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Gammaretrovirus-like sequences occur in most vertebrate genomes. Murine Leukemia Virus (MLV) like retroviruses (MLLVs) are
a subset, which may be pathogenic and spread cross-species. Retroviruses highly similar to MLLVs (xenotropic murine retrovirus
related virus (XMRV) and Human Mouse retrovirus-like RetroViruses (HMRVs)) reported from patients suffering from prostate
cancer (PC) and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) raise the possibility that also humans have been
infected. Structurally intact, potentially infectious MLLVs occur in the genomes of some mammals, especially mouse. Mouse
MLLVs contain three major groups. One, MERV G3, contained MLVs and XMRV/HMRV. Its presence in mouse DNA, and the
abundance of xenotropic MLVs in biologicals, is a source of false positivity. Theoretically, XMRV/HMRV could be one of several
MLLV transspecies infections. MLLV pathobiology and diversity indicate optimal strategies for investigating XMRV/HMRV in
humans and raise ethical concerns. The alternatives that XMRV/HMRV may give a hard-to-detect “stealth” infection, or that
XMRV/HMRV never reached humans, have to be considered.

1. Introduction

Recent reports of human gammaretroviruses highly similar
to murine gammaretroviruses in PC and ME/CFS patients
raise questions regarding (i) the occurrence of such retroviral
sequences in murine and other vertebrate genomes, (ii)
probable routes of spread of such viruses, and (iii) available
methods for the detection of infection with them. In this
review, we apply a phylogenetic aspect to the occurrence
of XMRV/HMRV in genomes, and to the diagnostic search
for it in humans. The comparative approach [1] can also
enhance the study of pathobiology and epidemiology of

XMRV/HMRV. Given the recent great activity in the field,
the review cannot be exhaustive. Indeed, reports indicating
that all XMRV/HMRV findings in humans may be due to
different forms of laboratory contamination [2, 3] stress the
need for a critical evaluation.

2. The Genus Gammaretrovirus

2.1. General. Murine leukemia viruses (MLVs) are gam-
maretroviruses which may be both exogenous (trans-
mits between individuals, i.e., horizontally) or endogenous
(proviruses integrated into the germ line of mice and
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Figure 1: Simplified phylogeny of gammaretroviruses based on over 2000 gammaretrovirus-like sequences with one zinc finger in Gag,
from selected vertebrate genomes (in a first version of RetroBank) and reference gammaretroviruses. Retroviral groups which occur in
phylogenetically distant vertebrate hosts, indicating cross-species transmission events, are shown in red. The neighbor-joining tree was based
on an alignment of 105 reference and consensus Pol amino acid sequences. Only the major branches are shown. As explained in the text,
they were provisionally named after the cosegregating HERV group. The group of “MLV-like viruses,” MLLVs, at least 60% similar in Pol, is
boxed in. The similarity is calculated from the inverted ratio of the BLASTP score of the sequence against itself to another sequence, or to a
consensus Pol sequence. Some two-zinc finger sequences (ERV-HF, containing HERV-H and HERV-F) were included as a reference. Although
the clustering included several genomes, the groups were named from the human sequence representative. MuERV: mouse endogenous
retrovirus. MmERV is from Bromham et al. [13], and MdERV is Mus dunni ERV from Wolgamot et al. [14]. GLN MuERV is from Ribet
et al. [15]. Symbols:∗ position of XMRV/HMRV, § recombinant MuERV Sp496-5Sb [16] from Mus spretus, hortulanus endogenous murine
virus, HEMV, from Mus spicilegus [17], # MuRRS [18], and MuERVC [19]. An ERV-S sequence [20] was used to root the tree. It came from
HERV-S, a sequence intermediate to spuma-, epsilon-, and gammaretroviruses. It belongs to the so-called “ERV3 family” according to the
RepBase nomenclature [21]. This large clade is also called “Class III ERVs.” It should not be confused with the ERV3 group shown in the
figure. The hand symbols denote proviruses with one and two zinc fingers in Gag, respectively. The murine gammaretroviral groups G1-G3
are described in greater detail in a forthcoming paper (Elfaitouri et al., accepted, Plos One).

thereby being transmitted to the next generation, i.e.,
vertically). Gammaretroviruses were defined from exogenous
retroviruses with MLV as a reference. The vast amount
of genomic information now available shows that they
are included in the large Class I ERV clade. Figure 1
depicts the major gammaretroviral groups, based on a
clustering analysis of polymerase sequences of a large
number of endogenous sequences. Using MLVs (Genbank
ID J02255, Locus MLMCG) as a taxonomical starting point,

gammaretroviruses related to MLVs can be labeled “MLV-
like retroviruses” and are here referred to as “MLLVs.”
Endogenous versions of MLLVs occur in the genomes
of some mammals and marsupials. The major branches
segregated with previously characterized HERV groups,
named after primer binding site, PBS, usage. This usage was
found to be retained in the larger context (data not shown).
These branches were therefore provisionally named after the
respective HERV group. MLLVs are boxed in. They were
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defined as a cluster of polymerase (Pol) sequences which
were at least 60% similar, including the MLVs. The similarity
was based on the BLASTP score of their Pol amino acid
sequences to each other. The concept “MLLV” is justified for
the purpose of this review to encompass similar proviruses of
phylogenetically distant vertebrates. Their wide distribution,
in pigs, primates, rodents, and koalas, demonstrates a
tendency to interspecies spread, potentially relevant both for
human disease [4–9] and xenotransplantation [10–12].

The human genome also contains remnants of infec-
tions with retroviruses highly related to MLLVs, HERV-T.
However, these were integrated in the rather distant past.
In contrast, MLLVs have repeatedly infected nonmurine
vertebrates in the not so distant past, judging from the low
degree of divergence of entire proviral and LTR sequences.
Mediterranean and middle Eastern cats [22], turkeys [23],
gibbon apes [24, 25], and koalas [26, 27] have been “invaded”
by MLLVs. This is further discussed below. In some hosts,
they are both endogenous and exogenous, in others just
exogenous. In the infected animals, exogenous MLLVs are
associated with significant disease like encephalitis, malig-
nancy (leukemia and lymphoma), wasting, immunosuppres-
sion, and autoimmunity. This makes it especially important
to establish if also the human species is now “invaded” by a
murine MLLV, that is, XMRV/HMRV.

2.2. Properties

2.2.1. The Gammaretrovirus Genome. Gammaretroviruses
have a simple genome (Figure 2), that is, there are no known
additional overlapping reading frames for nonstructural
regulatory proteins such as those which occur in betaretro-
viruses, deltaretroviruses, and lentiviruses. Moloney MLV is
the reference gammaretrovirus [28]. Despite being simple,
MLVs have some distinguishing features. The gag gene
may have alternative translational start sites, giving rise to
both a myristoylated Gag polyprotein, which contains the
inner structural proteins, and a glycosylated Gag membrane
protein. Many of them have a phosphoprotein following the
matrix protein p15, called p12. The major Gag protein is
p30, the capsid protein. It is responsible for many of the
antigenic cross-reactions which gave rise to the acronym
Gag (“group-specific antigen”). Further, like many other
gammaretroviruses, the MLLVs have one zinc finger in the
NucleoCapsid, NC, portion of Gag (the p10 protein), instead
of the customary two [29]. The first finger is replaced with
a highly charged sequence, binding to retroviral genomic
RNA in a somewhat different way compared to two zinc
finger retroviruses. The zinc finger status is here used as a
taxonomic marker of a subset of gammaretroviruses [30].
All MLLVs have one zinc finger. Occasional readthrough of
a Gag stop codon creates Gag-Pol polyproteins.

