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1  | INTRODUC TION

Prebiotics are food components that can be selectively fer-
mented, leading to changes in composition and activity of gut 
microbiota, then contributing to improvement of host health 
(Gibson et  al.,  2017). Dietary fibers derived from foods, which 
include cellulose, hemicelluloses, pectin, gums, mucilage, undi-
gested oligosaccharide, and resistant starch, are usually consid-
ered to behave as prebiotics in human health and nutrition (Mudgil 
& Barak,  2013). Dietary fibers are polysaccharides which linked 
with more than 10 glycosidic bonds, and they are partially or com-
pletely fermented by gut microbiota in the hindgut of pigs and 
humans to synthesize short-chain fatty acids (SCFA). Dietary fi-
bers could decrease transit time of digesta, increase stool bulk, 

and reduce blood cholesterol and glucose (Jarrar et  al.,  2019; 
Kerckhoffs et al., 2003; Mudgil & Barak, 2013). Apart from those 
directly physiological responses originated from physiochemi-
cal properties of dietary fibers, it could also improve growth and 
activity of the intestinal microbiota, which underlie some prebi-
otic effects on host health and disorders prevention (Gensollen 
et al., 2016). Intestinal microbiota community shaped via microbial 
fermentation of dietary fiber is beneficial to host health through 
regulating physiological processes of the intestine and functions 
of mucosal immunity. More specifically, gut microbiota intensify 
integrity of the gut barrier comprised by intestinal epithelial cells, 
suppress colonization of enteric pathogens, and produce antibac-
terial peptides in the mucus layer of host intestine (Bäumler & 
Sperandio, 2016; Natividad & Verdu, 2013).

 

Received: 12 April 2021  |  Revised: 3 June 2021  |  Accepted: 4 June 2021

DOI: 10.1002/fsn3.2421  

R E V I E W

Variations on gut health and energy metabolism in pigs and 
humans by intake of different dietary fibers

Pan Yang |   Jinbiao Zhao

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2021 The Authors. Food Science & Nutrition published by Wiley Periodicals LLC.

State Key Laboratory of Animal Nutrition, 
College of Animal Science and Technology, 
China Agricultural University, Beijing, China

Correspondence
Jinbiao Zhao, State Key Laboratory of 
Animal Nutrition, College of Animal 
Science and Technology, China Agricultural 
University, Beijing 100193, China.
Email: jinbiaozhao@cau.edu.cn

Funding information
Post-doctoral Innovative Talent Support 
Program, Grant/Award Number: 
BX20200365

Abstract
Many studies have reported that dietary fibers play a crucial role in promoting intes-
tinal health of the host, since it strengthens functions of epithelial barrier and mean-
while maintains intestinal homeostasis of the host by modulating gut microbiota and 
short-chain fatty acid (SCFA) production. Pig is a good animal model to study effects 
of dietary fiber on gut health and microbial community. This review has summarized 
the relevant knowledge available based on roles of various dietary fibers in gut health 
and energy metabolism of pigs and humans. Evidences summarized in our review 
indicated that modulating intestinal microbial composition and SCFA production by 
consuming specific dietary fibers properly could be conducive to health improve-
ment and disease prevention of the host. However, types of dietary fiber from edible 
foods exert divergent impacts on gut health, energy metabolism, microbial composi-
tion, and SCFA production. Therefore, more attention should be focused on different 
responses of various dietary fibers intake on host metabolism and health.
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The SCFA produced by microbial fermentation of dietary fibers 
mainly include acetate, propionate, and butyrate, which play an im-
portant role in regulating energy metabolism, immunological func-
tion, and gut cell proliferation of the host (Koh et al., 2016). Butyrate 
is a source of energy for colonocytes to maintain the gut barrier, 
whereas acetate and propionate are delivered to peripheral circula-
tion through the portal vein to participate in metabolisms of the liver 
and peripheral tissues (Liu, Wang, et al., 2018; Liu, Zhao, et al., 2018). 
In addition, several studies have demonstrated that SCFA has di-
verse metabolic and regulatory activities, such as modulating im-
mune functions, providing energy for cell turnover, and being a 
histone deacetylase (HDAC) inhibitor (Flint et al., 2012; Thangaraju 
et  al.,  2009). Furthermore, there is a broad consensus that SCFA 
act as physiological signaling molecules to adjust biological pro-
cesses associated with host health and nutrition. Many researchers 
reported that SCFA mediates glucose homeostasis by activating G 
protein-coupled receptors (GPR 41 and 43) and stimulating entero-
endocrine L-cells to produce glucagon-like peptide 1 (GLP-1) and 
peptide YY (PYY), resulting in an increase insulin sensitivity (Mudgil 
& Barak,  2013; Tolhurst et  al.,  2012). The SCFA promotes secre-
tion of inflammatory cytokines, such as interleukin-6 (IL-6), tumor 
necrosis factor-α (TNF-α), interleukin-10 (IL-10), and chemokine 
monocytes chemotactic protein-1 (MCP-1) to enhance intestinal im-
mune barrier function by inhibiting activity of HDAC and stimulating 
expression of G protein-coupled receptors (Montagne et al., 2003; 
Smith et al., 2013). Nicolucci et al.  (2017) reported that obese pa-
tients who consumed inulin reduced plasma triglyceride IL-6 concen-
trations. Therefore, SCFA plays a crucial role to regulate responses 
of dietary fiber fermentation by gut microbiota on host metabolisms 
and health.

