal cancer, pancreatic cancer, and

prostate cancer.21–23 It can inhibit the maintenance of CSCs

by promoting their differentiation and sensitivity to che-

motherapy and radiotherapy.24–27 Hence, we hypothesized

that Sal may also be useful in inhibiting CCSCs. However,

severe nerve and muscle toxicity, and even death in humans

after accidental oral or inhaltive intake of Sal have been

reported.28–30 In addition, the applications of Sal are limited

due to its poor aqueous solubility.31 Thus, delivery systems

have attracted considerable attention owing to their excel-

lent performance and favorable characteristics, such as

ameliorating the inapplicable properties of drugs or phar-

macokinetic properties.32 Moreover, enhanced accumula-

tion of drug at the tumor site via the enhanced

permeability and retention effect (EPR) can improve the

safety and tolerability of drugs, thereby achieving signifi-

cant clinical benefit with attenuated side effects.33

Modification of nanoparticles (NPs) with polyethylene gly-

col (PEGylation) can strengthen the EPR effect-mediated

“passive” tumor targeting, leading to prolonged circulation

of NPs in the blood.34 In addition to passive targeting,

active targeting drug delivery can be achieved by surface

modification with tumor target ligands or engineering with

microenvironment-stimulus responsive characteristics.35

Matrix metalloproteinases (MMPs) represent a family of

zinc-dependent endopeptidases that play important roles

in cancer invasion, metastasis, angiogenesis, and

tumorigenesis.36,37 MMPs can degrade the extracellular

matrix, which is overexpressed and overactivated in

cancer.38 Furthermore, three MMP family members (i.e.,

MMP2, MMP7, and MMP14) are known to induce EMT

progression in different types of cancer.39,40 Thus, MMPs

have been investigated as robust tumor microenvironmental

stimuli for “smart” MMP-responsive drug delivery and

tumor targeting, and have shown great potential in the diag-

nosis and therapy of cancer. Based on this evidence, we

generated gelatinase-stimuli NPs. These are modified by

inserting an optimal gelatinase-cleavable peptide Pro-Val-

Gly-Leu-Iso-Gly (PVGLIG) into non-toxic, biocompatible

PEG-polycaprolactone (PEG-PCL) copolymer, and can

more specifically target CSCs. We have already developed

a novel and biocompatible nanocarrier to deliver Sal to CC

and confirmed the optimal parameters for the preparation of
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Sal NPs.27 The poor aqueous solubility of Sal can be over-

come by our Sal NPs, yielding an encapsulation efficiency

of 89.7%. Preliminary toxicity observation indicated

a strikingly higher survival rate in mice injected with Sal-

loadedNPs than Sal Free treated group. These results demon-

strated that entrapment of Sal into NPs prepared through the

single emulsion method greatly reduced the occurrence of

toxic effects. In this study, we successfully prepared Sal NPs

using this approach. The present investigation outlines the

safety profile, anti-tumor efficacy, and inhibitory activity of

Sal NPs against CSCs.

Materials and Methods
Materials
Methoxy-PEG (mPEG)-peptide-PCL copolymer was pre-

pared in our laboratory as previously described;41 Sal was

purchased from the China Institute of Veterinary Drug

Control (Beijing, China). Human CD44 and CD133 anti-

bodies were purchased from Miltenyi Biotec (Germany)

and human vimentin (VIM), E-cadherin, zinc finger E-box

binding homeobox 1 (ZEB1), and ZEB2 antibodies were

purchased from Abcam (USA). All other chemicals were

used as received without further treatment. The liVision

plus kit and DAB kit were purchased from Fuzhou New

Biotechnology Co., Ltd. (Fuzhou, China). The total protein

extraction kit, sodium dodecyl sulfate-polyacrylamide gel

electrophoresis, Western blotting (WB) testing kit,

enhanced chemiluminescence testing kit, and Braford pro-

tein testing kit were purchased from Nanjing KeyGEN

Biotech. Co., Ltd. (Nanjing, China).

Cell Lines and Culture
HeLa, a highly metastatic human cell line, was purchased

from the Shanghai Institute of Biochemistry and Cell

Biology, (Shanghai, China). The cells were cultivated in

Rosewell Park Memorial Institute (RPMI) 1640 medium,

supplemented with 10% fetal bovine serum and incubated

at 37°C in a humidified chamber containing 5% CO2.