Another structural genomic aspect is that retroviruses
with simple genomes like alpharetroviruses and gam-
maretroviruses occasionally may take up an oncogene in
their genome, to form acutely transforming (“sarcoma”)
viruses [28]. They are often replication deficient. They
then need a replication competent virus, a helper virus,
to replicate. The so-called murine AIDS (MAIDS) virus

variants are also defective, producing a new Gag protein
(p60) which contains part of the p12 protein and a T
cell neoepitope [31–33]. Likewise, the feline leukemiavirus
immunodeficiency-inducing defective virus (FeLV-T) has a
mutated Env [34]. Immunodeficiency associated with this
variant is sometimes called “Feline AIDS,” FAIDS, although
the feline immunodeficiency virus can cause another form
of (FAIDS). Recombination between exo- and endogenous
MLLV sequences is common in both mice and cats [35].

MLVs can cause cancer in at least two ways, either
through incorporation of an oncogene, or by integration
near 5′ends of transcription units and associated CpG-rich
portions [28]. The propensity to integrate into or next to
promoters is a gammaretroviral specialty [36–38]. Random
integration next to an oncogene is a frequent cause of
leukemia in MLV-infected animals. Humans are not immune
to this mechanism. MLV-based gene therapeutic vectors have
the same target specificity [37, 39], see also [40]. Thus,
an MLLV infecting humans would be expected to cause
leukemias or lymphomas.

Finally, the envelope proteins (Surface Unit; SU, gp70 and
TransMembrane protein; TM, p15E) are central for tissue
tropism, immunogenicity, and for immunosuppression. The
latter contains the conserved so-called “immunosuppressive
domain” (ISD) [41–45] whose mode of action is still
poorly known. Thus, despite their basic structural simplicity,
MLLVs can display a complex pathobiology.

2.2.2. Occurrence among Vertebrates. A rich source of verte-
brate information is the collection of ERV sequences in an
early version of RetroBank [47]. The program RetroTector
(ReTe) [48] was used to collect more than 40.000 proviruses
from whole genome analyses of thirty vertebrate genomes.
ReTe is based on a pattern recognition algorithm. It uses the
order of and distances between conserved retroviral motifs
to detect and characterize retroviral sequences from large
genomic data sets. A score is calculated from the degree
of fit to a collection of conserved motifs from all seven
retroviral genera. The higher the score, the better the fit to
a structural model which encompasses most orthoretroviral
and also some retrovirus-like sequences. A provisional genus
is designated by counting the best-fitting motifs from each
genus.

Gammaretrovirus-like sequences were detected in all of
the 30 genomes (those reported in [48] plus the turkey
genome). Those scoring above 1000 by RetroTector, and with
only one zinc finger (n = 2534, from marmoset 32, dog 41,
guinea pig 211, horse 4, duckbill 16, lemur 43, orangutan
82, rhesus 204, pig 79, tree shrew 11, lizard 162, cow 37,
human 143, opossum 393, mouse 515, chimpanzee 192,
rat 361, and zebra finch 8), were selected from RetroBank.
The mouse genome assembly employed was mm8, from
a C57 black mouse. Some were from the MLLV subset,
as defined in Figure 1. A study of their taxonomy was
initiated by clustering and consensus sequence calculation
at the 85% similarity level. It resulted in 75 interhost Pol
consensus sequences which together with reference Pols were
used to build the tree shown in the simplified form in
Figure 1. This is part of JBs ongoing work with retroviral



4 Advances in Virology

Viral
genomic

RNA

Reverse
transcriptase

Envelope with
attachment protein

Capsid

LTRLTR

MA p12 CA NC PR RT RH IN SU TM

gp70 (SU)

p15E (TM)

p30 (CA)

p15 (MA)

p10 (NC)

p12

x

gag

pol

env

Figure 2: Structure and genome of a gammaretrovirus. The nucleocapsid is built from a hexameric lattice [46]. MA: matrix (p15), CA:
capsid (p30), NC: nucleocapsid (p10), PR: protease, RT: reverse transcriptase (shown as a green dot), RH: RNAse H, IN: integrase, SU:
surface unit (gp70), and TM: transmembrane protein (p15E). P12 is a small protein encoded from the portion between p15 and p30 in
gag. LTR: long terminal repeat. The translation of glycoGag and normal Gag is indicated by the respective ribosome symbols. A Gag-Pol
polyprotein is occasionally produced by suppression of a stop codon at the end of gag.

taxonomy and will be reported in a more complete form in
future papers. Especially many seemingly intact, potentially
infectious MLLV proviruses were found in the mouse. In this
review, we will concentrate on MLLV of mice and mention
other rodents, pigs, felines, primates, and some marsupials.
Of 7646 retroviral sequences detected in the mm8 assembly,
1461 were gammaretrovirus-like [47]. Some of the latter
(300 proviruses) scored higher than 2000 by ReTe (Figures
3 and 4). This is a high score, achieved only by complete or
virtually complete proviruses. Indeed, they all turned out to
be complete proviruses with very few stop or shift (indel)
mutations which could incapacitate the virus. As mentioned
above, the 300 proviruses included 35 which had no such
mutations. They were structurally “intact” by bioinformatic
criteria. The 35 had less than 0.5% LTR divergence. They
are marked with green arrows in the Pol tree presented in
Figure 3. Thus, the 35 proviruses have hallmarks of being
infectious and also belong to the most recently integrated
murine ERVs.

Three major groups of high scoring murine gammar-
etroviral proviruses, named gamma 1–3 (G1–G3), were
observed.

Group G1 (188 members, 10 with open reading frame
(ORF) in gag, pro, pol, and env) members encompassed the
“Mus musculus endogenous retrovirus” (MmERV; GenBank
Id AC005743 [13], as interpreted by RetroTector online
[49]). Mus dunni ERV (AF053745) [14] is highly related. The
most similar nonmouse viruses were from rat chromosomes
7 and 17 (nr4 assembly), and more distantly, gibbon

ape leukemia virus (GaLV, PCGGPE) and koala retrovirus
(KoRV, AF151794) sequences.

Group G2 (59 members, 3 with ORF in gag, pro, pol, and
env) contained the GLN retroviruses described by Ribet et al.
[15]. It was most related to rat sequences at chromosomes 7
and 9.

A group of porcine ERVs (PERVs) located at chromo-
somes 9, 10, 12, and 4 (susScr10 assembly) were 74% similar
to the consensus of Group G2, and 70% to the consensus of
Group G1. MuRRS [18] and MuERVC [19] sequences were
ancestral to groups G1 and G2 at the level of 64% similarity
to their consensuses.

Group G3 (53 members, 22 with ORF in gag, pro,
pol, and env) encompassed the ampho-, eco-, xeno-, poly-,
and modified polytropic MLVs [50]. Most of the MLVs
which have been prominent in retrovirological research for
half a century are ecotropic [51]. Amphotropic MLVs are
primarily exogenous, while the others are mainly endoge-
nous. The recombinant endogenous Mus spretus proviruses
[16] emerged between modified polytropic and xenotropic
proviruses. The HEMV provirus was at the root of the G3
branch [17].