As reported by Cappai et al. (2013), a higher starch digestibility 
from cereals is positively related to a lower amylose to amylopectin 
ratio in the starch composition under a same starch concentration 
condition, as starch with high amylose content is less digestible. 
Therefore, structure and composition of dietary fibers may play an 
important role in fiber fermentability by gut microbiota. Evidences 
showed effects of different types of dietary fibers derived from ed-
ible foods on gut health and energy metabolism of the host were 
associated with their physical characteristics and fiber composition 
(Zhao et al., 2019). Microbial metabolites produced from microbial 
fermentation of fiber are also varying when pigs and humans con-
sume different types of dietary fiber. A higher proportion of valeric 
acid accounted for total SCFA was observed when hulled shredded 
acorns are fed to pigs (Cappai et al., 2020). Illustrating these effects 
on development of gastrointestinal tract in humans is challenging 
because of difficulty in sample collection. Alternatively, pig is a good 
model to study effects of dietary fibers on gut health and microbial 
composition in humans, considering high similarity of the intestinal 
biology and gut microbiota community between pigs and humans 
(Lee et  al.,  2011). Our hypothesis is that roles of different types 
of dietary fiber in regulating gut health and host metabolism vary. 
Therefore, this review summarizes effects of different dietary fibers 
with varying physicochemical properties derived from commercial 

diets on energy metabolism, gut morphology, gut barrier function, 
intestinal microbiota, and SCFA production in both pigs and humans, 
and practice of dietary intervention using dietary fibers to maintain 
host health and metabolism. Considering various proportions of 
dietary fibers derived from different fiber-rich foods and their dif-
ferent physicochemical properties, it is crucial to ingest a variety of 
fiber-rich foods to benefit animal and human health.