Real-Time Near-Infrared Fluorescent

(NIRF) Imaging
The real-time biodistribution of Sal NPs was investigated

through non-invasive NIRF imaging. Sal NPs were labeled

with NIR-797-isothiocyanate (Sigma–Aldrich) to track the

position of particles. Briefly, the NIR-797-isothiocyanate and

mPEG-peptide-PCL copolymers were dissolved in dimethyl-

formamide and stirred at room temperature for 18 h. After the

reaction, unconjugated NIR-797-isothiocyanate was

removed via dialysis (MWCO 3500 Da) for 2 days. The

NIR-797-labeled NP solution was lyophilized for further use.

A total of 107 HeLa tumor cells were subcutaneously

inoculated into the right posterior flanks of male BALB/c

nude mice (age: 5–6 weeks, weight: 18–22 g) to establish

the tumor model. The NIR-797-labeled Sal NPs (equiva-

lent to the dose of Sal 2 mg/kg in an antitumor study) were

administered through intraperitoneal (IP) injection into

HeLa tumor-bearing mice (the same tumor model for the

following antitumor study) on day 7 after inoculation. The

real-time biodistribution image of NPs in tumor-bearing

mice was captured using the IVIS® Lumina system

(Xenogen Co., Alameda, CA, USA) at 1, 24, 48, 72, 96,

and 120 h post administration. The NIRF at 745 nm was

collected and the exposure time was set to 2 s.

In vivo Antitumor Effect of Sal NPs
Male BALB/c nude mice (age: 4–5 weeks, weight: 18–22 g)

purchased from the Animal Care Committee at Drum Tower

Hospital (Nanjing, China) were housed under specific-

pathogen-free (SPF) conditions and allowed to acclimatize

to the laboratory conditions for 1 week prior to initiating the

experiment. All animal studies were performed in compli-

ance with guidelines established by the Animal Care

Committee at Drum Tower Hospital, Nanjing, China. The

Animal Care Committee at Drum Tower Hospital approved

the experiments.

Ten male BALB/c nude mice (age: 4–5 weeks,

weight: 18–22 g), housed under SPF conditions were

subcutaneously injected at the lower right axilla with

0.1 mL of cell suspension containing 107 HeLa CC

cells. The mice whose tumor reached approximately

500 mm3 were sacrificed. The tumors were cut into

pieces (3 × 3 × 3 mm). Tumor pieces were subcuta-

neously implanted on the right axilla of BALB/c nude

mice. When tumor volumes reached approximately

100–200 mm3, the mice were randomly divided into

five groups (eight mice per group) (day 0). On the

same day, the five groups were treated with saline

(NS), Blank NPs, Sal free 2 (2 mg/kg, once every 2

days for four times), Sal NP 8 (8 mg/kg, once), or Sal

NP 2 (2 mg/kg, once every 2 days for four times).

Tumor size was measured once every 2 days during

the study. The tumor volume was calculated using the

formula: W2×L/2, where W is the widest diameter, and

L is the longest diameter. Relative tumor volumes were

calculated using the following equation to reduce the
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impact of initial tumor volume differences after group-

ing: Relative tumor volume=V/V0, where V was the

absolute tumor volume and V0 was the average tumor

volume of the group on day 0. On day 14, the mice

were sacrificed, and tumors were collected for patholo-

gical study by hematoxylin and eosin (H&E) staining.

Systemic Toxicity
Tumor pieces (3 × 3 × 3 mm) were subcutaneously

implanted on the right axilla of male BALB/c nude

mice (age: 4–5 weeks, weight: 18–22 g), housed

under SPF conditions. The mice whose tumor volumes

reached approximately 100–200 mm3 were randomly

divided into five groups (eight mice per group)

(day 0). On the same day, the mice were treated with

NS, Blank NPs, Sal NP 2 (2 mg/kg, once every 2 days

for four times), Sal free 2 (2 mg/kg, once every 2 days

for four times), and Sal NP 8 (8 mg/kg, once). Survival

was observed during the treatment period for approxi-

mately 14 days. The weights of the mice were also

measured once every 2 days. Their activity and appe-

tite were also observed. On day 14, the mice were

sacrificed. Hearts, lungs, livers, spleens, and kidneys

were collected for H&E staining to assess the systemic

toxicity in each group.