The three major groups were discernible in trees
made with several techniques resulting from alignment of
nucleotides and protein sequences of the three genes gag,
pol, and env. They represent three evolutionarily recent
bursts of gammaretroviral proliferation in the mouse and its
immediate progenitors. The third group, which includes the
retroviruses reported in the human diseases, prostate cancer
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musmus Chr12 23639259 2450 po  C Pz0/ 0

musmus Chr12 24232686 2523 po  C Pz0/ 0

musmus Chr4 123354415 2334 po  C Pz0/ 2

musmus Chr12 20963947 2266 po  C Pz4/ 0

musmus Chr5 9854828 2350 po  C Pz2/ 0

musmus Chr14 52643653 2319 po  C Pz0/ 0

musmus Chr3 96458134 2321 po  C Pz1/ 0

musmus Chr2 25549391 2052 po  C Pz4/ 2

musmus Chr4 31 158729 2335 po  C Pz1/ 0

musmus Chr3 10857898 2158 po  C Pz1/ 1

musmus Chr7 62535812 2471 po  C Pz2/ 0

musmus Chr4 143285616 2223 po  C Pz2/ 0

musmus Chr4 90367080 2459 po  C Pz2/ 0

musmus Chr7 85330013 2396 po  C Pz1/ 0

musmus Chr9 19707318 2295 po  C Pz2/ 0

musmus Chr16 3107315 2157 po  C Pz0/ 1

musmus Chr16 3275036 2215 po  C Pz0/ 1

musmus Chr7 16826508 2416 po  C Pz1/ 0

musmus Chr9 6804768 2496 po  C Pz0/ 0

musmus Chr9 6804768 2483 po  C Pz0/ 0

musmus Chr7 13722716 2371 po  C Pz2/ 0

musmus Chr16 61201576 2398 po  C Pz0/ 1

musmus Chr2 138262497 2403 po  C Pz1/ 0

musmus Chr13 78107530 2275 po  C Pz0/ 0

musmus Chr10 47444316 2180 po  C Mz1/ 0

musmus Chr19 13109265 2405 po  C Pz2/ 1

musmus Chr3 2366 po  C Pz0/ 03249466

musmus ChrYR 13247086 2327 po  C Pz3/ 0

musmus ChrYR 3831942 2328 po  C Pz3/ 0

musmus Chr13 35021 135 2294 po  C Pz1/ 2

musmus Chr1 1 12 11 36108 2337 po  C Pz0/ 0

musmus Chr1 11 9978260 2348 po  C Pz0/ 1

musmus Chr18 6355349 2256 po  C Pz1/ 1

musmus Chr5 9561 1246 2244 po  C Pz1/ 1

musmus Chr5R 1005041 2166 po  C Pz0/ 0

musmus Chr5 94686917 2338 po  C Pz2/ 0

musmus Chr12 19930599 2025 po  C Pz1/ 3

musmus Chr12 44540601 2271 po  C Pz0/ 1

musmus Chr12 77663152 2400 po  C Pz2/ 0

musmus ChrX 2422 po  C Pz0/ 0122485908

musmus ChrX 25720491 2091 po  C Pz1/ 3

musmus Chr12 52231624 2467 po  C Pz1/ 0

musmus Chr3 111 23338 2314 po  C Pz1/ 0

musmus Chr19 9616180 2432 po  C Pz0/ 1

musmus Chr6 59821337 2342 po  C Pz0/ 1

musmus Chr10 78270986 2308 po  C Pz0/ 1

musmus Chr1 1 47262836 2429 po  C Pz1/ 1

musmus Chr19 40015556 2356 po  C Pz2/ 1

musmus Chr7 42296817 2197 po  C Pz0/ 1

musmus Chr2 41034625 2320 po  C Pz1/ 0

musmus Chr9 25914164 2354 po  C Pz2/ 1

musmus ChrX 2346 po  C Pz0/ 0161 15 1110

musmus ChrX 26583153 2502 po  C Pz1/ 1

musmus ChrX 27741 119 2510 po  C Pz1/ 1

musmus ChrX 28668814 2535 po  C Pz1/ 1

musmus ChrX 26939449 2499 po  C Pz1/ 1

musmus ChrX 28089696 2529 po  C Pz1/ 1

musmus ChrX 29493445 2458 po  C Pz1/ 1

musmus ChrX 31327254 2438 po  C Pz1/ 1

musmus Chr10 55324861 2409 po  C Pz2/ 0

musmus ChrX 51971219 2230 po  C Pz2/ 1

musmus Chr13 68562177 2285 po  C Pz1/ 1

musmus Chr13 688251 10 2358 po  C Pz2/ 0

musmus Chr13 1 12849620 2465 po  C Pz0/ 0

MmE RV Pol AC005743

musmus Chr8 2348 po  C Pz0/ 076141904

musmus Chr1 1001 17419 2325 po  C Pz2/ 0

musmus ChrYR 14435559 2156 po  C Pz1/ 0

musmus Chr13 86668875 2163 po  C Pz2/ 0

musmus Chr8 4959420 2074 po  C Pz1/ 1

musmus Chr2 67930798 2267 po  C Pz3/ 1

musmus Chr1 142780526 2475 po  C Pz2/ 0

musmus Chr2 55605859 2430 po  C Pz1/ 1

musmus Chr14 8217491 2380 po  C Pz2/ 0

musmus Chr9 6703246 2361 po  C Pz2/ 1

musmus Chr9 7407606 2253 po  C Pz0/ 1

musmus Chr9 7407328 2543 po  C Pz0/ 1

musmus Chr3 67513064 2300 po  C Pz0/ 0

musmus ChrX 36617602 2245 po  C Pz1/ 1

musmus Chr6 13410749 2225 po  C Pz0/ 1

musmus Chr1 27674279 2288 po  C Pz2/ 1

musmus Chr15 15004671 2321 po  C Pz2/ 1

musmus Chr17 18094247 2169 po  C Pz0/ 0

musmus Chr17 20451942 2302 po  C Pz2/ 0

musmus Chr10 42662 11  2384 po  C Pz1/ 0

musmus Chr3 16432285 2375 po  C Pz0/ 0

musmus Chr13 50732587 2452 po  C Pz2/ 1

musmus Chr13 68413662 2416 po  C Pz3/ 0

musmus Chr7 20210541 2155 po  C Pz1/ 0

musmus Chr7 20210495 2128 po  C Pz1/ 0

musmus Chr7 22620924 2003 po  C Pz2/ 0

musmus Chr17 58525679 2277 po  C Pz4/ 0

musmus Chr9 3947717 2431 po  C Pz1/ 0

musmus Chr7 31649885 2253 po  C Pz0/ 1

musmus Chr7 32382271 2428 po  C Pz0/ 1

musmus Chr7 32609167 2405 po  C Pz0/ 1

musmus Chr6 10870226 2075 po  C Pz2/ 1

musmus ChrX 452161 13 2421 po  C Pz2/ 1

musmus Chr19 29751613 2455 po  C Pz1/ 1

musmus Chr18 74384552 2441 po  C Pz0/ 2

musmus Chr4 143392767 2195 po  C Pz2/ 2

musmus Chr1 1 75181662 2279 po  C Pz1/ 3

musmus Chr15 49007539 2505 po  C Pz0/ 1

musmus Chr1 85024403 2443 po  C Pz0/ 0

musmus Chr1 87307992 2471 po  C Pz0/ 0

musmus Chr2 68347295 2541 po  C Pz0/ 1

musmus Chr9 4855377 2480 po  C Pz0/ 0

musmus Chr15 32809701 2510 po  C Pz1/ 2

musmus Chr5 6489438 2503 po  C Pz1/ 1

musmus Chr13 3180552 2400 po  C Pz0/ 0

musmus Chr18 86334894 2275 po  C Pz0/ 1

musmus Chr5 144029052 2498 po  C Pz1/ 0

musmus ChrX 4473889 2519 po  C Pz1/ 0

musmus ChrX 3107370 2210 po  C Pz1/ 0

musmus ChrX 3107092 2505 po  C Pz1/ 0

musmus Chr14 39042987 2287 po  C Pz1/ 1

musmus Chr18 42601670 2372 po  C Pz2/ 0

musmus Chr4 142945865 2399 po  C Pz0/ 1

musmus Chr7 42172126 2451 po  C Pz3/ 0

musmus ChrX 22753149 2567 po  C Pz0/ 1

musmus ChrX 73147008 2584 po  C Pz2/ 1

musmus Chr7 10085860 2245 po  C Pz0/ 1

musmus Chr7 103168275 2419 po  C Pz1/ 0

musmus Chr6 129778341 2480 po  C Pz1/ 0

musmus Chr6 9246408 2574 po  C Pz3/ 0

musmus Chr8 75759184 2254 po  C Pz0/ 1

musmus Chr6 104192593 2431 po  C Pz1/ 1

musmus Chr1 1 10344713 2403 po  C Pz0/ 0

musmus Chr16 19516342 2262 po  C Pz2/ 0

musmus ChrX 11 0244634 2372 po  C Pz3/ 1

musmus ChrX 3017764 2183 po  C Pz2/ 1

musmus Chr6 19594284 2520 po  C Pz2/ 0

musmus Chr5 766639 11  2130 po  C Pz1/ 1

musmus Chr5R 2917745 2096 po  C Pz1/ 2

musmus Chr5R 363468 2109 po  C Pz1/ 1