2  | DEFINITION AND CL A SSIFIC ATION OF 
DIETARY FIBERS

A widely accepted definition is that dietary fiber is one of the car-
bohydrates that are indigestible by endogenous enzymes in pigs 
and humans and meanwhile exert vital impacts on maintaining 
normal physiological function and energy metabolism of the host 
(Cummings & Stephen,  2007). Dietary fiber is mainly divided into 
oligosaccharides and polysaccharides. Oligosaccharides are nondi-
gestible carbohydrates composed of 3–9 monosaccharides which 
are connected with either α 1–4 or α 1–6 glycosidic bonds, and 
mainly include fructo-oligosaccharides, galacto-oligosaccharides 
and isomalto-oligosaccharides, human milk oligosaccharides and 
xylo-oligosaccharides (Borderías et al., 2005). Edible foods provide 
many oligosaccharides to pigs and humans, which usually have sweet 
taste and exhibit prebiotic effects on gut microbiota and host health 
(Cheng et  al.,  2017). Polysaccharides are complex carbohydrates, 
composed of 10 up to several thousand monosaccharides, which are 
primarily composed of resistant starch, cellulose, hemicellulose, and 
β-glucan. Cellulose is the most abundant polysaccharides consisting 
of up to 10,000 glucose monomer units per molecule, and it is the 
major component of the plant cell wall, which is only partially fer-
mented in the intestine of pigs and humans. Hemicellulose is also a 
component of the plant cell wall, but it has both linear and branched 
molecules containing 50~200 pentose units and hexose units, such 
as β-glucan, glucomannan, arabinoxylan, and xylan (Adebowale 
et  al.,  2019). β-glucan is a branched polysaccharide with glucose 
polymers which lead to its high solubility and fermentability in the 
intestine (Bashir & Choi, 2017). Resistant starch, which is divided 
into four types based on its structure and fermentability, is a kind of 
starch that can pass through small intestine of humans without being 
fully digested, and reach large intestine to be degraded by benefi-
cial gut bacteria (Sajilata et al., 2006). Pectin, characterized by high 
viscosity and fermentability, is composed of three different poly-
saccharides: homogalacturonans, rhamnogalacturonans, and galac-
tomannans (Rejaii & Salehi, 2016). Different kinds of dietary fibers 
derived from edible foods are showed in Table 1. Generally, polysac-
charides in legume seeds primarily consist of raffinose, stachyose, 
and verbascose, and cereal-derived polysaccharides are made up of 
xylo-oligosaccharide and β-glucan. Fructo-oligosaccharide is a main 
fiber component in fruits, and resistant starch is primary nondigest-
ible carbohydrates in root vegetables. Chemical compositions and 
physical properties of the common cereal and cereal by-products 
are presented in Tables 2 and 3, respectively. Overall, there is large 
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variation in composition of chemical constituents and physical prop-
erties among cereal and cereal by-products.

3  | PHYSIC AL CHAR AC TERISTIC S OF 
DIETARY FIBERS

Major physical characteristics of dietary fibers include the follow-
ing aspects: solubility, water-holding capacity, viscosity, swelling ca-
pacity, and bulk density. Based on solubility, dietary fibers in edible 
foods are divided into two categories: soluble and insoluble chemical 
components (Ferrario et al., 2017). Water-holding capacity is ability 
of dietary fibers to combine with water for forming colloidal sus-
pensions, and this ability depends on types of glycosidic bonds and 
compositions of polysaccharides (Lan et al., 2012). Viscosity is an im-
portant physical characteristic that affects physiological function of 
dietary fibers. Viscosity of pectin and glucan is greater than that of 
the cellulose and lignin in edible foods for pigs and humans (Dikeman 
& Fahey, 2006). Moreover, dietary fibers with long chains are easier 
to form net structures than short-chain fractions, leading to greater 
viscosity of long-chain dietary fibers. Swelling occurs when struc-
ture of dietary fibers solubilizes and is dispersed by incoming water, 
and therefore, swelling degree is dependent on water-binding capac-
ity of dietary fiber (Knudsen et al., 2013). Expansion and dispersion 
of dietary fibers allow more rapid access by microbial enzymes, re-
sulting in increased fiber fermentability and SCFA production. Bulk 
density is defined as the degree of consistency measured by the 
quantity of mass per unit volume occupied by the fibrous materi-
als (Elleuch et al., 2011). A lower bulk density would lead to more 

fullness in the gastrointestinal tract, resulting in a reduced appetite 
and feed intake. In the future, there will be less variation on physical 
characteristics of different dietary fibers, but the relationship be-
tween their physical characteristics and host health and metabolism 
have been barely studied.

4  | DIETARY FIBERS AND GUT HE ALTH 
AND ENERGY METABOLISMS OF THE HOST

Increasingly, researchers have proven that dietary fibers improve 
gut health of the host (Figure  1 and Table  4). One reason for im-
provement in gut health is direct responses of dietary fibers on gut 
development and intestinal motility, resulting in improving gut mor-
phology and capacity of nutrient absorption. Additionally, dietary 
fibers shape gut microbial compositions to regulate gut health of the 
host. Dietary fibers are fermented by gut bacteria to produce SCFA, 
such as acetate, propionate, and butyrate, which enhance gut health 
and immune function in pigs and humans. However, different results 
have been reported focusing on effects of different types of dietary 
fibers on SCFA production, gut microbiota composition, as well as 
gut health and disease of the host.

