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ABSTRACT: Density functional theory simulations were carried out to investigate
energetic molecular perovskite (C6H14N2)(NH2NH3)(ClO4)3 which was a new
type energetic material promising for future application. The electronic properties,
surface energy, and hydrogen bonding of (100), (010), (011), (101), (111) surfaces
were studied, and the anisotropic impact sensitivity of these surfaces were reported.
By comparing the values of the band gaps for different surface structures, we found
that the (100) surface has the lowest sensitivity, while the (101) surface was
considered to be much more sensitive than the others. The results for the total
density of states further validated the previous conclusion obtained from the band
gap. Additionally, the calculated surface energy indicated that surface energy was
positively correlated with impact sensitivity. Hydrogen bond content of the surface
structures showed distinct variability according to the two-dimensional fingerprint
plots. In particular, the hydrogen bond content of (100) surface was higher than
that of other surfaces, indicating that the impact sensitivity of (100) surface is the lowest.

1. INTRODUCTION

Energetic materials are a class of special reactive substances
storing large amounts of chemical energy, including explosives,
propellants, and pyrotechnics.1,2 With the rapid development
of modern military science and technology and aerospace
industry, the requirements for energetic materials are also
increasing. In order to adapt to a harsher environment and
cope with various extreme conditions in the universe, the new
generation of energetic materials must have good compre-
hensive performance including high energy, low sensitivity, low
cost, and functional diversity.3 Driven by both synthetic and
theoretical research, new structures of energetic materials are
emerging.4,5 However, the high detonation performance and
low sensitivity are mutually exclusive for most of explosives.
Few explosives could meet the practical applications of
weapons and equipment effectively. Therefore, designing new
structures and exploring new concepts of energetic compounds
are still the main research hotspots in the field of energetic
materials.6,7

In recent years, molecular perovskites have played an
important role in many areas, including solar cells,8−10

thermoelectricity,11 ferroelectrics,12 piezoelectricity,13 lasers,14

and so on due to their unique structures and excellent
properties.15 Lately, Chen’s team16−18 has designed and
synthesized a series of high-energy-density compounds with
molecular perovskite structure characteristics, which created a
precedent for molecular perovskite in the field of energetic

materials. Different from traditional energetic compounds,
these energetic molecular perovskites are composed of special
oxidative ions (like ClO4

−) and organic cations (as fuel part).
Most importantly, these energetic molecular perovskites have
the advantages of excellent detonation performances, good
stability, and low cost. The emergence of molecular perovskites
high-energetic materials is undoubtedly of great significance to
the development of energetic materials. Among them, the
metal-free molecular perovskite (H2dabco)(NH4)(ClO4)3]
(DAP-4 for short) has attracted great attention to researchers
because of the high exothermic effect and high amount of
gas.19−24 Compared to DAP-4, the metal-free molecular
perovskite (H2dabco)(NH2NH3)(ClO4)3 (DAP-7 for
short)18 not only possesses more excellent detonation
performances and better thermal stability but has great
potential to be used as a heat-resistant explosive.
Sensitivity is an important index to measure the stability of

explosives, which is usually defined as the degree of difficulty of
decomposition or explosion for energetic materials under
external stimulation (impact, friction, etc.).25 According to
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external stimulus factors, the sensitivity of explosives could be
sorted into impact sensitivity, friction sensitivity, and electro-
static spark sensitivity. Among them, impact sensitivity is
studied frequently in experiment and theory. Since it was
discovered that different crystal orientations of pentaerythritol
tetranitrate (PETN) correspond to different impact sensitiv-
ity,26 people began to focus on investigating anisotropic impact
sensitivity using theoretical simulations.25,27−29 Theoretical
studies have shown that starting from the surface structure was
a very effective method to study the anisotropy of impact
sensitivity.30,31

The anisotropy of impact sensitivity is relevant to the
thermodynamics and chemical reactions of explosives, which is
essential to understand the reaction/explosion mecha-
nism.26,32,33 However, there has not been any report on
anisotropic impact sensitivity of DAP-7 since it was
synthesized. The goal of this study was to explore anisotropic
impact sensitivity of DAP-7 based on density functional theory.
The (100), (010), (011), (101), and (111) surfaces were
studied from three aspects of electronic properties, surface
energy, and hydrogen bonding in this work. Moreover, the
corresponding properties of bulk crystal for DAP-7 were also
investigated to form a comparison with the surface structures.
This research could provide important theoretical supports for
designing and developing newly energetic materials.

