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1  | INTRODUC TION

Energy expenditure is fundamental to animal movement ecology 
and influences survival and reproductive success and, hence, pop‐
ulation dynamics (Brown, Gillooly, Allen, Savage, & West, 2004). 

Specifically, measures of energy expenditure can provide insight 
about the mechanisms by which animals respond to environmen‐
tal change on both short‐ and long‐term scales (Wikelski & Cooke, 
2006). Due to the importance of energy balance in species survival, 
a variety of methods have been developed to measure animal energy 
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Abstract
Measures of energy expenditure can be used to inform animal conservation and 
management, but methods for measuring the energy expenditure of free‐ranging ani‐
mals have a variety of limitations. Advancements in biologging technologies have 
enabled the use of dynamic body acceleration derived from accelerometers as a 
proxy for energy expenditure. Although dynamic body acceleration has been shown 
to strongly correlate with oxygen consumption in captive animals, it has been vali‐
dated in only a few studies on free‐ranging animals. Here, we use relationships be‐
tween oxygen consumption and overall dynamic body acceleration in resting and 
walking polar bears Ursus maritimus and published values for the costs of swimming 
in polar bears to estimate the total energy expenditure of 6 free‐ranging polar bears 
that were primarily using the sea ice of the Beaufort Sea. Energetic models based on 
accelerometry were compared to models of energy expenditure on the same indi‐
viduals derived from doubly labeled water methods. Accelerometer‐based estimates 
of energy expenditure on average predicted total energy expenditure to be 30% less 
than estimates derived from doubly labeled water. Nevertheless, accelerometer‐
based measures of energy expenditure strongly correlated (r2 = 0.70) with measures 
derived from doubly labeled water. Our findings highlight the strengths and limita‐
tions in dynamic body acceleration as a measure of total energy expenditure while 
also further supporting its use as a proxy for instantaneous, detailed energy expendi‐
ture in free‐ranging animals.
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expenditure in the field using electronic logging and tracking devices 
(Wilmers et al., 2015). For example, heart rate monitors (Boothby, 
1915; Butler, Woakes, Boyd, & Kanatous, 1992; Krogh & Lindhard, 
1917) and more recently accelerometers have been developed, 
which provide data that can be used as a proxy for energy expen‐
diture (Wilson et al., 2006). Similar to heart rate monitors (Butler, 
Green, Boyd, & Speakman, 2004), accelerometers can be calibrated 
with measures of oxygen consumption as a means to quantify 
overall energy expenditure (Gómez Laich, Wilson, Gleiss, Shepard, 
& Quintana, 2011; Halsey et al., 2009; Halsey, White et al., 2011; 
Wilson, Quintana, & Hobson, 2012; Wilson et al., 2006).

The translation of accelerometer data into a measure of energy 
expenditure has been termed dynamic body acceleration (DBA; 
Wilson et al., 2006), which represents changes in velocity as a re‐
sult of animal body movements (Shepard et al., 2008). The method is 
based on the concept that DBA provides a proxy for mechanical work 
performed by locomotor muscles, which should reflect changes in 
energy expenditure (Gleiss, Wilson, & Shepard, 2011; Wilson et al., 
2006). This relies on the assumption that movement is a primary fac‐
tor influencing variability in energy expenditure (Costa & Williams, 
1999; Gleiss et al., 2011; Karasov, 1992; Wilson et al., 2006). 
Nevertheless, Green, Halsey, Wilson, and Frappell (2009) found that 
DBA could also predict energy expenditure when including periods 
of inactivity in birds. When DBA is summed across 3 dimensions, it 
has been termed overall dynamic body acceleration (ODBA), which 
provides a means to quantify body movement in all directions at the 
center of mass (Wilson et al., 2006). The advantages of the DBA 
method are that accelerometers can be externally attached, can po‐
tentially record for extended durations over multiple months, and 
they can provide detailed, short‐term measures of energetic costs 
at subsecond scales (Gleiss et al., 2011; Halsey, Shepard, & Wilson, 
2011; Williams et al., 2014; Wilmers, Isbell, Suraci, & Williams, 2017; 
Wilson et al., 2006). This has considerable benefits in reducing the 
invasiveness of metabolic research relative to other methods. Given 
their small size and external attachment, the use of accelerometers 
should reduce the potential for injury (Green, Haulena et al., 2009) 
and reduce the potential for influencing the animal's behavior and 
related energy expenditure (but see Chivers, Hatch, & Elliott, 2016; 
Maresh et al., 2014; Vandenabeele et al., 2014; Walker & Boveng, 
1995; Wilson, 2011). As a result, DBA is increasingly being used as 
a proxy for energy expenditure in free‐ranging animals (Bishop et 
al., 2015; Bryce, Wilmers, & Williams, 2017; Enstipp et al., 2016; 
Grémillet et al., 2018; Halsey & White, 2010; Hicks et al., 2018; 
Scharf, LaPoint, Wikelski, & Safi, 2016; Udyawer, Simpfendorfer, 
Heupel, & Clark, 2017; Wang, Smith, & Wilmers, 2017; Williams et 
al., 2016, 2014; Wilmers et al., 2017; Wilson et al., 2012). However, 
DBA may underestimate changes in energy expenditure as a result 
of changes in basal metabolism, thermoregulation, specific dynamic 
action (heat increment of feeding), reproduction, or growth (Gleiss 
et al., 2011; Green, Halsey et al., 2009; Halsey, Shepard et al., 2011; 
Figure 1).