4.1 | Dietary fibers and intestinal development

Intake of dietary fibers reduces energy density in edible foods. To 
compensate, small intestines of pigs and humans need to expand 
area intestinal villi for improved nutrient absorption, which stimu-
lates intestinal development to meet the nutrient requirements 
of the host, leading to the increased gastrointestinal tract weight 
(Serena et al., 2008). Physiological basis for intestinal digestion and 
nutrient absorption is morphology of the intestinal mucosa, includ-
ing villus height and the crypt depth. Mucosa morphology reflects 
intestinal capacity of nutrient absorptions. A decreased ratio of vil-
lus height to crypt depth usually relates to impaired digestion and 
absorption of nutrients by intestinal mucosa. On the contrary, in-
creased ratio of villus height to crypt depth usually indicates im-
proved intestinal mucosal function, and enhanced digestion and 
absorption of nutrients (Furuse,  2010). Serena et  al.  (2008) used 
gestating sows to demonstrate that diets based on wheat and barley 
with high concentrations of dietary fibers increased colon weight 
of gestation pig. Bikker et al. (2006) observed that neonatal piglets 
fed high concentration of soluble dietary fibers sourced from wheat 
middlings, sunflower meal, and sugar beet pulp tended to increase 
length of small intestine and improve amylase activity in the small 
intestinal brush border. Hopwood et al. (2004) also found that pearl 
barley, rich in glucan and resistant starch, increased weight of colon 
and caecum in neonatal piglets. Similarly, dietary fibers intake in-
creased villus height to crypt depth ratio and improved absorp-
tive ability of the small intestine in pigs (Jha et al., 2019). Schiavon 
et al. (2004) showed that an improvement in viscosity of intestinal 
digesta accelerated cell exfoliation in the apical part of the intestinal 

TA B L E  2   Compositions of dietary fibers in common cereals (on 
dry matter basis)

Item, g/kg Maize Wheat Rye Barley Oat

Soluble NSP 9 25 42 56 40

Rhamnose 0 0 0 0 0

Arabinose 3 7 12 6 3

Xylose 2 9 20 6 2

Mannose 2 2 2 2 2

Galactose 1 2 1 1 2

Glucose 1 4 6 39 28

Uronic acids 1 1 1 2 3

Insoluble NSP 66 74 94 88 110

Rhamnose 0 0 0 0 0

Arabinose 19 22 24 22 15

Xylose 28 38 41 50 78

Mannose 1 1 3 2 1

Galactose 4 2 4 2 5

Glucose 9 7 20 8 5

Uronic acids 6 4 3 4 7

Cellulose 22 20 16 43 82

Abbreviation: NSP, nonstarch polysaccharides.
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villus by fiber intake, resulting in reduced villus height and deep 
crypt depth. However, intake of dietary fiber derived from corn bran 
and wheat bran did not affect villus height and crypt depth of the 
jejunum and ileum in pigs, but enhanced activities of sucrase and 
maltase (Chen et al., 2014). One important reason that dietary fib-
ers can benefit development of the gastrointestinal tract is that they 
directly disrupt surface structure of the mucosal layer and increase 
speed of cell shedding, which causes compensatory growth of mu-
cosal cells. In addition, SCFA produced by gut microbiota through 
microbial fermentation of dietary fibers in the large intestine of the 
host reduces pH of the gut, and stimulates cell division and cell pro-
liferation. Specifically, butyrate provides energy for proliferation of 
the epithelial cells in the host intestine, modifies gene expression for 
epidermal growth factor, and repairs damaged epithelial cells, which 
all promote intestinal growth and development (Koh et al., 2016; Liu, 
Wang, et al., 2018; Liu, Zhao, et al., 2018). Furthermore, SCFA simu-
lates secretion of gastrin and glucagon-like peptides, which boost 
proliferation of the epithelial cells in the host intestine (Tolhurst 
et  al.,  2012). Overall, dietary fiber accelerates motility and devel-
opment of gastrointestinal tract through its physical function and 

prebiotic responses of SCFA produced by microbial fermentation of 
dietary fiber.