2. COMPUTATIONAL METHODS

All calculations in this paper were performed by using the
Vienna Ab initio Simulation Package (VASP) code34,35 in the
framework of density functional theory (DFT). The projector
augmented wave (PAW) method was used to describe
interaction between the core and valence electrons.36 Here,
the model starting structure adopted the experimental
structure of DAP-7 crystallized in a monoclinic lattice with
P21/m space group.18 The unit cell of DAP-7 featured a
hexagonal perovskite-type structure with the formula ABX3,
where A-site cation was H2dabco

2+, B-site cation was

NH2NH3
+, and X-site anion was ClO4

−. The unit cell and
ions structure of DAP-7 were displayed in Figure 1. The
H(1s1), C(2s22p2), N(2s22p3), O(2s22p6), and Cl(3s23p5)
were considered as the valence electrons.
First of all, the experimental crystal structure of DAP-7

performed full geometry optimizations which allow lattice
parameters and atomic positions to be fully relaxed. The cutoff
energy of plane waves was set to 450 eV. Gamma-centered
Monkhorst−Pack k-point mesh of 3 × 4 × 3 was used for
sampling the Brillouin zone in geometry optimization. The
convergence criteria of energy and force was less than 10−5 eV
and 0.03 eV/Å, respectively. In the case of hybrid perovskite
materials, more accurate results could be obtained by
considering the van der Waals (vdW) correction.37 In terms
of exchange correlation function, there were four functions
tested to choose a more appropriate method in geometry
optimization, including the Perdew, Burke, and Ernzerh of
(PBE) functional,38 the PBE functional revised for solids
(PBEsol),39 PBEsol plus the addition of Grimme’s D3
dispersion correction (PBEsol+D3),40 and the PBE functional
plus the addition of D3 (PBE+D3).41 The results are shown in
Table 1. After that, they were cut along the (100), (010),
(011), (101), and (111) crystal plane of the geometry-
optimized crystal structure of DAP-7 and periodic conditions
were applied to these surface models. The vacuum layer was
set to 15 Å along the Z-direction, which was thick enough to
avoid any interaction between the surfaces. To that end, the
periodic surface models containing the (100), (010), (011),
(101), and (111) surfaces could be obtained.
During the geometry optimizations of surface models, the

cell parameters were fixed and only the atomic coordinates
were optimized. Except for the K-point settings, the other
parameters for geometry optimization, electronic properties,
and surface energy calculations in the surface models were the
same as those for the bulk crystal. The K points were set as
Gamma-centered Monkhorst−Pack k-point mesh of 4 × 3 × 1,
3 × 3 × 1, 3 × 3 × 1, 3 × 4 × 1, and 3 × 3 × 1 during the

Figure 1. (a) Crystal structure of DAP-7. (b) Ion composition. H atom in light gray, C atom in dark gray, N atom in blue, O atom in red, and Cl
atom in green.

Table 1. Experimental and Calculated Lattice Parameters of DAP-7

methods a (Å) b (Å) c (Å) B (deg) volume (Å3)

experiment18 10.378 8.050 10.587 117.99 781.034
PBE 10.783 8.042 11.0766 119.16 838.794

(+3.90%) (−0.10%) (+4.63%) (+0.98%) (+7.39%)
PBE+D3 10.353 7.945 10.608 118.66 765.622

(−0.24%) (−1.31%) (+0.20%) (+0.56%) (−1.97%)
PBEsol 10.486 7.839 10.753 119.00 773.057

(+1.04%) (−2.62%) (+1.57%) (+0.85%) (−1.02%)
PBEsol+D3 10.191 7.799 10.432 118.62 727.850

(−1.80%) (−3.12%) (−1.46%) (+0.53%) (−6.81%)
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geometry optimization of the surface models of (100), (010),
(011), (101), and (111), respectively.

