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A comprehensive in silico 
investigation into the nsSNPs 
of Drd2 gene predicts significant 
functional consequences 
in dopamine signaling 
and pharmacotherapy
Samia Sultana Lira1,3 & Ishtiaque Ahammad2,3*

DRD2 is a neuronal cell surface protein involved in brain development and function. Variations in 
the Drd2 gene have clinical significance since DRD2 is a pharmacotherapeutic target for treating 
psychiatric disorders like ADHD and schizophrenia. Despite numerous studies on the disease 
association of single nucleotide polymorphisms (SNPs) in the intronic regions, investigation into the 
coding regions is surprisingly limited. In this study, we aimed at identifying potential functionally and 
pharmaco-therapeutically deleterious non-synonymous SNPs of Drd2. A wide array of bioinformatics 
tools was used to evaluate the impact of nsSNPs on protein structure and functionality. Out of 260 
nsSNPs retrieved from the dbSNP database, initially 9 were predicted as deleterious by 15 tools. 
Upon further assessment of their domain association, conservation profile, homology models and 
inter-atomic interaction, the mutant F389V was considered as the most impactful. In-depth analysis 
of F389V through Molecular Docking and Dynamics Simulation revealed a decline in affinity for its 
native agonist dopamine and an increase in affinity for the antipsychotic drug risperidone. Remarkable 
alterations in binding interactions and stability of the protein–ligand complex in simulated 
physiological conditions were also noted. These findings will improve our understanding of the 
consequence of nsSNPs in disease-susceptibility and therapeutic efficacy.

Single Nucleotide Polymorphisms (SNPs) are the most common source of variance in the genome contributing 
greatly to phenotypic variation and several disease-association. In the case of the human genome, they are found 
in every 200–300 base pairs and represent 90% of genomic  variation1–4. SNPs in non-coding regions (for exam-
ple, regulatory region, UTR, intron) can disrupt or modify various functions, such as interaction with miRNA 
and transcription factors, splicing, and ribosomal translation of  mRNA5–9. On the other hand, approximately 
500,000 SNPs (on average 6 per gene) are located in the coding regions of the human  genome4. Among non-
synonymous SNPs (nsSNPs), missense SNPs can cause the substitution of amino acids in protein sequences and 
thereby exert damaging or neutralizing effects. Alteration of sequences in the conserved region may result in 
deleterious effect by affecting protein function, structure, stability, translation, charge, hydrophobicity, geometry, 
dynamics, and inter/intra protein  interactions10–12. In fact, nsSNPs have been reported by numerous studies to 
influence the disease  probability13–18. Therefore, SNP association studies are useful for the characterization of 
phenotypes as well as insight into drug development and therapeutics of diseases concerned with the specific 
genome variation. However, owing to the large number of SNPs in Drd2, laboratory experimentation on the 
functional effects of these SNPs would be a costly and time-consuming laborious process. Therefore, computa-
tional screening of SNPs to shorten down the number of potential pathogenic ones is an essential step prior to 
experimental mutation analysis.
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In this context, several in silico approaches have been largely utilized in the recent decade to predict the 
structural and functional influence of deleterious nsSNP in genes of interest. Several studies show that in silico 
algorithms have successfully predicted the significance of nsSNPs associated with specific  genes19–26. Though 
the accuracy of the tools can be questioned, they can still be used as a primary  filter27. Besides, combinatorial 
analysis of different algorithms makes the predicted effects of particular mutations more accurate. Moreover, 
refined analysis, such as molecular dynamics simulation enables precise evaluation of changes in protein struc-
ture, physicochemical properties, and interactions in a simulated  environment24,28–31.

DRD2 belongs to the G-protein-coupled receptor family and is a major mediator of the effects of dopamine. 
It is associated in the human brain with diverse functions such as reward mechanism, cognition, attention, 
movement, and neuroendocrine regulation, learning and memory. It has been reported to play a critical role in a 
number of clinical manifestations and neuro-psychiatric disorders such as addiction, neuroticism, parkinsonism, 
restless legs syndrome, schizophrenia, attention deficit hyper activity disorder (ADHD) and, bipolar  disorder32–37.

Drd2 located at chromosome11q23.1 by alternative splicing leads to the generation of two  isoforms38–40. 
D2-long (D2L) is found to be expressed mostly post-synaptically, whereas D2-short (D2S) is a presynaptic 
 isoform41. Numerous genome-wide association studies (GWAS) have been carried out involving Drd2 gene 
variants in intronic and regulatory regions, but not in the coding  region42–49. Although few studies on the coding 
sequence variant of Drd2 are  available50–59, to our best knowledge, a comprehensive investigation is still absent.