musmus Chr5R 2051415 2056 po  C Pz1/ 1

musmus Chr5 76673772 2226 po  C Pz1/ 1

musmus Chr5R 2907883 2222 po  C Pz1/ 1

musmus Chr5R 2061443 2098 po  C Pz2/ 1

musmus Chr5R 353440 2084 po  C Pz2/ 1

musmus Chr5 95293762 2134 po  C Pz2/ 0

musmus Chr5R 23133 2172 po  C Pz2/ 1

musmus Chr5R 698499 2160 po  C Pz2/ 1

musmus Chr4 40848866 2446 po  C Pz0/ 1

musmus Chr7 19466915 2431 po  C Pz1/ 1

musmus Chr7 22012805 2444 po  C Pz1/ 1

musmus Chr7 2420 po  C Pz0/ 02042198 4

musmus Chr6 10346803 2533 po  C Pz1/ 0

musmus Chr8 11 6462276 2500 po  C Pz1/ 1

musmus Chr2 84699377 2410 po  C Pz0/ 1

musmus Chr5 58614499 251 1 po  C Pz1/ 0

musmus ChrX 75140573 2573 po  C Pz2/ 0

musmus Chr10 3947641 2476 po  C Pz0/ 1

musmus ChrX 11 7175129 2177 po  C Xz0/ 0

musmus Chr13 68917752 2618 po  C Pz0/ 0

musmus Chr4 2530 po  C Pz0/ 0143351516

musmus Chr2 2572 po  C Pz0/ 0181848717

musmus ChrX 2551 po  C Pz0/ 069002389

musmus Chr19 13997386 2025 po  C Pz3/ 6

musmus Chr12 23063728 2552 po  C Pz0/ 0

musmus Chr8 20181859 2440 po  C Pz6/ 1

musmus Chr9 17870138 2390 po  C Pz1/ 0

musmus Chr5 94676896 2218 po  C Pz0/ 1

musmus Chr12 7167658 2286 po  C Pz1/ 1

musmus Chr7 27736610 2361 po  C Pz1/ 2

musmus Chr12 2492 po  C Pz0/ 069841080

musmus Chr9 90737869 2531 po  C Pz2/ 0

musmus Chr1 147966500 2505 po  C Pz0/ 0

musmus Chr4 39044302 2576 po  C Pz2/ 0

musmus Chr1 2547 po  C Pz0/ 0197059344

musmus Chr14 37020689 2481 po  C Pz1/ 0
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Figure 3: Neighbor-joining (NJ) tree based on Pol amino acid sequences of 300 high ReTe scoring MLLVs, the same as in Figure 4. The three
high-scoring murine gamma groups (G1–G3) segregate in a similar way as in a gag nt-based tree (Figure 4). Bootstrap values are shown to
the left of each branch. Structurally intact proviruses are marked with green arrows. GLN virus [15], MmERV, Mus dunni ERV (MdERV),
AKV MLV, and XMRV (VP62 clone) are marked with magenta arrows. Murine MLLVs occur from the black arrow in the tree and upwards.
The branch labels are either ERV host genus, chromosomal position, ReTe score, provisional genus, “po” for Pol, PBS, and number of stops
and frame shifts (“z 0/0” means 0 stops and 0 shifts in pol), or a reference Pol name. PBS assignments are made by the 1.01 version of
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and ME/CFS, contains the highest proportion of structurally
intact proviruses. It may thus have the greatest zoonotic
potential.

In fact, the ancestors of humans were not spared infec-
tions with retroviruses related to MLLV. The so-called HERV-
T is highly similar to MLLV (Figure 1). It has around 30
representatives in the human genome [52]. More distantly
related are ERV-E and ERV-9W. None of the three are struc-
turally intact in the human genome (J.B., unpublished). They
are different enough from the murine G3 MLLVs to not inter-
fere with the nucleic acid based methods for XMRV/HMRV
detection (J.B., unpublished). Judging from the degree of
mutational damage, HERV-T sequences integrated in a
human primate progenitor genome around 30 million years
ago [52]. MLLVs include the pig endogenous gammaretro-
viruses, PERV A, B, and C, several of which are infectious
and are a problem for xenotransplantation of porcine organs
to humans. The murine MLLV groups G1-3 also contain
structurally intact proviruses. Very little attention has been
paid to groups G1 and G2, while group G3 (“MLVs”) has
been thoroughly investigated. The number of references
regarding the G3 group would be staggering, and out of scope
for this review. The receptors and host range of groups G1
and G2 are largely unknown. However, the GLN retroviruses
seem to have a tropism similar to ecotropic MLVs [15].
Group G3 is known to contain MLLVs with several envelope-
determined tropisms, see, for example, [53–55].

2.2.3. Known and Probable Instances of Transspecies Transfer of
Gammaretroviruses. As seen in Figure 5, MLLVs can infect a
wide range of hosts. For example, the XPR1 receptor, which
is used by xeno- and polytropic MLVs, is common among
vertebrates [57, 58]. In some cases, prey-predator relations
probably contributed to the transmission [59]. In other cases,
there are no such known relations. The wide range of hosts is
reflected in the panorama of their receptors [55, 57, 58, 60–
65]. They are known to spread via several modes: often via
saliva (e.g., into wounds of fighting animals) and sexual
contact [26, 62, 66–72]. Moreover, chimpanzees seem to have
been infected with MLLVs from baboon and other primates
[59], while baboons and cats also have common MLLVs
[73]. Thus, MLLVs and similar gammaretroviruses have a
tendency to spread between vertebrates.

However, a barrier against spread to humans may be
the strong anti-α-galactosyl antibodies in humans, which
can neutralize viruses coming from species with different
glycosylation patterns, like the mouse [74]. Once the virus
has entered the body, its sugars will follow the human
glycosylation pattern, and the virus will not any longer be
neutralized. Therefore, this barrier is not absolute.

A variety of other restrictions, like the APOBEC cytidine
deaminases [50, 75, 76], tetherin [53], and TRIMs [77–
79] also affect retroviral spread between species. However,
restrictions may be as important within a natural host as
between hosts [80, 81]. The high XMRV replication in the
cell line 22Rv1 [82] and the ready growth of XMRV in LNCap
cells [83], both RNAse L-deficient human prostate cancer
cell lines, plus the ability to grow in human PBMCs [84],
indicate the ability of XMRV to grow in human cells [84]

and the importance of an intact interferon system for the
defence against it. These barriers to spread could probably be
overcome, and humans be infected by XMRV, although the
infectivity in vivo is hard to predict. It was recently reported
that XMRV can grow in human PBMCs [84].