Given the potential utility of accelerometers, there is an increas‐
ing need to assess the validity, strengths, and limitations of DBA 

for measuring energy expenditure in free‐ranging animals, which 
has only been tested in a few studies (Elliott, Le Vaillant, Kato, 
Speakman, & Ropert‐Coudert, 2013; Jeanniard‐du‐dot, Guinet, 
Arnould, Speakman, & Trites, 2017; Stothart, Elliott, Wood, Hatch, & 
Speakman, 2016). Currently, the doubly labeled water (DLW) method 
(Lifson, Gordon, & McClintock, 1955; Lifson & McClintock, 1966) is 
the most widely used technique for measuring total energy expendi‐
ture (otherwise known as field metabolic rate, FMR) in free‐ranging 
animals (Nagy, 1989; Speakman, 1997). The DLW method provides a 
direct average estimate of CO2 production over an interval of time, 
which can be used in place of oxygen consumption to estimate met‐
abolic rates (Speakman, 1997). The method involves injecting a dose 
of water containing the isotopes 2H or 3H and 18O to determine the 
rate of CO2 production over the measurement period. The differ‐
ence between the turnovers of the oxygen and hydrogen isotopes 
provides a measure of CO2 production because 18O declines from 
the body as both respiratory CO2 (efflux) and water influx while 2H 
or 3H decline solely as a result of water influx (Costa, 1987, 1988; 
Speakman, 1997). The biggest advantages of the DLW method are 
that it does not require calibration using captive surrogates and it can 
be used directly on animals in the field. However, the use of DLW en‐
tails a variety of assumptions (Butler et al., 2004; Costa, 1987; Nagy, 
1980; Speakman, 1997), it typically requires capturing and sampling 
individuals on two occasions within a specific time frame (but see 
Scantlebury et al., 2014), and it only provides metabolic data during 
the period between equilibration at initial capture and final enrich‐
ment at recapture. Hence, the DLW method is only useful over rela‐
tively short time frames (typically over a few days) and it provides a 
single measure of energy expenditure making it difficult to assess the 
energetic costs of specific behaviors (Butler et al., 2004; Costa, 1988; 
Speakman, 1997). Furthermore, the purchase of 18O can be expensive 

F I G U R E  1   Conceptual chart showing the energetic pathways 
that account for an animal's overall metabolizable energy. The 
doubly labeled water method measures potential changes in 
energy expenditure across all of these pathways. Conversely, 
the accelerometer method only accounts for potential changes 
in energy expenditure that result from changes in activity; the 
remaining metabolic costs must be accounted for in energetic 
models to determine total metabolic rate or field metabolic rates 
over longer time periods (See Williams, Fuiman, Horning, & Davis, 
2004)
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(Speakman, 1997). Thus, the DLW method is often unsuitable or cost‐
prohibitive for most field studies of large animals. Nevertheless, the 
DLW method can be used to validate alternative measures of energy 
expenditure such as the DBA method as a means of measuring the 
energy expenditure of free‐ranging animals.