With an aim to investigate the damaging effect of Drd2 nsSNPs on disease predisposition and treatment 
responsiveness, in this study, we focused on the DRD2 protein structural and functional impairment upon muta-
tion. For this purpose, a number of bioinformatics tools were employed to identify the most deleterious nsSNPs 
in Drd2 and evaluate their effect on the gene product. After retrieval of the complete list of nsSNPs of Drd2 from 
the dbSNP database, a number of prediction algorithms were put to use to detect pathogenic nsSNPs. Following 
analyses including conservation profile, domain position, post-translational modifications, we performed molec-
ular docking and dynamics simulation for better understating of mutation impact in physiological condition.

Results
The complete workflow employed in this study is summarized in Fig. 1.

SNP data retrieval. The polymorphism information of Drd2 was collected from the NCBI dbSNP data-
base. Out of the total of 16,456 SNPs retrieved, the number of intronic, missense, synonymous, Non-coding vari-
ant and in-frame deletion amounted to 15,370 (93.40%), 238 (1.45%), 173 (1.05%), 139 (0.84%), and 2 (0.01%) 
respectively (Supplementary Table S1). Since the scope of the study is limited to nsSNPs of Drd2, only nsSNPs 
(total 260) were subjected to subsequent analysis.

Functional impact prediction of Drd2 nsSNPs. To determine the functional impact of nsSNPs on 
DRD2, a total of eight tools have been utilized (Supplementary Table S2). Out of the total of 260 nsSNPs, SIFT 
server predicted 119 to be functionally damaging, of which 27 had a tolerance index of 0. The PROVEAN server 
estimated 73 nsSNPs as deleterious out of all 260 nsSNPs submitted. The number of affecting ones anticipated 
by PolyPhen-2 is 139. Of the detrimental nsSNPs marked by PolyPhen-2, 102 were “probably damaging” (score 
0.958–1.00) and 37 were “possibly damaging” (score 0.486–0.95). In addition, 215 nsSNPs were identified as 
damaging (171 of them are “probably damaging” and 44 are “possibly damaging”) by the server PANTHER-
PSEP. The number of disease-associated nsSNPs predicted by SNAP-2, P-Mut, SNPs & GO and PhD-SNP are 
145, 60, 50 and 70 respectively.

Among the nsSNPs subjected to analysis, 18 were unanimously predicted by 8 tools to have damaging effects 
and thereby were functionally significant. These 18 nsSNPs were taken into consideration for the next stage of 
filtering.

Structural impact prediction of Drd2 nsSNPs. Eighteen nsSNPs that had been predicted to be damag-
ing by 8 different tools were then underwent structural impact analysis. For this purpose, seven servers were 
employed—MutPred, MUpro, NetSurfP, DUET, mCSM, SDM, and HOPE (Supplementary Table S3).

MutPred predicted all but one (Y37C) to be pathogenic while MUpro predicted that all the mutations for 2 
(T119M, C443F) exerted a decreasing effect on the protein stability. NetSurfP predicts whether a residue is buried 
or exposed within the protein structure. It was observed that two of the mutants (A84T and R219C) shifted from 
exposed to buried and only one of the mutants (F389V) shifted from buried to exposed status when compared 
with the native structure. Furthermore, DUET predicted all but 4 and mCSM predicted all but 1 to be destabiliz-
ing whereas SDM predicted 11 of them to be destabilizing.

To investigate the effect of mutation on physico-chemical properties, hydrophobicity, intermolecular interac-
tion as well as structural and functional changes, Project HOPE server was utilized. 17 mutations were predicted 
to cause a change in protein size and 9 mutations showed a change in charge. In terms of hydrophobicity, 8 
showed modification while 2 completely lose their hydrophobicity. Moreover, 4 mutations were involved in 
cysteine bridges which were crucial for protein stability (C126W, R145C, R150C, and C399R) could impose a 
severe effect on the 3D structure of the protein.

Glycine residue at the 173rd position of the native structure formed an unusual torsion angle, so mutant 
G173R was predicted to cause an incorrect conformation of the backbone. Proline on the native protein at 404th 
position gave rise to special backbone conformation which might be disturbed by the mutation P404R. On the 
other hand, the native structure formed an H-bond with Gln368 and a salt bridge with Lys369. Mutation in the 
368th position, such as E368D, thereby, would hinder both the interactions. E358D, as well as R219C, could 
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Figure 1.  Schematic representation of the workflow of the study. The overall process can be summarized as a 
series of progressive filtration steps pursued for the identification of the most damaging nsSNPs of Drd2 and 
subsequent in-depth analysis of one particular nsSNP.
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interrupt the interaction with Neurabin-2 which acted as a secondary messenger. F389V mutation being located 
within the agonist binding region, might disturb the functionality as a result of empty space in the core.

Finally, after the wide array of structural impact analyses by above-mentioned tools, 9 out of the 18 mutants 
were considered most impactful to the structure of the DRD2 protein and were selected for subsequent analyses. 
These mutations were C126W, R145C, R150C, G173R, R219C, E368D, F389V, C399R, and P404R.