Immunohistochemistry (IHC)
The tumor tissues from the mice that received NS, Blank NP,

Sal free 2, Sal NP 2, and Sal NP 8 were used for IHC.

Sections (4-mm thick) from paraffin-embedded tumors

were deparaffinized and rehydrated using xylene and ethanol,

respectively, and immersed in 3% hydrogen peroxide solu-

tion for 10 min to block endogenous peroxidases. Sections

were boiled for 30 min in 10 mM citrate buffer solution (pH

6.0) for antigen retrieval. Slides were incubated for 45 min

with 5% bovine serum albumin and incubated overnight at 4°

C with anti-proliferating cell nuclear antigen (anti-PCNA)

(Abcam, USA), anti-Ki-67 (Abcam, USA), anti-Caspase3

(Abcam, USA), anti-CD44, anti-CD133, anti-E-cadherin,

and anti–VIM antibodies. These specimens were incubated

for 45 min at 37°C with the appropriate peroxidase-

conjugated secondary antibody (Abcam, USA) and visua-

lized using the Real Envision Detection Kit (Gene Tech

Shanghai Company Limited, Shanghai, China) following

the instructions provided by the manufacturer. All slides

were counter-stained with H&E.

WB Assays
The tumor tissues obtained from the mice that received

treatment with NS, Blank NP, Sal free 2, Sal NP 2, and

Sal NP 8 were selected for further study. These tissues were

ground into cell suspensions. Cells were washed twice with

phosphate-buffered saline (PBS) solution and lysed with

RIPA Lysis Buffer (Beyotime Institute of Biotechnology,

Shanghai, China) and protease inhibitor (Thermo Fisher

Scientific, USA). Protein concentrations were determined

using the Pierce BCA Protein Assay Kit (Thermo Fisher

Scientific, USA). Equivalent amounts of total protein (60

µg) were boiled and electrophoretically separated on a 10%

polyacrylamide gel at 80 volts. The proteins were trans-

ferred onto polyvinylidene difluoride membranes. The

membranes were blocked for 60 min with a 5% milk solu-

tion prepared in PBS, incubated overnight at 4°C with

primary antibodies (GAPDH, CD44, CD133, E-cadherin,

VIM, ZEB1, and ZEB2) at a 1:500 dilution. The membranes

were washed thrice for 5 min each time with Tween 20

(1:1000 dilution)-PBS and incubated for 45 min with the

appropriate peroxidase-conjugated secondary antibody

(Abcam, USA) (1:1000 dilution). Membranes were washed

with Tween 20-PBS thrice for 10 min each time and visua-

lized using the Odyssey two-color infrared laser imaging

system (ECDOI, Greenville, USA). The signal generated by

GAPDH was used as an internal control.

Flow Cytometric Analysis of

Tumor-Derived Cells
The expression of the CD44 marker on cells obtained from

HeLa tumors of xenografts models was distinctly evalu-

ated using flow cytometric analysis. Cell staining was

performed on tumors excised from each mouse of the

five treatment groups (i.e., NS, Blank NP, Sal NP 2, Sal

free 2, and Sal NP 8) after four repeated treatments. Prior

to digestion with collagenase, xenograft tumors were cut

into small pieces. The tumor pieces were subsequently

mixed with collagenase III and incubated at 37°C for

15–20 min for enzymatic dissociation to obtain single-

cell suspensions. At the end of the incubation, cells were

filtered through a 40-mm cell strainer and washed with

RPMI-1640 with 20% fetal bovine serum and PBS.

Subsequently, the cells were immunostained with anti-

CD44-PE (BD, New Jersey, USA) at 4°C for 20 min.

The samples were washed and resuspended in 500 µL of

cold PBS, and analyzed through flow cytometry (BD

FACS Aria II, BD Biosciences, San Jose, CA, USA).
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Tumor Seeding Study
Tumor tissues obtained from the mice that received treat-

ment with NS and Sal NP 2 were selected for further

study. We cut the tumor tissues into pieces (3 × 3 ×

3 mm) and placed them into a petri dish containing saline.

The mice were randomly divided into four groups (five

mice per group) and anesthetized. Tumor pieces were

subcutaneously implanted on the right axilla of the mice.

Subsequently, we measured the rates of tumor formation

and growth.