3. RESULTS AND DISCUSSION
3.1. Crystal Structures and Surface Structures. The

unit cell parameters of DAP-7 by experiment and DFT relaxed
are tabulated in Table 1. It was found that the optimized
structure by PBE+D3 was in good accordance with the
experimental structure, whereas the PBE seemed to over-
estimate the lattice constants more drastically due to ignoring
the van der Waals (vdW) correction. The errors of the lattice
constants obtained by the methods of PBEsol and PBEsol+D3
were generally smaller than that of PBE but still larger than
that of PBE+D3. Overall, the PBE+D3 functional was chosen
as the optimal exchange correlation function in this paper. The
unit cell structure optimized by PBE+D3 was used as the
optimal structure. The optimized surface structures by PBE
+D3 including (100), (010), (011), (101), and (111) were
shown in Figure 2.

3.2. Electronic Structure. Band gap, the energy difference
between the highest occupied molecular orbital (HOMO) and
lowest unoccupied molecular orbital (LUMO), is an important
parameter to characterize the electronic structure of crystals.42

In the field of energetic materials, the band gap was closely
related to the impact sensitivity, which was reflected in the fact
that the initiation of energetic materials was accompanied by
rupture of chemical bonds requiring population of antibonding
state. Therefore, the electronic excitation generally resulted in
a weakening of chemical bonds. Hence, the smaller the band
gap was, the easier the electronic was to reach antibonding
orbital, and the easier the chemical bond was to break.43,44

According to the first-principles band gap criterion, a smaller
band gap corresponds to a higher impact sensitivity for the
energetic crystal with similar structure or thermal decom-
position mechanism.45−47 The first-principles band gap
criterion has been widely used to predict impact sensitivity
of various energetic compounds.46−49

To investigate the influence of surfaces on impact sensitivity
of DAP-7, the band gap of bulk crystal and (100), (010),
(011), (101), and (111) surfaces were calculated, and the
results are given in Table 2. The sequence of band gap in

surface structures were (101) < (010) < (011) < (111) <
(100), where the band gap value of the (100) surface was the
largest and the band gap of the (101) surface was the smallest
among these surfaces. The difference of band gap in surface
structures of DAP-7 suggested that the impact sensitivities
exhibit distinct anisotropic characteristics. According to the
first-principles band gap criterion, it can be predicted that the
impact sensitivities of surfaces in descending order were (101)
> (010) > (011) > (111) > (100). The results showed that the
(100) surface has the lowest impact sensitivity, whereas the
(101) surface has the highest impact sensitivity. In addition, we
found that the band gap values of these surfaces were smaller
than that of the bulk crystal, suggesting that these surface
structures show higher impact sensitivity than bulk crystal.
This may result from the fact that the energetic molecules on
the exposed surface show higher activities due to the reduced
activation barriers.50

Electronic structure was an intrinsic factor that was critical in
determining the impact sensitivities and chemical reactions of
energetic materials. For the purpose of seeking more
information about the impact sensitivity anisotropy from the
electronic structure, the total density of states (TDOS) of bulk
crystal and each surface of DAP-7 were investigated in this
work, as depicted in Figure 3. Compared to the bulk crystal,

the TDOS of these surfaces migrated toward the lower energy
region. The conduction bands of different surface structures
were arranged from the low-energy region to the high-energy
region as (101), (010), (011), (111), and (100) respectively.
Observing the band gaps of the five surface structures
mentioned above, it could be demonstrated that the more
the conduction bands of the TDOS migrate to the lower
energy region, the smaller the band gap is. By taking into

Figure 2. Different surface structures of DAP-7.

Table 2. Calculated Band Gap of Different Surfaces for
DAP-7

contents bulk (100) (010) (011) (101) (111)

band gap (eV) 5.069 4.976 4.225 4.560 3.878 4.934

Figure 3. DOS for bulk crystal and different surfaces of DAP-7.
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account the relationship between the impact sensitivity and
band gap, it was presumed that the more the conduction bands
of the TDOS move toward lower energy, the more sensitive
the surface is.
3.3. Surface Energy. The formation of surfaces could

change the periodic potential field of the material, which may
affect the anisotropic impact sensitivity.30 Here, the surface
energy of different surfaces was calculated and then compared
with the impact sensitivity quantified by the band gap to study
the relationship between the surface energy and impact
sensitivity.
The surface energy can be applied to evaluate the stability of

each kind of low index surfaces,51 and it can be calculated by
the following equation52−55