Identification of domain. To identify the domains in DRD2 and for mapping of nsSNPs, four different 
tools and databases- InterPro, Pfam, PROSITE, and CDD were used.

All 4 tools reported a seven-transmembrane domain in position 51–426, whereas CDD predicted the same 
domain to be located at the position 35–437. Our selected 9 nsSNPS were located within this domain.

Conservation profile and evolutionary relationship analysis. Amino acid residues playing a critical 
role in numerous cellular processes such as genome stability tend to remain conserved despite evolutionary drift. 
Therefore, the intensity of residue conservation is often considered an indication of the importance of a position 
in maintaining protein stability and  functionality60. To inspect evolutionary conservation, phylogenetic analysis 
was carried out using the MEGA X server and was visualized by Iroki (Fig. 2) The result showed that the most 
closely related cousins of the DRD2 protein in Homo sapiens were their homologs in Pan troglodytes and Pan 
paniscus. Using the Bayesian method, the ConSurf web browser not only measured the conservation level of each 
residue in the protein but also revealed putative structural and functional residues. Out of 9 residues filtered out 
from upstream analysis, 4 structural (buried) and 3 functional (exposed) residues showed the highest and R145 
showed a high degree of conservation (Fig. 3, Supplementary Table S4). HOPE server predicted all except one of 
9 residues to be very conserved. Mutation in P404 position was excluded from subsequent analysis since it was 
reported to have a low conservation profile by both ConSurf and HOPE servers.

Homology model verification and secondary structure analysis. In order to attain the 3D structure 
of native and 8 mutant proteins, SWISS-MODEL server was used. Model quality was verified by two different 
servers—PROCHECK and ERRAT (Supplementary Table S5). All the structures had up to the mark ERRAT 
quality factor. However, the Ramachandran plot generated by PROCHECK showed > 90.0% residues in the most 
favored regions for all the structures except for G173R. (Supplementary Fig. S1) For sake of narrowing down the 
list, this mutation was excluded from further analysis.

Figure 2.  Graphical representation of evolutionary relationships between the human Drd2 and its closest 
counterparts by Iroki server. The human DRD2 appears to be most closely related to its homologs in Pan 
troglodytes and Pan paniscus.
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Secondary structures of the native DRD2 and 7 mutants were analyzed and visualized using the tool PDBsum 
(Fig. 4) Except for E368D, all the mutants had a higher number of helices than the native one. In comparison 
to wild-type structure, five mutants (C126W, R145C, R150C, R219C, C399R) introduced one di-sulfide linkage 
in the same position while a subset of them (R145C and R219C) contained a shorter second di-sulfide bridge 
between the residues C399 and C401. Three mutants (C126W, R150C, and C399R) also included 3 A strands and 
2 interspaced beta hairpins. Moreover, after the N259 position, F389V had more tightly packed β and γ turns 
while in the case of E368D, they were more interspersed.

Interatomic interactions prediction. Seven proteins selected from upstream analyses were analyzed 
using the DynaMut server (Fig. 5, Supplementary Table S6). The ΔΔG and Δ vibrational entropy energy predic-
tions by ENCoM between the wild-type and mutant were displayed by DynaMut server. Here, the ΔΔG EnCoM 
value decreased in all mutants except for C126W and R150C in comparison with the wild-type. On the other 
hand, the ΔΔS ENCoM value in comparison with the wild-type protein increased in all candidates except for 
C126W and R150C. Notably, DynaMut ΔΔG predicted a total of 4 mutants (R145C, R219C, E368D, F389V) 
to be destabilizing all of which were detected by ENCoM to have increased molecule flexibility and decreased 
stability.

Figure 3.  Evolutionary conservation profile of amino acid residues of DRD2 as predicted by ConSurf. Almost 
all the nsSNPs primarily evaluated as deleterious belonged to the highly conserved regions.
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Molecular Docking analysis and visualization following binding site prediction. For the pur-
pose of molecular docking analysis, at first, we used FTSite ligand binding site prediction tool. There were three 
sites found- two were in membrane embedded-extracellular part (binding site I and II) and one was in the 
cytosolic part (binding site III) of the protein (Fig. 6a). The reason for choosing Binding site II for molecular 
docking was that the residues in this site had been linked to dopamine and DRD2 antagonist (risperidone) bind-
ing by previous computational and crystal structure  studies61,62. From the 4 damaging nsSNPs filtered out from 
Dynamut, we chose only one mutation for the next steps. The reason for choosing F389V here was two-fold; one, 
while analysis by Project HOPE server it has been detected to situate within the agonist binding region and two, 
an earlier  study62 revealed this position to be involved in agonist binding.