Statistical Analysis
The Student’s t-test (two tailed) was used for statistical ana-

lyses. P-values <0.05 denoted statistically significant

differences.

Results
Real-Time Biodistribution of NPs After

Systematic Administration in Tumor-Bearing

Mice
Wemarked the Sal NPs with a NIRF dye (NIR-797) for NIRF

imaging, to visualize the real-time biodistribution of Sal NPs

in xenograft tumor-bearing mice. The NIR fluorescence sig-

nals were observed on tumors and the abdomen 24-h post IP

injection (Figure 1 and Supplemental Figure 1). The fluores-

cence density of the abdomen decreased with time, whereas

NIRF signals gradually increased in the tumor. Following 48

h post administration, the strong fluorescence signal was

mostly observed in the tumor region, indicating that the sys-

tematic IP administration of Sal NPs can intelligently target

the tumor region.

In vivo Anticancer Efficacy of Sal NPs
The antitumor efficacy of Sal NPs was evaluated using

a subcutaneous HeLa tumor-bearing BALB/c nude mice

model. The experimental groups included NS, Blank NPs,

Sal free 2 (2 mg/kg, once every 2 days for four times), Sal

NP 2 (2 mg/kg, once every 2 days for four times), and Sal

NP 8 (8 mg/kg, once). We did not include a “Sal free 8”

group because, according to our previous findings,41 this

dose of free Sal was lethal to mice. On day 12 after the

first treatment, the tumor inhibition rates in the Sal free 2,

Sal NP 2, and Sal NP 8 groups were 48.2%, 65.7%, and

64.3%, respectively (Figure 2A). The Sal NP 2-treated

group showed higher antitumor efficiency and smaller

tumor volumes (P<0.001 of 8 mg/kg Sal free 2 equal)

than the Sal free 2-treated group. Compared with Sal free

2, Sal NPs began to show its antitumor efficacy after the

first 6 days. The antitumor advantages of Sal NPs became

more prominent with time (P<0.001). Sal NP 8 exerted

a similar antitumor effect to that of Sal NP 2, indicating

the sustainable release and effectiveness of NPs.

Furthermore, pathological studies of the tumors were con-

ducted as supplements of the tumor size study (Figure 2B).

Crowded tumor cells with large and hyperchromatic nuclei

were observed in the control group and BlankNP group, while

necrotic regions were rare. In the Sal free 2 treatment group,

sporadic small areas of pink staining and karyopyknosis were

observed in some tumor cells. In the Sal NP 8 group, the

discrete necrotic regions weremore obvious and exhibited cell

apoptosis. The phenomenon became most prominent in the

Sal NP 2 groups, explaining the smallest tumor volumes at the

pathological level. We next studied the cell growth activity

using PCNA, Ki-67, and Caspase3 staining. As shown in

Figure 2C, treatment with Sal induced tumor apoptosis and

inhibited tumor proliferation. This was evidenced by

a significant increase in the expression of Caspase3 and

decrease in that of Ki-67 and PCNA. Compared with the Sal

free-treated group, the Sal NP-treated groups showed a greater

inhibitory effect on cancer cells, confirming the target capacity

and sustainable release of NPs.

In vivo Toxicity Study
H&E-stained sections of important organs (Figure 3A) and

bodyweight variations (Figure 3B) were examined to evaluate

the adverse effects of Sal NPs and Sal free. The number of

survivingmicewas counted to preliminarily evaluate the safety

of Sal NPs in vivo. All BALB/c nude mice survived after IP

injection of Sal NPs at an equivalent Sal dose of 8 mg/kg,

a dose that exceeded the lethal dose of Sal (Table 1). Compared

with the Sal free 2-treated group, mice in the Sal NP 2- and Sal

NP 8-treated groups did not show changes in their bodyweight

(P<0.001). Moreover, there was no obvious change in H&E

staining of the lung, liver, heart, kidney, spleen, and skeletal

Figure 1 INIRF images. HeLa tumor bearing mice were systematically injected of

NIR-797 labeled Sal NPs, and observed for a period of 120h. The tumors were

marked by arrows. The images of 7 time points were showed to analysis the

acumination of Sal NPs in tumor region and normal organs. In the NIRF images,

NPs administrated by systematically administration could accumulate into tumor

region, which showed the intelligent targeting ability of our NPs.