Judging from the wide spread of MLLVs, a zoonotic
spread of XMRV/HMRV from mouse to human, directly or
indirectly via another vertebrate, is not impossible. Humans
are occasionally exposed to animals which harbor MLLVs.
For example, microbes known to spread to humans from
pets are viruses (arena-, hanta-, pox-, orthomyxo-, and
rhabdoviruses), bacteria (chlamydiae, salmonella, tularemia,
and leptospira), protozoa (toxoplasmosis), and helminths
(worms). Rabbits, mice, rats, and guinea pigs are frequent
as pets. The frequency of animal contact should therefore be
recorded in epidemiological investigations regarding MLLVs,
like XMRV/HMRV, in humans.

Like other MLLVs, a human MLLV would be expected to
spread via kissing, sex, intravenous drug use, blood donation,
and possibly via breast feeding. Enough systematic tests for
MLLVs in the corresponding body fluids have not been
performed. There should also be an overrepresentation of
XMRV/HMRV in intravenous drug users and in patients
infected with other sexually transmitted microbes, like HIV
[85, 86]. This needs more study. Credible transmission
chains between ME/CFS patients (with the exception of
outbreaks), between PC patients, from ME/CFS to PC, and
from PC to ME/CFS have not been reported (cf. Table 1).

3. Did MLLV Spread Zoonotically to Humans?

Gammaretroviruses related to the MLV were found 2006
in a few percent of patients suffering from prostate cancer
[9]. They were initially named XMRV. In 2009, XMRV
was also found in patients suffering from ME/CFS [6]. In
2010, the term XMRV was replaced with HMRV, because
gammaretroviral sequences found in ME/CFS were found to
be more diverse than just XMRV [56].

3.1. The Findings in PC. In 2006, Urisman et al. reported the
discovery of a novel retrovirus in a subpopulation of prostate
cancer patients in the United States [1, 8, 9]. Using fluores-
cent in situ hybridization, the viral nucleic acid was located
to stroma cells, not the cancer cells. However, others found it
also in the cancer cells [110]. This retrovirus was identified
by means of a DNA microarray (“Virochip” [8, 9, 111])
screening of known cancer samples. The DNA microarray
contained 11 000 pieces of 70 bp long oligonucleotides from
approximately 950 evolutionarily conserved viral genome
sequences. It has been used to screen for the presence of
viral DNA and also identify which family the detected virus
belongs to. Its success is a practical demonstration of the
utility of a phylogenetically directed search for new viruses.
The prostate cancer results are covered by other reviews in
this volume. Only selected data will be discussed here.

3.1.1. If XMRV/HMRV Is Not Situated in Cancer Cells,
How Could it Contribute to PC? MLLVs are not associated
with prostate cancer in animals. Therefore, the existence of
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Figure 4: gag sequences of 300 high scoring mouse gammaretroviral sequences were aligned together with reference sequences. MLV
sequences with ascribed tropism, from GenBank, were also added. The tree was rooted with a divergent rabbit gammaretrovirus-like
sequence from scaffold 34, position 34101473 (oryCun1 assembly). Sequences in red (“HMRV”) are from the paper of Lo et al. [56]. They
were from ME/CFS patients (“CFS”) or blood donors (“BD”). Two blood donor sequences from the Lo et al. study came out at the base of
group G2, in other trees (not shown) at the base of group G3. The other emerged in group G3. The branch labels are either ERV host genus,
chromosomal position, provisional genus (“C”: gamma), and ReTe score, or a reference Pol name. Genomic ERV sequences taken from the
prototype of RetroBank were named as oryCun: rabbit, cavPor: guinea pig, felCat: cat, panTro: chimpanzee, or rheMac: rhesus macaque.
Mouse sequences are just shown with their chromosomal location.
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Figure 5: MLLVs have spread among vertebrates in recent evolutionary time. The approximate time estimates to the last common MLLV
progenitor are based on references given in the text, and on the phylogenetic analysis of Figure 1. Some gibbon apes in captivity have gibbon
ape leukemia virus (GaLV). Koalas have recently been infected with koala retrovirus (KoRV). More distant relatives of the murine MLVs
occur in pigs and cats. Porcine MLLV ERVs (PERVs) are MLLVs but the interspecies transmission routes are uncertain. Cats have several
endogenous and exogenous MLLVs, including feline leukemia virus (FeLV). Birds have recently been infected with reticuloendotheliosis
virus (REV). REV is not strictly an MLLV, but is a gammaretrovirus highly related to MLLVs. Its origin is uncertain, but its closest relatives
are the ERV-T-like proviruses from opossum and primates. Humans may also recently have been infected with murine MLLVs, namely
XMRV, although there are now indications that this is a laboratory contamination with the 22Rv1 virus. Endo-: endogenous retrovirus.
Exo-: exogenous retrovirus.

an MLLV in human prostate cancer is unexpected. Initial
reports indicated that the retrovirus was integrated into
stromal cell fibroblasts in the prostate cancer samples. This
could present a problem for the hypothesis that the newly
discovered virus is part of the oncogenic process. However,
it is generally accepted that there are close interactions
between the epithelial cells and the underlying stromal cells,
such as fibroblasts, smooth muscle cells, endothelial cells
in blood vessels, and pericytes, both in normal tissue and
in tumours [112, 113]. This interaction consists of both
paracrine signalling and interactions with the extracellular
matrix, which in vivo have been shown to have a significant
impact on the growth of transformed cells. It was shown 1966
that polyoma-infected epithelial and stromal cells would
not transform unless grown in contact with the underlying
stroma [114, 115]. It has also been shown in both in vivo and
in vitro studies that tumour-associated fibroblasts contribute
to the transformation of immortalized epithelial cells [116],
indicating that there are permanent changes in the stromal
cells in tumours. What is even more interesting is that it has
been shown that the tumour-associated fibroblasts can cause
nontumourigenic prostate epithelial cell lines to transform
if cocultured [117]. Thus, one cannot dismiss an MLLV as

being uninteresting with regard to tumourigenesis in the
prostate.

3.2. The Findings in ME/CFS. The main symptom of CFS is
a persistent and debilitating fatigue with rapid onset. It often
commences after an episode of influenza-like symptoms. The
afflicted patients were previously healthy [87]. The symp-
toms include fatigue, loss of memory or concentration, sore
throat, painful lymphadenopathy, muscle pain, headache,
unrefreshing sleep, and extreme exhaustion after exercise.
The cause of CFS is not yet known. It is in need of clinical
and laboratory studies for its further definition. ME/CFS
can, however, be diagnosed according to internationally
accepted clinical criteria, see, for example, [118]. It seems
to be a rather common disease, maybe amounting to 0.5%
of the population [118]. Finding the cause, new diagnostic
techniques, and, hopefully, a cure, for this often debilitating
disease is a high medical priority. ME/CFS borders to the dis-
eases fibromyalgia (FM) and irritable bowel syndrome (IBS).
FM-like chronic pain and IBS-like intestinal symptoms are
common in ME/CFS [119].

In 2009, Lombardi et al., in Judy Mikovits’ group,
reported the discovery of the XMRV virus, using PCR and
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Table 1: How well does XMRV/HMRV fulfill the expected properties of an MLV spread to humans + means an argument for, and—an
argument against expectation?

Property Expected finding Observed
Conclusion, for or against
XMRV/HMRV in humans?

+Hybridization array w. conserved viral 70-mers, an
insensitive technique [9].
+Serendipitous.

For?

Viral nucleic acid

+PCR (positive, XMRV [87], positive, HMRV [56] and
−negative [3, 85, 88–100] results).
−Proven or suspected contamination w 22Rv1-like virus
and mouse DNA [3, 57, 93–96, 99–101].

Against?

+Integration into host genome [8].
−Some of the integration sites occur in an XMRV-infected
cell line [99].

Against?

Discovery/followup

+Cloning of XMRV into infectious clone (PC, ME/CFS)
[8].
−High sequence similarity and unique recombination
suggest contamination with DNA from XMRV producing
cell line [2].