Following protein preparation by SwissPDB viewer and ligands by Avogadro software, a total of 4 molecular 
docking were carried out using AutoDock Vina in PyRx software (Supplementary Table S7). Residues in bind-
ing site II were specified for PyRx gridbox region. Binding affinity of natural agonist dopamine with wild-type 
(− 5.8 kcal/mol) and mutant (− 5.4 kcal/mol) shows that, mutation causes dopamine to bind with DRD2 less 
stably. Contrarily, the exact opposite scenario is observed in case of binding with the risperidone, a D2 recep-
tor antagonist used as antipsychotic drug (wild-type − 8.5 kcal/mol and mutant − 8.9 kcal/mol) indicating an 

Figure 4.  Secondary structure analysis of native DRD2 and the mutants revealed by PDBsum. It shows the 
modifications in terms of alpha helices, beta strands as well as various motifs that had occurred as a result of 
nsSNPs.
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emergence of variability in drug response in case of a mutation. When visualized in Discovery Studio, docking 
interactions showed significant differences in mutant one from wild-type (Fig. 6b). When binding with dopamine, 
in comparison to native one, F389V mutated protein lost one hydrogen bond in T119 position and gained 3 
hydrogen bonds in D114, C118 and T412 positions. Interaction with risperidone is somewhat complex for both 
wild-type and mutated proteins. While interacting, mutant lost electrostatic bond in D114 residue, one hydro-
gen bond in S193 and one hydrophobic bond in Y408. On the other hand, mutant protein gained two hydrogen 
bonds (S197, T412) and three hydrophobic bonds V190, W386 and H393) comparing to native structure. Apart 
from attaining one hydrogen bond, G415 position in mutant protein interacted with risperidone via a halogen 
bond too.

Molecular dynamics (MD) simulation. Since in physiological condition protein is dynamic in nature, 
molecular docking cannot give a holistic idea of protein behavior. Therefore, 200 ns molecular dynamics simula-
tion was carried out using the GROMACS software. (Fig. 7) The root-mean-square deviation (RMSD) analysis 

Figure 5.  Dynamut prediction of inter-atomic interactions of the native DRD2 vs the mutants. Native and 
mutant residues are colored in light-green and showed as sticks along with the surrounding residues involved in 
interaction. Dot points with several colors represent the interactions such as hydrogen bonds, ionic interactions 
etc.
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pointed that the F389V-dopamine complex underwent larger structural rearrangement compared to its native 
counterpart while the trend was opposite in case of F389V-risperidone complex. The dopamine and risperidone 
complex with the wild-type DRD2 were also found to attain stability faster than those with the F389V mutant. 
(Fig. 7a) The root-mean-square fluctuation (RMSF) values of each residue were analyzed since it reveals the 
rigid and flexible regions of a protein chain. The wild-type DRD2-dopamine complex had a total of 3 significant 
fluctuations (regions 210–220, 260–270, 290–300) while the F389V-dopamine complex exhibited total 2 but 
much larger fluctuations (regions 210–220, 300–325). In contrast, wild-type DRD2-risperidone complex dis-
played more frequent and larger peaks (regions 210–220, 230–240, 260–270, 300–310) compared to the mutant 
F389V-risperidone complex (regions 200–210, 300–310, and 320–330) (Fig.  7b) The radius of gyration (Rg) 

Figure 6.  Binding site prediction and visualization of the molecular docking output. (a) FTSite predicted three 
ligand binding sites in DRD2. (b) Ligand non-bond binding interactions between the protein residues and the 
ligands visualized by Discovery Studio. Dopamine docked against (I) native DRD2 (II) F389V mutant; and 
risperidone docked against (III) native DRD2 and (IV) F389V mutant are presented. The receptor surface is 
colored according to solvent accessibility surface (SAS) in an ascending degree from blue to green.
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measurement was carried out to determine the degree of compactness of the protein. Rg of the wild-type DRD2-
dopamine complex descended at a steady rate since the beginning of the simulation while the same for the 
F389V-dopamine complex elevated for 50 ns and then started to decrease. (Fig. 7c) For the wild-type DRD2-
dopamine complex, the solvent accessible surface area (SASA) was at its peak at the beginning and had contin-
ued to decrease ever since. Meanwhile, the SASA for the F389V-dopamine complex increased for 50 ns and then 
started to drop. However, the F389V-risperidone complex displayed a stable decline in solvent accessibility while 
the wild-type DRD2-risperidone complex went through large fluctuations throughout the simulation (Fig. 7d).

Molecular mechanics Poisson–Boltzmann surface area (MM-PBSA) analysis. In order to meas-
ure the binding free energy between the native and mutant complexes with dopamine and risperidone, MM-
PBSA analysis of the last 20 ns of molecular dynamics simulation was performed using the g_mmpbsa package. 
The comparative change in binding free energy with respect to time is presented in Fig. 8.