Abbreviations: NIRF, near-infrared fluorescence; Sal NPs, Sal-mPEG-pep-PCL

nanoparticles; NPs, nanoparticles.
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muscle (Figure 3B), indicating the in vivo safety of Sal NPs.

However, in the Sal free 2-treated group, an obvious change in

H&E staining of the lung was observed. Specifically, alveolar

interstitial hyperemia, edema, and inflammatory cell infiltra-

tion were observed in lung tissues, which may lead to respira-

tory failure or even death. Moreover, the liver showed

a vascular glass-like change and inflammatory cell infiltration.

The heart muscle also exhibited inflammatory cell infiltration.

The hematopoietic spleen had obvious histocyte aggregation,

indicating the presence of significant inflammation

(Supplemental Figure 2). Thus, the Sal NPs can reduce the

side effects of Sal.

Sal Inhibits the Stem-Like Properties of

HeLa Cells in vivo
We next examined the expression of the cervical CSC-related

markers CD44 and CD133.42,43 The IHC and WB analyses

showed that mice receiving Sal exhibited markedly lower

levels of CD133 and CD44 than their control counterparts

(Figure 4A and C). Among all the groups, the Sal NP 2-trea-

ted group showed the strongest inhibition of CSCs. We also

evaluated the expression of CD44, a main marker used for

the identification of CSCs in CC, to further determine

whether the CSC phenotype of cells could be affected by

Sal NPs.44 According to the cytometric analysis, in the

Figure 2 In vivo antitumor efficacy of Sal and Sal NPs in a HeLa tumor model. (A) The tumor growth curves of HeLa tumor-bearing mice that received different treatments

(n=8) ***p<0.001; (B) H&E staining of the tumors in different treatment groups (n=8); (C) Representative IHC staining of Ki-67, Caspase3 and PCNA of the cervical

tumors in day 12.

Abbreviations: Sal, Salinomycin; Sal NPs, Sal-mPEG-pep-PCL nanoparticles; H&E, hematoxylin and eosin; IHC, Immunohistochemistry.
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untreated group, HeLa cancer cells highly expressed CD44

(mean: 21.9%). Treatment with Sal NP 2 significantly

decreased the expression of CD44 (mean: 6.55%), while

Sal free 2 also decreased the percentage of CD44-positive

HeLa cells to 13.8% (Figure 4B). However, the mechanism

involved in this process remains unknown, and further study

is warranted.

Sal NPs Inhibited the EMT Pathway of

HeLa Cells in vivo
The IHC andWB analyses of E-cadherin and VIM showed an

increased expression of the former and reduced expression of

the latter, highlighting the inhibitory property of Sal on the

EMTprocess (Figure 5A andB). It has been reported that EMT

is regulated by several transcription factors, including

ZEB1and ZEB2, which inhibit the epithelial phenotype and

repress E-cadherin transcription.45–47 The WB analysis

revealed that the expression of ZEB1 and ZEB2 decreased

after treatment with Sal (Figure 5C and Supplemental

Table 1). Meanwhile, among the Sal-treated groups, the Sal

NP 2 group showed lower expression of VIM, ZEB1, and

ZEB2 and higher expression of E-cadherin than the Sal free

2 group. However, it did not show a significant difference with

the Sal NP 8 treatment group.

Sal Suppresses the Tumor Regenerative

Ability of HeLa Cells
We implanted fresh CC specimens obtained from two

treatment groups (ie, NS and Sal NP 2) in nude mice to

further demonstrate the biological effectiveness of Sal NPs

on CCSCs and EMT characteristics of tumor cells from

CC tissues after anticancer treatment. Subsequently, we

investigated the tumorigenic capacity and growth speed

of these tumor-bearing mice under the same conditions.

Figure 3 In vivo toxicity analysis of Sal and Sal NPs. (A): Histological analyses of organ toxicity through H&E staining (×200) after treatment with control, Blank NP, Sal free

2, Sal NP 2, Sal NP 8; (B): Weight loss profiles over time after various treatments (n=8) ***p<0.001.

Abbreviations: Sal, Salinomycin; Sal NPs, Sal-PEG-pep-PCL nanoparticles; H&E, hematoxylin and eosin; Sal free 2, salinomycin solvent 2 mg/kg, every other day for four

times; Sal NP 2, Sal NPs 2mg/Kg, every other day for 4 times; Sal NP 8, Sal NPs 8mg/kg, once.