Here, we evaluate the use of ODBA from tri‐axial accelerometers 
to measure the energy expenditure of a large free‐ranging carnivore, 
female polar bears Ursus maritimus, on the sea ice of the Beaufort 
Sea by comparing the data to simultaneous measures of energy ex‐
penditure derived using DLW (Pagano, Durner et al., 2018). The be‐
haviors and activity rates of individual bears were identified based 
on a previously developed random forest model using tri‐axial accel‐
erometer and conductivity sensor data (Pagano, Rode, Cutting et al., 
2017). A relationship between oxygen consumption and ODBA was 
developed from measures of metabolic rate from captive, collared 
adult female polar bears resting and walking on a treadmill (Pagano, 
Carnahan et al., 2018). Energetic costs of swimming were derived 
from modeled estimates using internal body temperature data from 
free‐ranging polar bears while swimming (Griffen, 2018). Together, 
these data allowed us to compare accelerometer‐derived measures of 
energy expenditure to expenditures derived using DLW. Measures of 
daily energy expenditure derived from DLW were further compared 
to mean ODBA, mean activity rates, mean movement rates, and mean 
body mass to assess whether accelerometer‐derived measures of en‐
ergy expenditure offer an improvement over other metrics.

2  | MATERIAL S AND METHODS

2.1 | Captures

Data were collected from free‐ranging subadult and adult female 
polar bears without dependent young, on the sea ice of the Beaufort 
Sea as part of a previous study (Pagano, Durner et al., 2018) in April 
2014, 2015, and 2016. Details of the capture methods, use of doubly 
labeled water, and deployment of satellite collars with tri‐axial ac‐
celerometers are described elsewhere (Pagano, Durner et al., 2018). 
Briefly, polar bears were located from a helicopter and immobilized 
with standard methods (Stirling, Spencer, & Andriashek, 1989). 
Following immobilization, we weighed bears using an electronic load 
cell suspended from an aluminum tripod. Bears that had not been 
previously captured were aged based on counts of cementum annuli 
from an extracted vestigial premolar (Calvert & Ramsay, 1998; C‐D 
& Associates Biological Consulting, Spruce Grove, Alberta, Canada). 
Procedures were approved by the Animal Care and Use Committees 
of the University of California, Santa Cruz and the U.S. Geological 
Survey, Alaska Science Center. Research was approved under U.S. 
Fish and Wildlife Service Marine Mammal Permit MA690038.

2.2 | Doubly labeled water

Following immobilization, an initial blood sample was collected to 
serve as a baseline measure of 18O (oxygen‐18) and 2H (deuterium). 
The bear was then injected intravenously with a weighed dose 

containing 0.12–0.25 g/kg of 97% enriched 18O (Isoflex USA, San 
Francisco, CA, USA) and 0.06–0.10 g/kg of 99.9% enriched 2H (Isotec, 
Inc., Miamisburg, OH, USA or Cambridge Isotope Laboratories, Inc., 
Tewksbury, MA, USA) with NaCl added to make it 0.9% isotonic and 
sterilized using a 0.2 µ Millipore filter. On injection, the syringe was 
back washed with blood three times to ensure all the DLW had been 
injected into the bear. The bear was kept immobilized for 2 hr after 
the injection of DLW to allow isotope equilibration (Pagano, Rode, 
& Atkinson, 2017). We recaptured bears 8–11 days later to obtain a 
blood sample to measure final enrichment. At recapture, we weighed 
bears to measure changes in body mass.

Serum samples were analyzed for the concentrations of 18O and 
2H (Metabolic Solutions, Inc., Nashua, NH, USA). We calculated CO2 
production using the plateau method and Speakman's two‐pool 
equation (Speakman, 1997), which has been shown to be best suited 
for large mammals (Sparling, Thompson, Fedak, Gallon, & Speakman, 
2008; Speakman, 1997; Speakman et al., 2001, but see Dalton, 
Rosen, & Trites, 2014). We used the mean group dilution space ratio 
in calculating CO2 production (Speakman, 1997). We converted CO2 
production to metabolic rate using a respiratory quotient of 0.76 
(26.32 kJ per liter CO2; Pagano, Durner et al., 2018).