Against?

Virus isolation

+Virus isolation (ME/CFS patients) [6, 102, 103].
−High sequence similarity, lack of evolution, and unique
recombination suggests contamination from XMRV
producing cell line [2, 82].
−Isolation results cannot be reproduced [3].

Against?

Antiviral immune
response

+SFFV FACS (ME/CFS) concordance with PCR outcome
[6, 102],
+ELISA (PC, ME/CFS), positive [104] and
−negative [84, 92, 105–107] outcomes,
−Virus neutralization, negative outcome [90],
−Western blot (ME/CFS) negative outcome [105, 108],
−CMIA (ME/CFS), negative outcome [109],
−T-cell response, negative outcome [86].

Against?

Epidemiology, early
phase

Contact with mouse Not observed/reported Against?

Epidemiology, late
phase

Human-human spread,
via saliva, sex, and
mother-child

−Although occasional ME/CFS outbreaks occur, most
cases are sporadic, with no spread between spouses.
−No reported epidemiological link between prostate
cancer and ME/CFS
−No known overrepresentation in STD and in IVDU [85].

Against?

Pathogenesis

Leukemia, lymphoma Prostate cancer?

For or against?
Immunodeficiency Immunodeficiency?

Encephalitis (MAIDS) Myalgic encephalomyelitis?

Enteritis (MAIDS, FAIDS) Irritable bowel syndrome?

Autoimmunity Thyroiditis?

Replication
Relatively easy to detect in
blood

Hard to detect in blood. Against?

Immune response
Strong B-cell response,
positive WB

Weak or absent B-cell response. Against?

serology, in 67% of chronic fatigue syndrome (ME/CFS)
patients compared to 3.7% in healthy controls [6]. Reports
which verify [56, 102, 103] and do not verify [84, 88–
93, 105, 106, 108, 120] the original ME/CFS report have
come. The situation is volatile and cannot be extensively
covered here. The conflicting results may be due to method-

ological differences, an uneven geographic distribution of
XMRV/HMRVs, or viral genetic variation. Switzer et al.
used a Western blot with a lysate from MLV, another
group G3 virus, to examine antibody response in 51 CFS
patients and 53 healthy donors. No specific reaction was seen
[105].
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In a UK study involving 170 CFS patients as well as 395
non-CFS patient controls, 4.6% of the samples contained
neutralizing antibodies, but only one of these was from a CFS
patient. Most of these positive sera were able to neutralize
MLV virus particles pseudotyped with Env-proteins of other
viruses indicating significant cross reactivity [90]. Hohn et al.
searched for antibody activity of 36 CFS and 112 MS patients
and 27 healthy controls using an Env-ELISA and a capture
Gag-ELISA. No evidence of specific seroreactivity was found
[84].

3.2.1. Could an MLLV Cause the Combination of Neuro- and
Immunopathology Which Occurs in ME/CFS? MLLV infec-
tions are sometimes associated with immunosuppression
[121]. ME/CFS patients have a degree of immunosuppres-
sion, neurological symptoms, and often an enteritis. Giardia
has been associated with ME/CFS [122, 123]. Mice with
MAIDS are especially sensitive to intestinal parasites like
Giardia, a similarity which may be fortuitous [122, 123].
Likewise, cats with FAIDS are also immunosuppressed and
develop enteritis. Although such correlations are diffuse and
may be spurious they indicate that infectious agents could
give ME/CFS-like disease.

3.3. Other Diseases Expected to Occur If There Is an Infectious
Human Gammaretrovirus. Murine and feline diseases where
MLLVs are known to play a major role are leukemia,
lymphoma and encephalitis (and other neurological dis-
eases) and, as mentioned, immunodeficiency [124–132].
Autoimmune disease has also been linked to MLLVs [133,
134]. MLLVs should thus be searched for in these diseases.
So far, studies of associations of XMRV/HMRV with such
human diseases have not been published.

3.4. Can Phylogeny Direct Our Efforts to Detect MLLV Infection
in Humans?

3.4.1. Viral Nucleic Acid Detection. Nested PCRs have been
used in several of the positive XMRV reports. Such PCRs
have a high sensitivity, but also a high risk of amplicon
contamination.

The lower sensitivity of microarray analysis makes it
less susceptible to contamination. This makes the initial
serendipitous observation of XMRV in prostate tissue [9]
especially credible. Although PCRs are more sensitive, they
may miss imperfectly matching targets. High sensitivity also
means high risk of contamination. Amplimers, synthetic
sequences, and plasmids containing target sequences are
notorious problems. However, also genomic DNA harboring
target sequences (ERVs) is a problem. Mouse DNA is a
special case, because it contains many HMRV PCR target
sequences per copy of mouse genome (see above). Thus, each
XMRV/HMRV PCR should be evaluated for its detection
range and tendency to give false positive results due to
mouse DNA contamination. Several of the PCRs which have
been used to detect XMRV react also with mouse DNA.
Some, like the integrase-based PCR of Ila Singh [135], do
not react with mouse DNA unless the DNA is present in
high concentration. Others react strongly with mouse DNA.

Mouse DNA contains at least two sequences which are
highly similar to XMRV, with ORF in gag, pro, pol and
env: Proviruses at chromosome 1, position 172778230 and
chromosome 5, position 23221036. The similarity is obvious
in pol and env, less so in gag (mouse genome assembly mm8,
which comes from C57Black). These proviruses are situated
next to XMRV VP62 in the Pol-based tree in Figure 3. All
broadly targeted (“HMRV-specific”) PCRs react with mouse
DNA, while some “XMRV specific,” like the Singh PCR, do
not react, or react only with high amounts of mouse DNA
(Elfaitouri et al., submitted). Among 30 vertebrate genomic
DNAs analyzed bioinformatically, mouse DNA is most likely
to give such spurious PCR signals (Blomberg and Elfaitouri,
unpublished).

A test which lends high credibility to a positive provirus
detection is if integration sites in the host genome can be
cloned and sequenced. This has been reported for XMRV in
PC [7]. However, Garson et al. [99] claimed that integration
sites in 2 of 14 prostate cancer patient samples reported
from Silverman’s group [8, 9] were identical to those of the
experimentally infected human tumour cell line DU145 used
in the same laboratory. This raises the possibility that this
finding is due to contamination.

The Problem of Mouse DNA and XMRV DNA Contamina-
tion. Where Does It Come from? Several laboratories have
reported frequent occurrence of mouse DNA in samples
from humans. Some of the PCRs used for detection of
XMRV/HMRV also become positive when mouse DNA is
present, because (as explained earlier in this review) the
mouse genome contains many proviruses which react in
these PCRs. However, some XMRV PCRs do not react with
mouse DNA [110]. They should be less likely to give false
positive signals due to presence of mouse DNA. Presence of
mouse DNA in human samples may sound absurd and is
often not easy to explain. It may be caused by contamination
of chemicals and biologicals used to prepare the samples.
For example, mouse DNA may be present on microtomes
used for preparation of tissue sections from both mouse and
humans. Further, some cell lines (especially hybridomas of
mouse origin) contain high amounts of XMRV or related
MLVs and can contaminate other cell lines [136, 137].
It is therefore logical that murine monoclonal antibodies,
including anti-Taq polymerase antibodies, which are used
to provide a “hot” start in PCRs, sometimes contain traces
of nucleic acid from MLVs [101]. Moreover, the highly
XMRV producing cell line 22Rv1 contains a virus which is
very similar (essentially identical; see Figure 4) to reported
XMRVs [99]. It is a human prostate cancer cell line which
was infected with XMRV during passage in nude mice
[2]. According to recent information, XMRV arose by a
unique recombination event between two defective MLV
sequences [2]. It is therefore reasonable to assume that
XMRV originated from the 22Rv1 virus which then has been
a contamination source of many of the published positive
results from prostate cancer and ME/CFS. In fact, all cell lines
which have been passed in nude or SCID mice should be
suspected of retroviral contamination.
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If contamination explains all positive PCR results in
ME/CFS and prostate cancer, why would the frequency
in ME/CFS patients be at least tenfold higher than in
the controls? The patient samples may have been more
frequently opened than the control samples. At least two
kinds of contamination, with mouse and XMRV DNA,
respectively, have to be invoked. Although false positive
PCR results due to contamination in the laboratory is a
frequent event, contamination on such a grand scale is
beyond previous experience.