Table 1 Survival of Mice After Sal Treatment in Solution and NPs Formation

Group Number of Live Mice

Day 0 Day 2 Day 4 Day 6 Day 8 Day 10 Day 12 Day 14

A 8 8 8 8 8 8 8 8

B 8 8 8 8 8 8 8 8

C 8 8 8 6 5 4 3 2

D 8 8 8 8 8 8 8 8

E 8 8 8 8 8 8 8 8

Notes: A: Control; B: Blank NP; C: Sal free 2; D: Sal NP 2; E: Sal NP 8; Sal free 2 (2 mg/kg, every other day for 4 times); Sal NP 8 (8mg/Kg, once); Sal

NP 2 (2mg/Kg, every other day for 4 times).
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Figure 6B shows that tumor spheres could be observed in

100% (5/5) of the mice in the NS group 9 days after

implantation, while 40% (2/5) of the mice in the Sal NP

2 group showed tumor formation. During the observation

period, one mouse in the Sal NP 2 group did not regener-

ate its tumor. As shown in Figure 6A, Sal NP 2 delayed

tumor growth compared with the NS groups (P<0.001).

These findings indicated that treatment with Sal NP 2

Figure 4 Sal NPs inhibits stem like properties of CC in vivo. The IHC (A) and WB (B) and analysis of CD44 and CD133 variation in tumors of various treatment groups. Sal

NP 2 groups showed the decreased expression of CD44 and CD133 than control group, which demonstrated the CCSCs inhibition capacity of Sal NPs; Flow cytometric

analysis (C) indicated the strongest inhibition ability of Sal NP on cancer stem cells.

Abbreviations: Sal NPs, Sal-PEG-pep-PCL nanoparticles; CC, cervical cancer; IHC, Immunohistochemistry; WB, Western blot analysis; Sal NP 2, Sal NPs 2mg/Kg, every

other day for 4 times; CCSC, cervical cancer stem cells.

Figure 5 Mechanism of CCSCs inhibition by Sal NPs. IHC (A) and WB (B) result of E-cadherin, VIM proteins expression changes after different antitumor treatments; Both

Sal free and Sal NPs groups showed the lower expression of VIM and higher expression of E-cadherin than control group and Sal NP 2 showed the lowest expression among

all treatment groups; WB analysis (C) of EMT transcription regulators demonstrated that Sal can inhibit EMT pathway.

Abbreviations: CCSC, cervical cancer stem cells; Sal NPs, Sal-PEG-pep-PCL nanoparticles; IHC, Immunohistochemistry; WB, Western blot analysis; Sal NP 2, Sal NPs

2mg/Kg, every other day for 4 times; Sal free 2, salinomycin solvent 2 mg/kg, every other day for four times; EMT, Epithelial interstitial transformation.
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decreased the seeding ability and growth speed of tumor

cells.

Discussion and Conclusion
As a drug delivery system, NPs have drawn increasing

attention owing to their unique characteristics.48–50 The

solubility of Sal can be improved by incorporation into

the core of NPs.51,52 Therefore, NPs may be a suitable

drug delivery system for Sal. In our previous research, we

designed intelligent gelatinase-stimuli NPs for the targeted

delivery of Sal. These NPs are modified by inserting the

optimal gelatinase-cleavable peptide (PVGLIG) between

the mPEG and PCL segments (mPEG-peptide-PCL).53

Owing to their special structures, the NPs prepared from

mPEG-peptide-PCL exhibit their own characteristics, such

as prolonged circulation time and accumulation in the

tumor site by the EPR effect.54–56 MMPs are abundantly

present in tumors,57,58 and have been considered as tumor-

specific stimuli for cancer imaging and drug delivery.59,60

Following the accumulation of NPs in the tumors, the

mPEG-peptide-PCL conjugates will be cleaved at

a certain site of the MMP2/9 peptide by MMP2/9. The

dePEGylated NPs can be retained in the tumor regions,

which can effectively interact with additional tumor cells.