2.3 | GPS‐collars and accelerometers

We deployed GPS‐equipped video camera collars (Exeye, LLC., 
Bristow, VA, USA) and archival loggers (TDR10‐X‐340D, Wildlife 
Computers Inc., Redmond, WA, USA) on the same individuals dosed 
with DLW (see Pagano, Durner et al., 2018 for additional information). 
To evaluate differences in mean movement rates (km/hr) among bears, 
we used a continuous time correlated random walk (CRAWL) model 
(Johnson, 2016; Johnson, London, Lea, & Durban, 2008) in R (R Core 
Team, 2014) to predict locations on a 30 min interval based on GPS lo‐
cations. We calculated minimum distance travelled between two suc‐
cessive predicted locations as the great‐circle distance (i.e., distance 
accounting for the earth's curvature) and calculated movement rate 
by dividing distance by the duration between predicted locations (i.e., 
30 min) in SAS (version 9.3, SAS Institute Inc., Cary, NC, USA).

Archival loggers recorded tri‐axial acceleration (m/s2) at 16 Hz 
(range ± 20 m/s2), time‐of‐day, and wet/dry conductions at 1 Hz (via 
an onboard conductivity sensor) continuously from the time of de‐
ployment until recovery. Behaviors were derived from the accelerom‐
eter and conductivity data using a random forest algorithm (Breiman, 
2001) in R (“RandomForest”package) as described by Pagano, Rode, 
Cutting et al. (2017). Briefly, we discriminated 10 behaviors from the 
accelerometer and conductivity data and we calculated activity to be 
the proportion of time a bear was not engaged in resting behaviors. 
To calculate DBA, we converted accelerometer measures from m/s2 
to g (1 g = 9.81 m/s2). We used a 2 s running mean of the raw acceler‐
ation data to calculate static acceleration (gravitational acceleration) 
and subtracted the static acceleration from the raw acceleration data 
to calculate dynamic acceleration (Shepard et al., 2008; Wilson et al., 
2006). We calculated ODBA as the absolute sum of dynamic acceler‐
ation across the 3 axes (Wilson et al., 2006).
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2.4 | Conversion of accelerometer measures to 
energy expenditure

Energy expenditure during nonswimming behaviors was based on 
the relationship between ODBA and oxygen consumption (V̇O2) de‐
rived by Pagano, Carnahan et al. (2018). However, Pagano, Carnahan 
et al. (2018) found a negative intercept between ODBA and V̇O2 
and suggested this relationship needed to be further developed. 
This negative intercept may have been related to head movements 
of the bears during resting V̇O2 and ODBA measurements. To cor‐
rect for the potential that head movements during resting measure‐
ments biased our ODBA measures, we measured the mean ODBA of 
3 captive adult female polar bears (body mass: 237, 242, and 288 kg; 
age: 14, 31, and 15 years) while resting and motionless in their en‐
closures (Pagano, Rode, Cutting et al., 2017) and assigned them the 
mean mass‐specific resting metabolic rate summarized by Pagano, 
Carnahan et al. (2018) from three studies (0.230 ml O2 g−1 hr−1). 
We incorporated these three measures with the previous meas‐
ures determined by Pagano, Carnahan et al. (2018) and found V̇O2 
(ml O2 g−1 hr−1) increased linearly as a function of ODBA (g) where: 
V̇O2 = 0.07 + 1.90 × ODBA (r2 = 0.71, p < 0.001, n = 21, Figure 2). 
For swimming movements, we used the mean swimming energetic 
cost determined by Griffen (2018) (2.75 ml O2 g−1 hr−1). Measures of 
V̇O2 were converted to metabolic rate using the standard conversion 
factor of 20.083 J/ml O2 (Schmidt‐Nielsen, 1997). These relation‐
ships were then applied on a behavior‐specific basis (i.e., swimming 
vs. nonswimming) to the archival logger data recovered from the 
same free‐ranging individuals that were dosed with DLW to measure 
their total energy expenditure (mJ/kg) in SAS. Total energy expendi‐
ture was converted to daily energy expenditure by dividing by the 
total number of days each animal was studied.