Figure 7.  Results of 200 ns Molecular Dynamics Simulation by GROMACS software. Of the wild-type and 
F389V complexes with dopamine and risperidone: (a) RMSD values, (b) RMSF values, (c) SASA calculations 
and (d) Radius of gyration.
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MM-PBSA calculation revealed that the mutation is associated with a drastic reduction in binding affinity 
in comparison to the native DRD2 (Binding free energy F389V-dopamine complex 53.7 ± 3.2 kcal/mol and 
DRD2-dopamine complex − 29.5 ± 1.9 kcal/mol). In the case of binding with risperidone, however, the trend 
was reversed. The mutant F389V-risperidone complex exhibited higher binding affinity (− 53.1 ± 2.9 kcal/mol) 
compared to the wild-risperidone complex (− 51.53 ± 3.0 kcal/mol).

Table 1 shows the various energy components such as average binding free energy, SASA energy, Polar sol-
vation energy, Electrostatic energy, and Van der Waal energy which contributed to the protein–ligand binding 
obtained by MM-PBSA calculation.

Figure 8.  Binding free energy of the docked complexes during the last 20 ns of Molecular Dynamics Simulation 
by GROMACS software. (a) Complex of dopamine with native DRD2 (blue) and F389 V mutant (orange), (b) 
Complex of risperidone with native DRD2 (blue) and F389 V mutant (orange).

Table 1.  Binding free energy calculation of the docked complexes using MM-PBSA method.

Complex Binding energy (kcal/mol) SASA energy (kcal/mol)
Polar solvation energy (kcal/
mol)

Electrostattic energy (kcal/
mol)

Van der Waal energy (kcal/
mol)

Wild-dopamine − 29.5 ± 1.9 − 2.7 ± 0.1 3.5 ± 0.9 − 0.57 ± 0.4 − 29.7 ± 1.9

F389V-dopamine 53.7 ± 3.2 − 2.7 ± 0.1 70.2 ± 2.5 11.7 ± 3.1 − 25.5 ± 2.2

Wild-risperidone − 51.5 ± 3.0 − 4.1 ± 0.3 9.0 ± 2.3 − 0.2 ± 1.2 − 56.2 ± 2.9

F389V-risperidone − 53.1 ± 2.9 − 5.1 ± 0.2 19.5 ± 2.2 − 2.6 ± 0.7 − 64.8 ± 2.5
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Discussion
The present study aimed to investigate the effect of nsSNPs of Drd2 on functional impairment and heterogeneity 
of psychotropic drug response. We pinpointed one mutation located within the agonist binding region-F389V, 
which in comparison with native protein, showed weaker binding affinity towards dopamine but a stronger 
affinity for the DRD2-antagonist risperidone.

Inter-individual variation in genetic components has the potential to influence not only disease susceptibility 
but also therapeutic response and drug-induced adverse effects. Studies on family, twin, pedigree, and epide-
miological aspects support the idea of genetic association with psychiatric disorders, but they fail to provide 
informative data regarding psychotropic drug response. Since pharmacogenetic approaches consider individual 
subject’s genotypes, it provides an opportunity to identify biological predictors of psychotropic drug response 
by focusing exactly on the molecular substrates of drug  activity63.

Although there has been a number of studies on the associations between D2 receptor polymorphisms and 
neuropsychiatric disorders, the pharmacological aspects of the receptor polymorphisms are comparatively less 
attended. Essentially all antipsychotics clinically used for schizophrenia and bipolar disorder having the ability 
to block D2 dopamine receptors makes it a prime target of pharmacotherapy. A study by Healy and McKeon on 
dopamine D2-receptors and selective serotonin reuptake inhibitors (SSRIs) suggests that genetic factors affect 
response time to antidepressants and thereby can contribute to the variability in response time among  patients64. 
Sufficiency in antipsychotic binding affinity to D2 receptor for treatment efficacy is evidenced by correlation 
and functional imaging studies. A growing body of data suggests that D2 receptor polymorphisms influence 
response to clozapine, haloperidol, risperidone, and other neuroleptics. Taq A1 allele has been associated with 
early response to treatment with the antipsychotic nemonapride in schizophrenia. The same allele is also reported 
to function as a contributing factor for hyper-prolactinemia-related side effects in female patients by increasing 
prolactin  levels65,66.

Primarily, we sorted nsSNPs out based on their probable impact on functionality and structure. Different 
bioinformatics tools have their own threshold cut-off value for SNP categorization (as damaging and benign), 
which may sometimes result in false prediction for an SNP having a prediction score around the threshold cut-
off value. We overcame this bias using a total of 15 tools based on sequence homology and structural homology 
approach of SNP prediction. Here is to mention that we have used the sequence of D2L isoform for the analyses. 
Because, unlike the D2S isoform, D2L is predominantly postsynaptic and antipsychotics (such as-risperidone, 
haloperidol) are evidenced to exert their effects by blockade of postsynaptic D2  receptors67,68.

The number of SNP has been narrowed down from 260 to 9 after 2 steps analysis. All selected 9 nsSNPs 
were in the seven-transmembrane domain of the protein. All of the positions except for P404 are evolutionarily 
conserved indicating their role in protein structural stability. Following homology modeling, model verification, 
secondary structure analyses, and inter-atomic interaction prediction the list had been narrowed down to only 
4 mutations—R145C, R219C, E368D and F389V.