In addition, the cellular uptake can be increased to

improve the intracellular concentration of anticancer

drugs. Furthermore, the expression of MMPs is similar to

that of CSC-related markers and single pathways, such as

the EMT pathway.61,62 Moreover, EMT promotes tumor

cell aggressiveness by increasing the expression of MMPs,

especially gelatinases.63 Thus, we hypothesized that Sal

NPs can target cancer cells and CSCs through a gelatinase-

stimuli strategy. Previous studies have reported that our

gelatinase-stimuli NPs showed superior performance as

a delivery system for docetaxel or 5-fluorouracil.64,65

They can be used to improve solubility, increase accumu-

lation in the tumor, and decrease the occurrence of side

effects.66,67 Therefore, we used these gelatinase-stimuli

NPs for the delivery of Sal to improve its solubility,

which further contributes to increased drug enrichment in

tumors and enhanced inhibitory capacity of CSCs. Of note,

the adverse effects were significantly milder than those

reported in the Sal free-treated group.

According to our previous study, the hydrophobic

Sal can be encapsulated into NPs to generate a soluble

form which can be stably dispersed in water.68–70

Encapsulating Sal into NPs significantly reduced its

side effects, since there were no obvious pathological

changes observed in the H&E staining of important

organs, body weight variations, and survival. NIRF

imaging also revealed the prolonged accumulation of

Sal NPs in tumor sites after systematic administration.

Thus, Sal may sustainably target tumor regions, and

exhibits a good tolerability profile in vivo with low

toxicity.

An in vivo anti-tumor study demonstrated that Sal NPs

effectively suppressed tumor growth with lower proliferation

and higher apoptosis levels than those recorded in other

groups.71 Anti-tumor agents mainly exert anti-tumor effects

through induction of apoptosis. Caspase function, which

serves as the central regulator in cell death, is activated

upon cell apoptosis.72 Ki-67 and PCNA are commonly

used markers of cell proliferation.73 Their high expression

indicates a greater potential for tumors to present the meta-

static phenotype. In this study, Sal induced apoptosis and

inhibited the proliferation CC cells in vivo, as evidenced by

the upregulation of pro-apoptotic factor Caspase3 and down-

regulation of Ki-67 and PCNA in tumor specimens.

Figure 6 Tumor reseeding assay and growth curves of secondary tumors. Freshly

gastric cancer specimens of two treatment groups (Control and Sal NP 2) were

transplanted into another nude mice. The tumor regeneration ability (B) and the

growth speed (A) of these tumor-bearing mice under the same conditions were

investigated, ***p<0.001.

Abbreviation: Sal NP 2, Sal NPs 2mg/Kg, every other day for 4 times.
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Our data demonstrated that Sal NP 2 and Sal free 2

decreased the expression of CD44 and CD133 in CC

tissues and the tumor seeding ability. The flow cytometric

analysis also directly presented the decreased proportion

of CD44-positive CSCs. In the tumor reseeding study, the

Sal NP 2 group showed the slowest tumor growth pattern

in comparison with the other groups, demonstrating the

predominant inhibitory effect of Sal on CSC.

EMT is closely associated with CSCs, and promotes

tumor invasion and metastasis.74–76 The loss of E-cadherin

is a hallmark for EMT;77 thus, we investigated the expression

of E-cadherin and VIM. In the Sal NPs-treated groups, the

expression of E-cadherin increased, whereas that of VIM

decreased. These findings supported the fact that Sal can

specifically inhibit CSC by attenuating the EMT pathway.

ZEB1 and ZEB2 are negative inducers of EMT,78,79 which

enable tumor cells to invade and metastasize to distant sites.

We examined changes in the expression of EMT-related

genes (i.e., E-cadherin and VIM) using qualitive IHC and

quantitative WB to gain insight into the impact of Sal effects

on the stemness of HeLa CC cells. Furthermore, the levels of

ZEB1 and ZEB2 proteins were markedly reduced after treat-

ment with Sal. These results indicated that Sal inhibited

CSCs by targeting ZEB1 and ZEB2 to regulate the EMT

process in CC.

As illustrated in Scheme 1, an anti-CSC drug delivery

system (Sal-PEG-peptide-PCL NPs) was prepared. The Sal

NPs significantly decreased the proportion of CSCs, tumori-

genic capacity, and growth speed in tumor-bearing mice. It

is noteworthy that the side effects of Sal could be relieved

through encapsulation into NPs, which facilitates the appli-

cation of Sal to humans. However, the mechanism involved

in the inhibition of CSCs by Sal is obscure, underlining the

need for further research prior to any application in clinical

practice.
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