E
E n NE

A
( )

2surface
total bulk=

−
(1)

where Esurface indicates the surface energy, Etotal is the total
energy of the surface model, Ebulk refers to the total energy of
unit cell of DAP-7, A is the surface area of the surface, and N is
the number of surface layers. The calculation results of surface
energies in (100), (010), (011), (101), and (111) surfaces
were 0.0482, 0.0808, 0.0678, 0.1437, and 0.0716 J/m2,
respectively. The sequence of surface energy of five surface
structures in descending order was as follows: (101) > (010) >
(111) > (011) > (100). Additionally, it could be found that the
sequence of the surface energy was broadly consistent with the
sequence of the impact sensitivity discussed in the previous
section. Therefore, we presumed that the greater surface
energy is, the more sensitive the surface would be, because
increasing surface energy could result in the more active
molecules favorable to the decomposition and explosion of
explosives.
3.4. Hydrogen Bond. There exists a large number of H···

O (or O···H) hydrogen bonding interactions in the crystal of
DAP-7, and these hydrogen bonding interactions facilitated the

face-sharing B(ClO4)6 octahedrons to be connected thus
forming a hexagonal packing structure.18 Hence, hydrogen
bonding played a predominant role in the formation and
stabilities of DAP-7.
It is well-known that hydrogen bonding was an important

factor affecting the structural stability, thermodynamic proper-
ties, and molecular packing of energetic compounds.56,57 The
content of hydrogen bond could affect the binding energy
between molecules. The more hydrogen bond content there is,
the more impact energy is required by explosives to break the
hydrogen bond net.58 Therefore, the higher the hydrogen bond
content is, the lower the impact sensitivity is.57−59 Two-
dimensional fingerprint plots could display the type and
proportion of intermolecular interactions, providing important
information for predicting the impact sensitivity of energetic
materials.48,60−62

Figure 4 displays the fingerprint plots of bulk crystal and five
surface structures. The percentage of O···H (H···O)
interactions in the bulk crystal was higher than that of all
surface structures, and the reason was that the existence of a
vacuum layer in surfaces could weaken the intermolecular
interactions. The percentages of O···H (H···O) in (100),
(010), (011), (101), and (111) surfaces were 72.8%, 70.2%,
72.3%, 68.3%, and 63.0%, respectively. According to the
relationship between hydrogen bonding and structural stability,
it could be inferred that the sequence of impact sensitivity
corresponding to the five surface structures is (111) > (101) >
(010) > (011) > (100). Additionally, we could find that the
result in this part was roughly consistent with that in the
preceding part.

4. CONCLUSIONS
Density functional theory has been performed to investigate
the electronic properties, surface energy, and hydrogen
bonding in different surface structures of DAP-7. The lattice
constants of the optimized bulk crystal showed that the
simulation results obtained by the PBE+D3 method were in

Figure 4. Fingerprint plots for bulk crystal and different surface structures of DAP-7.
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good agreement with the experimental results. The calculated
band gap values of the surface structures demonstrated that the
impact sensitivity of different surfaces showed significant
anisotropy. Especially, the impact sensitivity of (100) surface
was considered to be the lowest among all surfaces. An analysis
of the total density of states further validated the anisotropic
properties obtained from the band gap, which was reflected by
the varying magnitudes of migration of the total density of
states on different surfaces relative to that of the bulk crystal.
Since the order of surface energy was roughly consistent with
the sequence of impact sensitivity quantified by band gap, we
speculated that a larger surface energy corresponded to a
higher impact sensitivity. The two-dimensional fingerprint
plots indicated that the contents of hydrogen bonds in
different surface structures showed significant variability. The
(100) surface contained the most hydrogen bonds so that its
impact sensitivity was the lowest. To summarize, the research
on electronic properties, surface energy, and hydrogen bonding
suggested that the impact sensitivity of different surface
structures presents obvious anisotropy and the impact
sensitivity of (100) surface is the lowest among all surface
structures.
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