2.5 | Statistical analysis

We used paired t tests to compare estimates of daily energy expend‐
iture (kJ kg−1 day−1) measured by DLW and concurrent estimates de‐
rived from the accelerometer‐based relationship (i.e., the conversion 
of the accelerometer data into measures of energy expenditure as 
described above). Least‐squares linear regression was then used to 
evaluate the relationship between daily energy expenditure meas‐
ured by DLW and estimates derived from the accelerometer‐based 
relationship. For each individual, we calculated mean ODBA (g), 
mean activity rate (%), and mean movement rate (km/hr) between 
the time of capture to the time of recapture. We used least‐squares 
linear regression to evaluate the relationships between daily energy 
expenditure (kJ kg−1 day−1) derived from DLW and (a) mean ODBA 
(g), (b) mean activity rate (%), (c) mean movement rate (km/hr), and 
(d) mean body mass (kg). We considered results to be significant at 
p ≤ 0.05. All analyses were conducted in R.

3  | RESULTS

We captured four adult female polar bears in 2014, three adult and 
one subadult female polar bears in 2015, and two adult female polar 
bears in 2016. We recaptured bears 8–11 days later to obtain a blood 
sample to measure final enrichment and recover collars and archival 
loggers. In 2015, we were unable to recapture one adult female to 
measure her final enrichment. Additionally, three of the archival log‐
gers deployed in 2014 failed within 12 hr of deployment. We ex‐
cluded data from these four bears from analyses. Consequently, we 
had a sample of 6 female polar bears who provided simultaneous 
measures of energy expenditure derived from DLW and continuous 
measures of tri‐axial acceleration (Table 1). Across these 6 individu‐
als, we collected 228,890,898 measures of acceleration across three 
axes of which 0.05% equaled or exceeded the maximum range of 
recorded acceleration (i.e., ≥ or ≤ ±20 m/s2).

Daily energy expenditure derived from DLW ranged from 
1.2 to 1.7 times greater than accelerometer‐derived estimates 
of daily energy expenditure (mean = 1.4, SE = 0.07, Table 1). As a 
result, daily energy expenditure derived from DLW differed sig‐
nificantly from estimates derived from accelerometers (t5 = 6.1, 
p = 0.002). Nevertheless, daily energy expenditure estimates 
derived from accelerometers accounted for 70% of the varia‐
tion in daily energy expenditure estimates derived from DLW: 
DEEDLW = 70.87 + 1.09 × DEEACC (r2 = 0.70, p = 0.039, n = 6, 
Figure 3a). Similarly, mean ODBA accounted for 70% of the 
variation in daily energy expenditure estimates derived from 
DLW: DEEDLW = 99.09 + 1031.58 × ODBA (r2 = 0.70, p = 0.039, 
n = 6, Figure 3b). Mean movement rate accounted for 88% of 
the variation in daily energy expenditure estimates derived from 
DLW: DEEDLW = 150.58 + 179.17 × rate (r2 = 0.88, p = 0.005, 
n = 6, Figure 3c). Mean body mass accounted for 77% of the 
variation in daily energy expenditure estimates derived from 
DLW: DEEDLW = −74.89 + 2.13 × mass (r2 = 0.77, p = 0.02, n = 6, 

F I G U R E  2   Least‐squares regression (solid line) of mass‐specific 
oxygen consumption and mean overall dynamic body acceleration 
(ODBA) from 2 adult female polar bears resting and walking on a 
treadmill (bears 1 and 2; yellow and blue circles, respectively) and 
3 adult female polar bears resting in their enclosure (bears 1, 2, and 
3; yellow, blue, and green circles, respectively). Regression statistics 
are provided in the main text
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Figure 3d). Mean activity rate did not significantly explain the 
variation in daily energy expenditure estimates derived from DLW 
(r2 = 0.60, n = 6, p = 0.069, Figure 3e).