Interestingly, one of these four mutations (F389V) was found to be located within the agonist binding 
region according to HOPE server. This property made it an ideal candidate to perform molecular docking 
with ligands such as agonists and antagonists. Although the charge and hydrophobicity of the F389V mutated 
protein remained unchanged according to the prediction by the HOPE server, the size was reported to decrease. 
Moreover, ConSurf detected this position of the native protein to be buried and involved in protein structure 
building while NetSurfP predicted conformational change of the F389V from buried to exposed. Besides, sec-
ondary structure attained by PDBsum showed that the mutant contained similar pattern of structure to native 
form upto N259 position but afterwards it had its β and γ turns more tightly packed. Dynamut server found it 
to be structurally destabilizing and more flexible.

PyRx was used for subsequent analysis by molecular docking followed by binding site prediction by FTSite. 
Among the 3 binding sites predicted by FTSite, two membrane-bound sites seem potential agonist-binding 
sites. Between these two, binding site II had more residues in common with the prediction from other in silico 
and in vitro studies on DRD2 agonist binding. Therefore, residues in this site were selected while performing 
molecular  docking61,62. We performed molecular docking with two ligands; one, DRD2 agonist -dopamine and 
two, a DRD2 antagonist-risperidone. Risperidone is a second-generation antipsychotic which has approximately 
50- fold greater affinity for D2 receptor than that of clozapine but in low dose it is exclusive of side effects such 
as extrapyramidal symptoms (EPS)69,70.

Insights from molecular docking and MD simulation inferred that the mutation F389V significantly affects 
the stability of the DRD2 protein. Binding affinity calculation of PyRx analysis showed that the F389V muta-
tion decreased affinity of the receptor for dopamine but it made the receptor comparatively more responsive to 
risperidone. Moreover, we used a more-robust and reliable tool MM-PBSA71 the result of which reveals the same 
trend of difference in binding free energy as those obtained from the molecular docking experiments.

Non-bonding interactions analyses by Discovery Studio following molecular docking showed in the mutant 
F389V that interaction remained unchanged at the 389th residue position, but changes were apparent in other 
residues involved in agonist binding. Although while binding with risperidone, the native protein lost electro-
static bond at position 114, a net gain of 1 hydrogen, 2 hydrophobic and 1 halogen bond made the bonding 
stronger in mutant protein. In case of dopamine binding, mutation caused the hydrogen bond to shift from 119 
to other positions imposing impact on binding affinity and solvent accessibility. Findings from the molecular 
dynamics simulation reinforces that of molecular docking. The RMSD, RMSF and Rg values reveal that the muta-
tion destabilized protein compactness and increased regional flexibility while in a complex with dopamine. How-
ever, the case was found to be exactly opposite while binding with risperidone. SASA calculations on dopamine 
complex suggested that the stability of the hydrophobic core of the protein was impaired in the F389V-dopamine 
complex. Contrarily, the mutation enhanced stability of the hydrophobic core while binding with risperidone. 
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In brief, when the protein binds to its natural ligand, dopamine, the mutation reduces its stability. On the other 
hand, the mutation plays a positive role in stability while binding to the drug risperidone.

Our study has gone some way towards enhancing our understanding about polymorphism of the dopamine 
D2 receptor. Further experimental investigations are necessitated to elucidate the molecular and cellular basis of 
the observations. Apart from genetic variation, future studies should consider to include other factors potentially 
influencing interaction with D2 receptor, such as environment, age, body mass index of subjects etc. In case of 
sexually dimorphic diseases such as depression and ADHD, sex of subject is also a considerable factor. Further-
more, our findings give rise to the possibility of existence of other variants with similar effects. Broader scale of 
human in vivo molecular imaging studies is required to identify the most influential variants.

Conclusion
Our study identified a potential high-risk variant of Drd2 gene paving the way for extensive future studies on the 
nsSNPs of the gene. Further insights on drug targeting and biomarkers can be attained with the aid of in vivo 
models, GWAS and clinical studies.

Materials and method
SNP dataset collection. The SNP data for human Drd2 and the protein sequence were collected from 
NCBI dbSNP and UniProt database (UniProtKB ID P14416) (https:// www. unipr ot. org/)  respectively72,73.

Functional impact prediction. Eight tools were employed for predicting the functional consequence of 
nsSNPs on DRD2 namely SIFT, PROVEAN, PolyPhen-2, SNAP 2, PANTHER-PSEP, P-Mut, SNPs & GO, PhD-
SNP.