4.2 | Dietary fibers and intestinal mucosal barrier

Mucosal barrier of intestine is composed of the epithelial cell bar-
rier and the mucosal barrier attached to the epithelial cells. Mucosal 
barrier mainly consists of mucins, intestinal trefoil peptide, antimi-
crobial peptide, cytokines, and secretory immunoglobulin A (Bai 
et al., 2010). Zhou et al. (2016) showed that resistant starch intake 
significantly increased secretion of mucin by colonic goblet cells of 
pigs. Vila (2017) observed that intake of cereal foods, corn bran, and 
wheat bran significantly improved mucin-2 level in the ileum and 
colon of pigs. Che et  al.  (2014) demonstrated that colonic mucin 
level in pigs fed pea fiber diet was 16% higher than that fed a control 
diet. Chen et al. (2013) reported that diets supplied with 10% wheat 
bran or pea fiber improved gut barrier functions of the neonatal pig-
lets, which was caused by enhanced expression of the tight junction 
protein between the ileum and colonic epithelial cells (ZO-11) and 

F I G U R E  1   Trophic mechanisms of dietary fibers fermented by gut microbiota on energy metabolism and gut health in pigs and humans. 
GLP-1, glucagon-like peptide-1; GPR, G protein-coupled receptors; HDAC, histone deacetylase; HDP, human defense peptides; NF-κB, 
nuclear factor-κB; PYY, peptide YY; SCFA, short-chain fatty acids; TLR2, Toll-like receptor
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the Toll-like receptor (TLR2) mRNA (Chen et  al.,  2013). However, 
intake of corn bran and soy fiber did not affect intestinal barrier 
functions compared with a control group. Addition of arabinoxylan 
in neonatal piglet's diets significantly increased an amount of IgA se-
creted in the intestine and a number of goblet cells, and reduced in-
testinal permeability (Chen et al., 2015). Under the condition of high 
temperature, pigs and humans can synthesize heat shock protein 
(HSP) to alleviate heat stress and support stability of the mucosal 
barrier in the host intestine. A recent study illustrated that chicory 
fiber intake significantly increased expression of HSP27 in the ileum 
and colon of pigs, and expression of HSP27 in the ileum was posi-
tively correlated with the soluble uronic acid intake (Liu et al., 2012). 
Furthermore, many researchers have reported that SCFA produc-
tion is beneficial to secretion of mucosal proteins in pig intestine, 
but concentrations and types of SCFA can influence expression 
of mucosal proteins (Barcelo et  al.,  2000; Hatayama et  al.,  2007). 
Fundamentally, high levels of dietary fibers supplementation can de-
crease energy density in diets, leading to an increase in food intake 

and greater digesta flow in the intestine, which promotes renewal of 
mucosal protein, thus affecting intestinal mucosal layer. Moreover, 
dietary fibers stimulate intestinal epithelial cells to secret mucosal 
protein, and produce growth factors and metabolites such as ara-
chidonic acid, all of which are beneficial to goblet cell proliferation 
and mucosal protein secretion. Furthermore, dietary fibers modify 
intestinal barrier by altering microbial community. Desai et al. (2016) 
reported that there was an interactive relationship between dietary 
fibers and mucosal barrier of the colon. With inadequate amount of 
dietary fibers, gut bacteria could only maintain their own growth by 
using colonic mucin as a nutrient source, inevitably leading to the 
erosion of the mucosal barrier. It was suggested that gut bacteria 
play a key role in interactive relationships between dietary fibers 
and mucosal layer or intestinal epithelium. However, different di-
etary fibers have discrete structures, such as monosaccharide type, 
glycosidic bond, and physicochemical property, thus exerting differ-
ent impacts on intestinal barrier in pigs and humans (Hamakerb & 
Tuncil, 2014).

TA B L E  4   Summary of dietary interventions with dietary fibers to regulate gut health and alleviate metabolic syndrome in pig model and 
humans

Subject of study Types of dietary fibers Prebiotic response References

Pig Wheat, barley Colon weight Serena et al. (2008)

Pig Sunflower meal, sugar beet pulp, 
wheat fiber

Intestine weight, amylase activity Bikker et al. (2006)

Pig Pearl barley Colon weight Hopwood et al. (2004)

Pig Sugar beet pulp Gut morphology Schiavon et al. (2004)

Pig Corn bran, wheat bran Enzyme activity Chen et al. (2014)

Pig Wheat bran, pea fiber Tight junction protein and toll-like receptor 
expression

Chen et al. (2013)

Pig Pea fiber Colonic mucin level Che et al. (2014)

Pig Arabinoxylan Goblet cell number and sIgA secretion Chen et al. (2015)

Pig Chicory fiber HSP27 expression Liu et al. (2012)