4  | DISCUSSION

An animal's energy expenditure is a function of many metabolic costs 
including basal metabolism, specific dynamic action, thermoregu‐
lation, reproduction, growth, and locomotion (Figure 1) (Costa & 

Williams, 1999; Nagy, 1989). For polar bears, a previous study using 
the same DLW measures of energy expenditure found that energy 
expenditure was influenced by body mass, movement rate, over‐
all activity level, and total distance traveled (Pagano, Durner et al., 
2018), suggesting that basal metabolism and movement costs were 
primary determinants of energy expenditure in this species. Despite 
this, the discrepancies we report here between energy expenditure 
determined via DLW and accelerometers suggest the potential in‐
fluence of other costs on energy expenditure not associated with 
activity, such as specific dynamic action (SDA), thermoregulation, 

TA B L E  1   Polar bear age, duration studied, mean body mass, mean daily field metabolic rates (FMRs) derived from doubly labeled water 
(DLW), mean daily FMRs derived from accelerometer‐based relationships (ACC), and mean measures of overall dynamic body acceleration 
(ODBA)

Bear Age (years) Duration (days) Mean mass (kg)
FMRDLW 
(kJ kg−1 day−1)

FMRACC 
(kJ kg−1 day−1) Mean ODBA (g)

1 6 9.1 184.4 363.6 282.7 0.274

2 4 9.2 189.2 290.1 243.1 0.231

3 5 10.0 171.3 274.0 182.4 0.168

4 3 10.6 133.6 214.1 155.1 0.135

5 6 8.0 209.1 402.1 269.7 0.256

6 22 8.9 205.3 337.4 199.1 0.186

F I G U R E  3   Mass‐specific energy expenditure in relation to accelerometer‐derived estimates, overall dynamic body acceleration (ODBA), 
movement, body mass, and activity of polar bears. (a) Least‐squares regression (solid line) of mean daily mass‐specific energy expenditure of 
female polar bears on the sea ice measured by doubly labeled water (DLW) in comparison with mean daily mass‐specific energy expenditure 
of the same individuals measured based accelerometer‐based relationships. (b) Least‐squares regression (solid line) of mean daily mass‐
specific energy expenditure of female polar bears on the sea ice measured by DLW in comparison with mean ODBA. (c) Least‐squares 
regression (solid line) of mean daily mass‐specific energy expenditure of female polar bears on the sea ice measured by DLW in comparison 
to mean movement rate. (d) Least‐squares regression (solid line) of mean daily mass‐specific energy expenditure of female polar bears on 
the sea ice measured by DLW in comparison to mean body mass. (e) Relationship between mean daily mass‐specific energy expenditure of 
female polar bears on the sea ice measured by DLW in comparison with mean activity rate. Regression statistics are provided in the main 
text. Each point represents a single value for one bear
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growth, and reproduction (Figure 1). Such costs are inherently incor‐
porated within DLW estimates, but their variability could not be ac‐
counted for with the models we used in our estimates derived from 
accelerometers. Five of the 6 bears in this study were adults and 
all bears were independent females without cubs. Hence, growth 
and reproduction likely had minimal impacts on energy expenditure. 
Conversely, SDA was probably an important factor as 5 of the bears 
in this study either scavenged from seal and bowhead whale Balaena 
mysticetus carcasses or caught and ate adult/subadult ringed seals 
Pusa hispida (Pagano, Durner et al., 2018). In other mammals, SDA 
has been found to typically increase energy expenditure for 4–10 hr 
by 25%–50% (Costa & Kooyman, 1984; Secor, 2009). Scavenging 
bears likely experienced particularly high SDA costs due to the 
greater energetic costs in digesting protein from muscle relative 
to fat (Costa & Williams, 1999) and the increased energetic cost of 
heating frozen food to body temperature (Berteaux, 2000; Secor, 
2009; Wilson & Culik, 1991). Only 1 bear fasted for the duration of 
the study (Pagano, Durner et al., 2018). Yet, even this bear was esti‐
mated to have 1.4 times greater energy expenditure based on DLW 
than estimates derived from accelerometers. Ambient temperatures 
during the period of this study ranged from −33.9 to 1.7°C. Best 
(1976) estimated that the thermoneutral zone for a 200 kg polar 
bear may range from −50 to 37°C while resting, which suggests that 
the effect of thermoregulation on the energy expenditure of the 
bears in this study would be expected to be minimal. Additionally, if 
bears were shivering or panting to thermoregulate, we would expect 
such responses to be detected by our accelerometers and influence 
our energy expenditure estimates. However, Green, Haulena et al. 
(2009) found accelerometers failed to detect shivering and ther‐
moregulatory costs in domestic chickens (Gallus gallus). Furthermore, 
the bears in this study spent only 0.3% of the time swimming in the 
water (Pagano, Durner et al., 2018) (where thermoregulation costs 
may be greater). Together, this suggests that other factors beyond 
growth, reproduction, SDA, and thermoregulation may be contribut‐
ing to the discrepancies, we found in measuring energy expenditure 
between the two methods.