Depending on the physical properties and sequence homology of residues, SIFT (https:// sift. bii.a- star. edu. sg/) 
predicts the effect of an amino acid  substitution74. Tolerance index score of SIFT is ≤ 0.05. PROVEAN (http:// 
prove an. jcvi. org/ index. php) determines functionally important variants using a versatile alignment-based  score75. 
PROVEAN considers an nsSNP as deleterious when its score ≤  − 2.5. Both SIFT and PROVEAN take genomic 
co-ordinates of an SNP as the input. FASTA sequence of a protein and the location of SNP have to be provided 
as the input for the next 4 tools namely, PolyPhen-2, SNPs&GO, PANTHER and, Pmut. Utilizing physical and 
comparative considerations, PolyPhen-2 (http:// genet ics. bwh. harva rd. edu/ pph2/) predicts potential functional 
impact of an amino acid substitution on a  protein76. It classifies SNPs depending on probabilistic scores: possibly 
damaging (score > 0.15), probably damaging (score > 0.85), and benign (remaining). PANTHER (http:// www. 
panth erdb. org/ tools/ csnpS coreF orm. jsp) calculates the duration of evolutionary preservation of a residue, while 
longer duration indicates greater likelihood of harmful effect caused by  mutation77.

PMut (http:// mmb. irbba rcelo na. org/ PMut/) is a web-based tool of which prediction score > 0.5 indicates 
nsSNPs to have a damaging impact on protein  function78. The SNP & Gene Ontology (SNPs&GO) tool (https:// 
snps. biofo ld. org/ snps- and- go/ snps- and- go. html) differentiates the disease associated variants from the benign 
ones based on protein sequence, gene ontology annotation and evolutionary  patterns79. As a neural network-
based classifier, SNAP2 (https:// rostl ab. org/ servi ces/ snap2 web/) differentiates between impactful and neutral 
nsSNPs. The prediction score ranges from − 100 to + 100 meaning strong neutral to strong effect prediction 
 respectively80. PhD-SNP (https:// snps. biofo ld. org/ phd- snp/ phd- snp. html) is a SVM-based classifier which uses 
either sequence based or sequence plus profile based  algorithms81.

Structural impact prediction. Seven different structural impact prediction tools (MutPred, MUpro, Net-
Surf P, DUET, mCSM, SDM and HOPE) were used to find out structural impact.

MutPred (http:// mutpr ed. mutdb. org/) provides a probabilistic idea about the impact of amino acid substitu-
tions via a machine learning-based  method82. Using Support Vector Machines and Neural Networks, MUpro 
(https:// www. ics. uci. edu/ ~baldig/ mutat ion. html) predicts protein stability changes for point mutations with 
about 84%  accuracy83. Both MutPred and MUpro takes protein FASTA sequence for input. NetSurfP https:// servi 
ces. healt htech. dtu. dk/ servi ce. php? NetSu rfP-2.0) is a sequence-based local structural feature prediction server 
giving idea about solvent accessibility for input  residues84.

DUET, mCSM and SDM (http:// biosig. unime lb. edu. au/ duet/) are closely intertwined tools and their input can 
be provided together in the form of the native protein sequence while separately mentioning the relevant SNP 
position. 14–16 Project HOPE server (http:// www. cmbi. ru. nl/ hope/ input/) anticipates the structural impacts of 
nsSNPs by integrating information from a wide array of sources including tertiary structure, sequence annota-
tions, homology models from the Distributed Annotation System (DAS) servers and UniProt database etc. 17 It 
takes the native protein sequence as the input and asks for the specific site and type of mutation to be analyzed 
before proceeding to analysis.

Identification of domain. Utilized databases for identification of conserved domain and positions of 
nsSNPs in domain are—InterPro (http:// www. ebi. ac. uk/ inter pro/), Pfam (http:// pfam. xfam. org/), PROSITE 
(https:// prosi te. expasy. org/ prosi te. html) and CDD (https:// www. ncbi. nlm. nih. gov/ cdd/)85–88. InterPro is a pow-
erful tool which combines several databases while Pfam data is based on the  UniProt Reference Proteomes. 
PROSITE works by grouping of similarities in protein and CDD uses position-specific score matrices (PSSMs) 
for domain prediction. Protein FASTA sequence was given as input for all four cases.

Evolutionary conservation analysis. To unravel the evolutionary history of the human DRD2 protein, 
a phylogenetic tree was constructed in MEGA X tool using the 10 closest matches to the human DRD2 protein 

https://www.uniprot.org/
https://sift.bii.a-star.edu.sg/
http://provean.jcvi.org/index.php
http://provean.jcvi.org/index.php
http://genetics.bwh.harvard.edu/pph2/
http://www.pantherdb.org/tools/csnpScoreForm.jsp
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http://mmb.irbbarcelona.org/PMut/
https://snps.biofold.org/snps-and-go/snps-and-go.html
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https://rostlab.org/services/snap2web/
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https://www.ncbi.nlm.nih.gov/cdd/


13

Vol.:(0123456789)

Scientific Reports |        (2021) 11:23212  | https://doi.org/10.1038/s41598-021-02715-z

www.nature.com/scientificreports/

as determined by a BLASTp search (https:// blast. ncbi. nlm. nih. gov/ Blast. cgi? PAGE= Prote ins)89. The maximum 
likelihood algorithm and bootstrap value of 1000 was used to build the tree. It was then visualized with the Iroki 
webserver (https:// www. iroki. net/)90.