Pig Resistant starch Mucin secretion Zhou et al. (2016)

Pig Corn bran, wheat bran Mucin-2 expression Vila (2017)

Hypercholesterolemic patient β-glucan from oat bran Serum cholesterol Kerckhoffs 
et al. (2003)

Healthy individual Cereal fiber Serum cholesterol Jarrar et al. (2019)

Healthy individual Resistant starch Inulin sensitivity Giles et al. (2019)

Younger and middle-aged 
patient

Cereal fiber with low glucose index Alleviate type Ⅱ diabetes Schulze et al. (2004)

Diabetic patient Whole grain GLP-1 expression, hemoglobin A1c levels Zhao et al. (2018)

Diabetic patient Whole grain Plasma glucose, insulin, and ghrelin 
responses

Silva et al. (2015)

Healthy individual Whole grain Glycemic control Venn and Mann (2004)

Healthy individual Barley Kernel-based bread Gut hormones and insulin sensitivity index Nilsson et al. (2015)

Nonobese healthy individual Oligofructose Hormones to regulate appetite Pedersen et al. (2013)

Nonobese healthy individual Fruits and vegetables Limit long-term weight gain Mozaffarian 
et al. (2011)

Obese patient Inulin Serum triglyceride and IL-6 Nicolucci et al. (2017)

Abbreviations: CRC, colorectal cancer; GLP-1, glucagon-like peptide-1; HSP, heat shock protein; IL-6, interleukin-6.
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4.3 | Dietary fibers and short-chain fatty 
acids production

Dietary fiber fermented by gut microbiota leads to the produc-
tion of SCFA, including acetate, propionate, and butyrate, along 
with lactate and some gases like hydrogen, carbon dioxide, and 
methane (den Besten et al., 2013). Process of microbial fermenta-
tion of dietary fiber to produce SCFA involves a series of principle 
reactions, and is mediated by compositions and abundances of gut 
microbiota (Koh et  al.,  2016; Louis et  al.,  2014). Acetate accounts 
for about 60% of the total SCFA produced in the large intestine, 
whereas small quantities of propionate and butyrate are produced 
by microbial fermentation (Lunn & Buttriss, 2010). Lactate is primar-
ily produced in the upper gut, but acetate, propionate, and butyrate 
are synthesized in the colon and cecum, which are associated with 
specific microbial community localization in the foregut and hindgut 
of the host (Zhao et al., 2019). In the foregut, Lactobacillus is primary 
lactate-producing bacteria, and an abundance of Lactobacillus would 
reduce in the hindgut due to gut environment, such as pH and oxy-
gen concentration. In addition, Firmicutes and Bacteroides are domi-
nant bacteria in the hindgut and account for more than 90% of total 
bacteria, and Prevotellaceae, Ruminococcaceae, and Lachnospiraceae 
are primarily bacteria on the family level to produce SCFA by mi-
crobial fermentation of dietary fiber (Liu et al., 2017). The SCFA can 
be absorbed rapidly by intestinal epithelial cells and influence gene 
expression, cell differentiation, and proliferation (Mu et  al.,  2017). 
Acetate is absorbed by the portal vein and acts on energy source to 
muscle tissues while propionate is converted to glucose in the liver 
(Makki et al., 2018; Williams et al., 2001). Butyrate is easily metabo-
lized by β-oxidation in the mitochondria and provides from 60% to 
70% of the total energy demand of colonic epithelial cells (Corrêa-
Oliveira et al., 2016; Mentschel & Claus, 2003). In addition to being 
an important respiratory fuel, butyrate is considered beneficial for 
gut health of the host because it promotes proliferation of mucosa, 
differentiation of epithelial cells, and function of colonic barrier in 
the host intestine (Mu et al., 2017).