Of particular importance is the robustness of the relationship be‐
tween V̇O2 and ODBA to account for different terrains, gait changes, 
and the range of speeds of wild animals. The relationship we de‐
veloped on the treadmill was limited to a maximum speed of 3 km/
hr, which may have limited our ability to predict energy expenditure 
at greater speeds. However, in polar bears, V̇O2 has been shown to 
increase linearly at speeds up to 5.4 km/hr (Pagano, Carnahan et al., 
2018) and free‐ranging polar bears, including those in this study, 
rarely exceed this speed (Pagano, Carnahan et al., 2018; Whiteman 
et al., 2015). Another factor that can influence the relationship 
between ODBA and V̇O2, and thus cost of locomotion, is uneven 
surfaces including moving on rough or icy surfaces, and traversing 
inclines and declines (Halsey, 2016; Halsey et al., 2008). Accounting 
for this effect requires further calibration on different substrates, 
and at varying inclines with determination of the slope and substrate 
at which animals are moving in the field (Gleiss et al., 2011). Typically, 
it is assumed that the relationship between V̇O2 and ODBA derived 

on a treadmill will follow similar trends in the field. This has to be 
approached with caution for the reasons described above as well 
as extraneous body movements that are known to impose greater 
energetic costs relative to movements on a treadmill (Halsey, 2016). 
For example, in humans, DBA has been shown to underestimate field 
measurements of V̇O2 (Bidder et al., 2017). We performed a post hoc 
test to assess whether the difference in energy expenditure derived 
from the two methods may be explained by differences in the activ‐
ity rates among our bears, which could suggest our treadmill‐derived 
calibrations were driving our underestimates of energy expenditure, 
but we found no significant relationship (r2 = 0.03, p = 0.76, n = 6). 
Hence, our results further suggest that multiple factors may lead to 
underestimates of field energetic costs of free‐ranging animals when 
using DBA techniques without appropriate calibrations (Adachi et 
al., 2014; Bidder et al., 2017; Dalton et al., 2014; Green, Halsey et al., 
2009; Halsey, Shepard et al., 2011; Jeanniard‐du‐dot et al., 2017). 
Additionally, DLW measures of energy expenditure themselves are 
known to contain some error. Nagy (1989) and Speakman (1997) re‐
ported this error to average 4% and 3.1% in mammals, respectively. 
However, individual error may be as high as 44% (Butler et al., 2004; 
Dalton et al., 2014; Sparling et al., 2008). Hence, the discrepancies 
we found with energy expenditure derived from accelerometers 
may in part be due to errors in the DLW estimates themselves.