There are similarities between the XMRV/HMRV and the
“Human Retrovirus 5” (HRV5) stories [138]. HRV5 is one
of the so-called “rumor viruses” [139]. It turned out to be
a defective rabbit betaretrovirus (RERV-H) whose DNA is
abundant in rabbit sera [140]. The rabbit genome contains
around 700 copies of RERV-H [140]. Any laboratory which
handles rabbit sera is at risk of RERV-H contamination. In
analogy with this, a low level of mouse (or XMRV) DNA
could be present in laboratory reagents, cell cultures, or in the
laboratory environment, as evidenced by many confirmed
reports of contamination, or unconfirmed reports of human
retroviruses [73, 93–96, 99–101, 136, 137, 141–165]. Thus,
extensive contamination controls must be performed if PCR
is used for detection of XMRV/HMRV.

3.4.2. Viral Reverse Transcriptase Detection. Reverse tran-
scriptase (RT) activity is a fundamental and conserved func-
tion of retroviruses. Detection of RT activity is an established
method for retrovirus discovery and diagnosis. There is an
evolutionary limit to the extent to which the enzyme can
mutate. Presence of significant retroviral RT activity in a bio-
logical sample is thus not only an indication of virus protein
expression, but of retrovirus replication. RT activity assays
thus give an additional dimension compared to detection
of viral nucleic acids or proteins. The RT enzymes from
different retroviruses have different enzymatic properties.
By varying pH and the composition and concentrations of
certain components, it is possible to optimize assays for a
virus family or subgroup [166]. RT assays can also be per-
formed with PCR readout, which gives a very high sensitivity
[167, 168]. Quantification of RT activity may be complicated
by a myriad of RT inhibitory factors and requires enzyme
purification. A simple colorimetric RT activity assay [166]
can be used both for monitoring propagation of XMRV
virus in cell culture and for direct detection in samples
from humans [169]. RT assays are somewhat less sensitive
than PCR and have less problems with contamination and a
broader detection range. An RT assay optimized for XMRV
has been developed (http://cavidi.se/). It has a minimum
level of detection of 0.01 μU RT activity, which corresponds
to approximately 50 virus particles per reaction (Elfaitouri
et al, accepted for publication in Plos One). It is currently
used as an independent technique for following isolation and
propagation of MLV-related viruses in our laboratory.

3.4.3. Virus Isolation. The Mikovits group at the Whittemore
Peterson Institute reported a high frequency of virus
isolation from ME/CFS patients [6, 102, 103]. We are not
aware of a report on XMRV isolation from prostate cancer

patients. Virus isolation is inherently less susceptible to
contamination than PCR is, because retroviruses are easy to
disinfect. They also lose infectivity after drying. The virus
isolation results are therefore the mainstay of the proponents
of XMRV [102, 103]. An especially efficient and specific
virus isolation test seems to be the DERSE (detector of
exogenous retroviral sequences) assay [170]. The isolation
results from ME/CFS patients were recently contested [3].
Patients which earlier were reported to be XMRV isolation
positive were found to be negative on retesting. This raises
the possibility that also the virus isolation results were due
to contamination with 22Rv1 tissue culture virus. The 22Rv1
virus is present in billions of copies per mL of tissue culture
supernatant. Retroviral contamination of cell cultures is
common, see, for example, [136, 137, 171]. Low or moderate
expression of potentially infectious ERVs in cell culture is a
particularly vexing problem [137, 143, 172–176].

3.4.4. Serology. Antigens for use in XMRV/HMRV serology
range from synthetic peptides to recombinant proteins. In
this situation, cross-reactive epitopes in Gag and trans-
membrane proteins are of special interest. Epitopes from,
primarily, Env and Gag proteins of XMRV and related MLVs
should be covered. It is fortunate that much information
regarding B-cell epitopes is available for MLVs and FeLVs
(against which an effective vaccine exists). It can guide the
selection of synthetic peptides. Synthetic peptides, primarily
mimicking linear epitopes, have been useful for development
of serological assays for detection of other retroviruses such
as HIV and HTLV [177–182]. However, an optimal sero-
logical assay should cover both linear and conformational
epitopes. Whole virus [105, 109, 183, 184], recombinant
XMRV proteins [84, 104, 106, 109, 183, 185], and a
“surrogate” spleen focus forming virus (SFFV) fluorescence-
activated cell sorter (FACS) antibody test [6] have been
used. SFFV has an envelope which is a recombinant between
the envelopes of the infectious Friend helper virus and an
endogenous polytropic virus. It also has a large deletion
involving the SU/TM cleavage site. Cells with and without
transduced SFFV envelope are incubated with serum and
fluorescent antihuman IgG and then run in an FACS.
This is an elegant and specific technique, but is dependent
on a few cross-reactive envelope epitopes. Western blot
(WB) using whole virus (or a set of recombinant proteins)
[105] is a de facto serological golden standard in clinical
retrovirology. It would be desirable to have a confirmatory
WB assay for serological XMRV diagnosis. Screening assays
could be existing enzyme immunoassays (EIAs), suspension
arrays [120], or chemiluminescent magnetic microparticle
immunoassays (CMIA) [109]. Neutralization assays [89]
can be highly specific, but may be too narrow if a broad
search is desired. The FACS analyses of antibodies binding to
SFFV envelope transduced cells should also be very specific.
None of the latter two are, however, suitable for large-scale
screening. There is a long history of serological findings of
gammaretrovirus antibodies and antigens in human disease
[73, 186–203]. Given the tendency of serological methods to
cross-react, weak serological reactions to a few epitopes alone
are not strong evidence.

http://cavidi.se
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A serological diagnosis of a retroviral infection needs
demonstration of an immune response at several epitopes.
It cannot be the only serological evidence. Ideally, several
tests with different specificities, covering both broadly cross-
reactive and specific, linear and conformational, epitopes
should be used. Several of these serological assays are
capable of detecting antibody reactivity to other MLVs. Thus,
although it may not be intentional, the intense hunt for
XMRV antibodies is also a hunt for other MLLVs in humans.
The largely negative outcome [84, 105, 106, 108, 204] may
be taken as evidence against widespread MLLV infection in
humans.

3.4.5. Why Was XMRV/HMRV Not Discovered in the Virus
Cancer Program during 1964–1977? A considerable US effort
to find new retroviruses was the Virus Cancer program [205].
Virus isolation and reverse transcriptase assays were main
techniques. MLV and similar viruses are relatively easy to cul-
tivate. They were known at the time and were also main tar-
gets for the program. It is therefore notable that such a virus
was not detected in humans with cancer during this project.
Reasons could be manifold, either due to bad luck, inappro-
priate methods, due to an introduction of XMRV/HMRV
into humans, or spread of a tissue culture contaminating
virus after the conclusion of the Virus Cancer program.