The SCFA facilitates microbial growth and bacteriocin secretion in 
the intestine, and then enhances immune barrier and microbial com-
munity structure of the intestine, resulting in improving gut health 
of the host (Liu, Wang, et al., 2018; Liu, Zhao, et al., 2018). During 
process of microbial fermentation to dietary fibers, SCFA produced 
decreases pH of the intestinal environment and promotes prolifer-
ation of the intestinal epithelial cells (Morrison & Preston, 2016). A 
decreased pH provides a suitable growth environment for the ben-
eficial bacteria, such as Bifidobacterium and Lactobacillus, and fur-
ther reduces intestinal pH value and bacteria susceptible to acidic 
conditions, resulting in inhibiting growth of harmful bacteria and 
invasion of pathogens. In addition, many beneficial bacteria shaped 
by SCFA can secret bacteriocin to kill harmful bacteria and then 
improve health of the host. Bacteriocins lacticin, nisin, and bioen-
gineered nisin variants, which are bacteriocins produced by strains 
of Lactococcus lactis, have been shown to be effective in vitro 
against clinically relevant diseases and disorders (Rea et al., 2013). 

The SCFA produced by microbial fermentation decreases secretion 
of proinflammatory cytokines, such as interleukin-6 (IL-6) and tumor 
necrosis factor-α (TNF-α), and promotes anti-inflammatory cyto-
kine interleukin-10 (IL-10) and chemokine monocytes chemotactic 
protein-1 (MCP-1), to enhance intestinal immune barrier function 
(Montagne et al., 2003). The SCFA production was also reported to 
modulate the immune function of the host by inhibiting the activ-
ity of HDAC and stimulating the expression of G protein-coupled 
receptors (Smith et al., 2013). Sodium butyrate regulates release of 
interleukin-2 (IL-2), IL-6, interleukin-8 (IL-8), and TNF-α by inhibiting 
HDAC activity and activating the activator protein 1 (AP-1) signaling 
pathway in intestinal epithelial cells to enhance the intestinal im-
mune function of the host (Cox et al., 2009; Tan et al., 2014). At the 
same time, sodium butyrate effectively regulates function of T lym-
phocytes through motivating G protein-coupled receptors (GPR43) 
to reduce the level of inflammatory factor IL-2 and to increase the 
secretion of anti-inflammatory factor interleukin-4 (IL-4) and antimi-
crobial peptide LL-37, which ultimately inhibits the inflammation re-
sponse of the host (Cleophas et al., 2016; Macpherson et al., 2008). 
Overall, these results indicate that dietary fiber plays a crucial part in 
immune function of the host by increasing the SCFA concentration.

Many researchers reported that SCFA mediates glucose homeo-
stasis and fat acids metabolism in the host by activating GPR41, 
GPR43, and stimulating enteroendocrine L-cells to produce GLP-1 
and peptide YY, resulting in improved insulin sensitivity (Mudgil & 
Barak, 2013; Tolhurst et al., 2012). Pedersen et al. (2013) reported 
that oligofructose stimulated GLP-1 and insulin secretion to increase 
host appetite, resulting in depressing intake of food and incidence 
of obesity. Furthermore, a consumption of barley kernel-based 
bread to healthy human volunteers, which is rich in β-glucan, im-
proved glucose metabolism and prevented the risk of obese disease 
(Nilsson et  al.,  2015). Similar, Mozaffarian et al. (2011) reported 
that nonobese healthy individual who consumed fibers from fruits 
and vegetables could limit weight gain for a long time. In addition, 
a recent study assessed the relationship between various types of 
dietary carbohydrates and insulin resistance, and results showed 
adolescents with dietary fiber intervention reduced possibility of 
insulin resistance, but no significantly associations were observed 
for rest of the carbohydrate variables (Castro-Quezada et al., 2019). 
Resistant starch consumption decreased digestible carbohydrates 
oxidation and serum glucose concentration with improved insulin 
sensitivity after meals (Giles et al., 2019). Therefore, it is a promising 
strategy to regulate glucose and fatty acids metabolism, and prevent 
human obesity and diabetes by specific dietary fiber consumption 
by modulating cellular receptors of GPRs (Schulze et al., 2004; Venn 
& Mann, 2004). However, Haenen et al.  (2013) did not find an im-
provement in intestinal expression of GPR41 and GPR43 when pigs 
were fed diets high in resistant starch. Nielsen et al. (2015) observed 
a lower expression of GPR41 when feeding a diet supplemented with 
high concentration of arabinoxylan. Furthermore, Hooda et al. (2010) 
reported that oat β-glucan intake increased the net SCFA absorption 
in the portal vein of catheterized pigs, but reduced the production 
of insulin mediated by GLP-1 activity, which is consistent with the 
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previous finding in diabetic patients (Silva et  al.,  2015). Ingerslev 
et  al.  (2014) did not observe a link between SCFA absorption and 
the portal GLP-1 flux. Discrepancy of observations above should be 
primarily associated with types and structures of dietary fibers.