Although our sample size was limited, we found similar relation‐
ships with energy expenditure derived from DLW using either our 
estimates of energy expenditure derived from accelerometers or 
mean ODBA. This similarity in part likely reflects the conversion of 
ODBA to measures of energy expenditure based on a linear relation‐
ship for all behaviors except swimming. Additionally, the swimming 
frequencies of bears during the study (mean = 0.3%) was likely too 
low to considerably affect the relationship between energy expen‐
diture derived from accelerometers and mean ODBA. This highlights 
that while conversion of ODBA to a measure of energy expenditure 
using a linear relationship with V̇O2 does convert data to units of 
energy (i.e., kJ kg−1 day−1), such linear conversions will not influ‐
ence the ability of accelerometer‐based measures to serve as prox‐
ies for energy expenditure. Strong relationships between DBA and 
DLW measures of energy expenditure have similarly been shown in 
free‐ranging thick‐billed murres Uria lomvia and pelagic cormorants 
Phalacrocorax pelagicus (r2 = 0.73 and 0.91, respectively) (Elliott et 
al., 2013; Stothart et al., 2016). This highlights the potential value 
of DBA as a proxy of energy expenditure because locomotion 
costs typically account for most of the variability in energy expen‐
ditures in free‐ranging animals (Costa & Williams, 1999; Gleiss et 
al., 2011; Karasov, 1992; Wilson et al., 2006). Nevertheless, in our 
study, mean movement rate and mean body mass also strongly cor‐
related with energy expenditure. The strong correlation between 
energy expenditure and body mass likely reflects the important 
role of basal metabolism in influencing energy expenditure (Nagy, 
2005; Pagano, Durner et al., 2018; Ricklefs, Konarzewski, & Daan, 
1996). Movement rate would be expected to function as both a 
coarse proxy of activity (Ensing et al., 2014) and a measure of the 
intensity of such activity (i.e., speed). That movement rate strongly 
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correlated with energy expenditure while activity rate did not sug‐
gests that locomotion costs were a more important determinant of 
energy expenditure than activity alone. However, like DBA, mea‐
sures of movement rate and body mass have their own limitations. 
To measure potential changes in energy expenditure, measures of 
body mass require repeated sampling of individuals, which is one of 
the limitations in the use of DLW itself. Movement rates can be cal‐
culated from satellite telemetry location data, but for polar bears, 
movement rates derived by satellite telemetry can be biased by sea 
ice drift (Auger‐Méthé, Lewis, & Derocher, 2016; Durner et al., 2017; 
Mauritzen, Derocher, Pavlova, & Wiig, 2003; Platonov et al., 2014). 
Such effects were considered minimal in the region and month of 
our study (Durner et al., 2017), where previous research indicates a 
bias would be more prevalent in other regions and months (Durner 
et al., 2017). In addition to this limitation, movement rates are typ‐
ically calculated from comparatively infrequent location data, thus 
underestimating true movement paths and rates (Bidder et al., 2015; 
Kramer & McLaughlin, 2001; Prichard, Yokel, Rea, Person, & Parrett, 
2014; Rowcliffe, Carbone, Kays, Kranstauber, & Jansen, 2012). By 
comparison, measures of DBA are typically recorded at high fre‐
quencies and, hence, should better reflect an animal's true move‐
ments (Bidder et al., 2015; Wilson et al., 2013). Measures of tri‐axial 
acceleration can also be used to simultaneously determine animal 
behavior (this study; Ladds et al., 2018), providing additional insight 
into animal movement ecology and conservation (Cooke et al., 2014).

Although we highlight some potential limitations and cautionary 
measures concerning the use of DBA as a measure of energy ex‐
penditure, we recommend future research to increase its applica‐
tion for the wide diversity of free‐ranging animals and the habitats 
in which they move. Due to the expense of DLW isotopes and the 
logistical constraints of working with large carnivorous mammals in 
the Arctic, the sample size in this study was limited. Furthermore, 
although the bears in this study spent <1% of the time swimming, 
the energetic costs of swimming in polar bears has yet to be directly 
measured. The use of ODBA to estimate energy expenditure relies 
on the premise that acceleration represent movements at the ani‐
mal's center of mass (Gleiss et al., 2011; Wilson et al., 2006). Similar 
to other studies, we used tri‐axial accelerometers mounted to collars 
at the neck to measure ODBA (Halsey et al., 2008, 2009; Qasem et 
al., 2012; Williams et al., 2014). However, it is unknown whether the 
relationships we derived might have been influenced by attachment 
on the collar and if we would have found improved relationships with 
the accelerometer mounted directly on the animal's trunk. Future 
research exploring these topics would help to improve the accuracy 
and reliability of measures of energy expenditure in field studies. 
Nevertheless, our results support the use of accelerometers in pro‐
viding novel insight into the instantaneous energy expenditure of 
free‐ranging animals.
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