ConSurf (https:// consu rf. tau. ac. il/) provides conservation analysis of individual amino acids in the protein 
based on the phylogenetic relationships between homologous  sequences91. Upon providing the PDB structure 
of query protein, the server output was found to be in 3 classes: score 1–4 indicates variable, 5–6 is considered 
intermediate and 7–9 means conserved. HOPE server was also employed for generating for each nsSNP that had 
been filtered through the previous steps.

Homology model verification and secondary structure analysis. SWISS-MODEL (https:// swiss 
model. expasy. org/) server was used for generation of homology models. The protein FASTA sequences were 
submitted as input and the template (SMTL ID: 7jvr.1) we selected for modeling has 100% similarity in sequence 
with that of submitted native protein.

The structure quality was exposed to verification by PROCHECK and ERRAT. ERRAT provided a quality 
score while Ramachandran plots were generated from PROCHECK. In general, a protein structure is considered 
good if more than 90% residues are in the favored region of Ramachandran plot. PDBsum (http:// www. ebi. ac. 
uk/ thorn ton- srv/ datab ases/ cgi- bin/ pdbsum/ GetPa ge. pl? pdbco de= index. html) provides features of secondary 
structure such as alpha helices, beta strands, beta hairpins etc. of proteins taking amino acid sequences as  input92.

Interatomic interactions prediction. DynaMut server was used to predict the changes in interatomic 
interactions upon point mutation (http:// biosig. unime lb. edu. au/ dynam ut/)93. Wild-type structure in PDB for-
mat and mutation list were provided as input.

Molecular Docking analysis and visualization following binding site prediction. FTSite (https:// 
ftsite. bu. edu/) recognizes ligand binding sites on proteins taking PDB structure as  input94.

The proteins and ligands were energy minimized using SwissPDB viewer and Avogadro  respectively95,96. Then 
the AutoDock Vina embedded within the PyRx molecular docking software was used to dock the respective 
proteins and the  ligands97. All the parameters were set as default and the grid box covered the agonist binding 
site as predicted by FTSite. The graphical output of the docked complexes were subjected to in-depth analysis in 
Discovery Studio for revealing the crucial information about interactions between the proteins and the  ligands98.

Molecular dynamics (MD) simulation. MD simulation for 200 ns was carried out using GROningen 
MAchine for Chemical Simulations aka GROMACS (version 5.1.1)99. The GROMOS96 43a1 force-field was 
applied. The physiological condition of the system was defined as (300 K, pH 7.4, 0.9% NaCl). The structures 
were solvated in a dodecahedral box of the SPC (simple point charge) water model with its edges at 1 nm dis-
tance from the protein surface. The overall charge of the system was neutralized through the addition of 24  Cl− 
ions using the genion module. Energy minimization of the neutralized system was carried out using the steepest 
descent minimization algorithm. The ligand was restrained before carrying out the isothermal-isochoric (NVT) 
equilibration of the system for 100 ps with short-range electrostatic cutoff value of 1.2 nm. Following NVT, Iso-
baric (NPT) equilibration of the system was carried out for 100 ps with short-range van der Waals cutoff fixed 
at 1.2 nm. Finally, a 200 ns molecular dynamic simulation was run using periodic boundary conditions. The 
energy of the system was saved every 100 ps. For calculating the long range electrostatic potential, the Particle 
Mesh Ewald (PME) method was applied. Short-range van der Waals cutoff was kept at 1.2 nm. Modified Ber-
endsen thermostat was used to control simulation temperature while the pressure was kept constant using the 
Parrinello-Rahman algorithm. The simulation time step was selected as 2.0 fs while the snapshot interval was set 
to 100 ps for analyzing the trajectory data. Upon successful completion of the simulation, all of the trajectories 
were concatenated to calculate and plot RMSD, RMSF, Rg and SASA data. The RMSD, RMSF, Rg and SASA 
calculations were carried out using the rms, rmsf, gyrate, and sasa modules respectively.

Molecular mechanics Poisson–Boltzmann surface area (MM-PBSA) analysis. To calculate the 
binding free energy between the receptor and the ligands, MM-PBSA calculation was carried out using the g_
mmpbsa package after taking snapshots of MD trajectory from 180 to 200 ns at an interval of 50  ps100,101. In this 
calculation, potential energy in vacuum, polar solvation energy, and SASA-based non-polar solvation energy 
were taken into account. The python script, MmPbSaStat.py, provided with the g_mmpbsa package was utilized 
to measure the average binding energy.

Data availability
All data generated or analysed during this study are included in this published article (and its Supplementary 
Information files).
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