3.4.6. Summary of Current Controversies Regarding XMRV/
HMRV. Since the initial reports of XMRV in US patients
with prostate cancer and CFS, several research groups have
been attempting to replicate these results. Especially, the
connection of XMRV to CSF has raised considerable interest
in this virus. However, it has not been possible to detect the
virus in studies from China where Hong et al. have analyzed
samples from 65 CFS patients and 85 healthy controls [92],
from Netherlands where van Kuppeveld et al investigated
samples from 76 CFS patients and 69 matched controls
[98], from UK where Groom et al. tested samples from
170 CFS patients and 395 non-CFS control patients [90],
and Erlwein et al. investigated samples from 186 CFS patients
[89], and from the US where Switzer et al. analyzed samples
from 51 CFS patients and 53 healthy controls [105], using
either PCR-based methods for detecting viral RNA/DNA or
methods for detecting neutralizing antibodies against XMRV.
Hohn et al. were likewise unable to detect XMRV in any of
the 589 German prostate cancer samples they analyzed for
the presence of XMRV [84, 106]. To further confuse the issue,
a US research group failed to detect the XMRV itself but was
able to detect viral sequences closer related to other MERVs
(“HMRV”; here shown to belong to group G3 MLLV) in a
retrospective study of blood samples from CSF patients [56].

3.4.7. An Attempt to Reconcile Current Results Regarding
XMRV/HMRV with Each Other.

Why Is XMRV/HMRV So Hard to Detect by PCR and Serology?
A possibility which could reconciliate the conflicting findings
could be that a chronic XMRV/HMRV infection becomes
progressively harder to detect both by nucleic acid, virus

isolation, and serological methods. XMRV/HMRV would
then establish a low-grade infection in a limited number
of cell types, with a waning immune response. This is
reminiscent of what was seen in experimentally XMRV-
infected macaques [109, 183]. The dynamics of antibody
response elicited by XMRV were studied in five XMRV-
infected macaques. Using recombinant gp70, p15E, and p30
in western blots and CMIA, Qiu et al. found evidence
of antibodies two weeks after infection. The antibodies
persisted for at least 158 days. Although all three proteins
elicited an immune response, antibodies to recombinant
gp70 and p15E showed higher sensitivity than p30 [109,
183]. The Western blots were very clear. Such XMRV
Western blots were never reported from humans. There
was a tendency for the antibody levels to decrease over
time. Stimulation with a dose of XMRV antigen gave
rise to a burst of viral replication and a rise in XMRV
antibodies. In another study, Mus pahari was experimentally
infected with XMRV [184]. Antibodies to XMRV Env (p15E
and gp70) and Gag (p30) were detected in Western blots
and in ELISA tests. Neutralizing antibodies also devel-
oped.

Thus, the expected course of an XMRV/HMRV infection
is an initial phase with intense viral replication, easily
detected by PCRs on nucleic acids from plasma or PBMCs,
followed by development of a strong antibody response
which can be demonstrated by several kinds of serology,
and a full WB pattern, similar to the situation during HIV
infection.

However, the difficulties of finding both viral nucleic
acid in blood samples and a weak or nonexistent antibody
response in virus isolation or XMRV/HMRV PCR-positive
persons lead us to two alternate interpretations.

First, we must hypothetically consider a model of low-
grade chronic XMRV/HMRV infection of humans. Such a
“stealth” infection could have similarities with ERVs. The
immune response to ERVs is abnormal, possibly because
they are perceived as “self” by the adaptive immune system
[206]. Their protein expression may also be weak. In putative
“stealth” non-ERV RV infection a low degree of continuous
antigenic stimulation could lead to a low, and waning
immune response [207]. Although a vigorous antibody
response is the most common reaction to a retrovirus
infection, a very weak antibody response is also seen in some
cases of HLTV-2 infection, which can also be accompanied
by a low degree of viral replication [208, 209]. It is a
considerable difficulty for the diagnosis of HTLV-2 infections
in humans by PCR and serology. Likewise, HIV patients
which were treated early during the infection may develop
an abortive immune response [210, 211]. It is conceivable
that the XMRV/HMRV situation could be similar. There are
aspects of the MAIDS/FAIDS models which fit with ME/CFS
and this model.

The second alternative is that all reports of XMRV/
HMRV in humans have been due to contamination or
serological cross-reaction. The PCRs could have been con-
founded by various forms of contamination (see below).
The positive serologies in ME/CFS patients have largely been
from the surrogate SFFV FACS antibody test [6], which alone
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does not fully suffice as evidence. It would be a sad outcome
of a fascinating and important story.

3.5. Medical and Ethical Consequences of the Uncertain Diag-
nostic Situation. The finding of XMRV/HMRV in ME/CFS
has far-reaching implications, for the personal life of the
patients (sex, kissing, breast feeding, etc.), for the develop-
ment of diagnostic methods, for transfusion safety, and for
the understanding of other human diseases with a possible
retroviral etiology. It is reasonable to demand that measures
to protect blood transfusion recipients from infection are as
rigorous as the sensitivity and specificity of available tests
allow. In the situation of today, where the reported frequency
of XMRV infection found with different methods in blood
donors or comparable healthy individuals varies from 0 to
7%, there is no simple test strategy available. However, the
mere suspicion that a retrovirus like XMRV is frequent in
patients suffering from ME/CFS is a basis for abstaining
from using such patients as blood donors [212]. The finding
of XMRV in PC also raises medical and ethical questions.
However, the frequency of positivity is at a few percent, and
claims of a connection have not reached the high frequencies
reported in ME/CFS (>60%).

Both ME/CFS and PC patients suffer from the uncer-
tainty regarding XMRV/HMRV positivity in the two diseases.
The patients must make personal decisions regarding sexual
contacts, kissing, and breast milk feeding of their children.
Few PC patients will know their alleged XMRV/HMRV
status, but the rather widespread testing of ME/CFS patients
for this virus has created a group of patients who are left
in limbo. The temptation to start antiretroviral treatment
[213] despite the current scientific controversy can be hard
to resist.

4. Conclusions

Research on XMRV/HMRV in humans is evolving rapidly.
There is a great need for confirmation of the reports on
XMRV/HMRVs in PC and ME/CFS. In view of the recently
demonstrated diversity of retroviral sequences in ME/CFS,
it is also important to establish the detection range of
XMRV/HMRV detection methods. Contamination of cell
cultures with 22Rv1 virus and PCRs with MLV nucleic acid
and mouse DNA is known to occur. Whether all reports on
MLLVs in humans can be explained by them is uncertain, but
not unlikely. The XMRV/HMRV story has both credible and
less credible aspects (Table 1). The original XMRV detection
in prostate cancer was serendipitous and made with several
independent techniques, together forming a credible case.
The proven integration into human DNA was especially
convincing. The finding of XMRV/HMRV in ME/CFS also
has a credible aspect; the immunomodulating properties of
MLLVs could theoretically explain the disease. However, the
epidemiology of XMRV/HMRV transmission still is unclear.
The absence of an easily measurable immune response is also
a memento.

We conclude that MLLVs are widespread as ERVs
among vertebrates. There are many signs of interspecies
transmission of MLLVs. However, only a few of the MLLVs

are structurally intact. The mouse genome is unique in
its high content of MLLVs. It contains three major MLLV
groups, of which two (G1 and G2) have not hitherto been
reported. Group G3 contains the MLVs and all or nearly all
of the MLV-like retroviruses which have so far been detected
in humans, that is, XMRV and HMRV.

The study of XMRV/HMRV is important from a range
of perspectives, one of which is screening of blood donors
for potentially harmful pathogens. Xenotropic viruses also
raise concerns regarding research into xenotransplantation of
organs [16].

The detection of human infection with XMRV/HMRV
has proven to be difficult. This may either be due to
absence of the virus or to a low-grade infection, with a
minimal viral replication and a minimal serological response.
Although that goes contrary to expectations, such a situation
sometimes occurs in HTLV and HIV infections.
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