Among the dietary fiber fractions, β-glucan is receiving more 
attention because it is an easily fermentable energy source for in-
testinal microbiota. β-glucan is certainly fermented by most of 
gut microbiota, except for Enterobacteriaceae (Stack et  al.,  2010). 
Intestinal microbiota could produce lactic acid to reduce intestinal 
pH and further selectively facilitate proliferation of Lactobacillus and 
Bifidobacterium (Stack et al., 2010). Oat bran, a soluble dietary fiber 
source rich in β-glycan, produces almost twice the amount of SCFA 
per gram of dietary fiber compared with wheat bran during microbial 
fermentation (Zhao et al., 2020). Bach Knudsen and Canibe (2000) 
detected higher concentration of lactate (11.6 vs. 3.4 mmol/ kg of 
digested feed) and greater proportion of butyrate accounted for 
total organic acid (9.1% vs. 6.1%) in the small intestine of pig's model 
after feeding diets supplemented with oat bran than wheat bran. 
Zhao et al. (2019) reported that intake of oat bran by pigs had signifi-
cantly distinct improvement on amounts of lactic acid produced in 
the foregut, and soybean hulls and sugar beet pulp fed to pigs. They 
also observed acetate, propionate, and butyrate concentrations in 
the hindgut in oral bran treatment were higher than corn bran and 
wheat bran. Freire et al.  (2000) investigated the effects of dietary 
wheat bran, sugar beet pulp, soybean hulls, or alfalfa meal intake on 
total SCFA production in the cecum of pigs. They found that dietary 
soybean hulls consumption increased total SCFA concentration by 
11.2%, 30.5%, and 27.2% compared with dietary wheat bran, sugar 
beet pulp, and alfalfa consumption, respectively (Freire et al., 2000). 
Overall, variation in fermentability and SCFA production among 
different types of dietary fibers could be mainly ascribed to the 
differences in their chemical compositions and physicochemical 
properties. There is great potential to improve gut health and im-
mune function of humans by regulating the intake of different kinds 
of dietary fibers to manipulate the production of SCFA.

The present argument is that SCFA produced in the intestine 
not only derived from microbial fermentation of dietary fibers, but 
also resulted from the secretion of the nondietary fiber components 
(Montoya et  al.,  2016). Montoya et  al.  (2017) reported that SCFA 
sourced from in vitro fermentation of dietary fibers in kiwifruit using 
fecal microbiota of humans only accounted for 30% of the total 
SCFA production. They explained that the main endogenous nondi-
etary fiber components are soluble dietary fibers derived from the 
intestinal mucin in the small intestine, whereas microbial cell was the 
main component of the main endogenously losses as an insoluble di-
etary fiber in the whole gastrointestinal tract (Montoya et al., 2017).

In addition, the SCFA concentration measured in many in vivo 
studies only came from microbial fermentation, but a part of SCFA 
absorption by epithelial cells in the gut of the host was usually ig-
nored. A common method to quantify the net absorption of SCFA 
is to collect blood samples from the portal vein and mesenteric ar-
tery simultaneously, and then analyze the SCFA concentrations via 
a portal vein-catheterized pig model. Net portal absorption and 

concentration of SCFA in the portal vein or mesenteric artery esti-
mated via catheterized pigs depend on the types of dietary fibers in 
cereal-based diets fed to pigs. For instance, diets rich in arabinoxylan 
can stimulate proliferation of butyrate-producing microorganisms 
and butyrate production in the large intestine, and increase the net 
portal absorption of butyrate compared with diets high in resistant 
starch with equal amount of dietary fibers (Ingerslev et  al.,  2014; 
Nielsen et  al.,  2015). Therefore, it would be extremely difficult to 
measure actual produced SCFA in vivo, as produced SCFA are rapidly 
metabolized by gut microbiota or absorbed by the host. The absorp-
tion and net production of SCFA, rather than a real-time concen-
tration of SCFA in the gut, derived from gut microbiota to ferment 
different types of dietary fibers should be quantified to understand 
the fermentable capacity of dietary fibers and the metabolic path-
way of SCFA in the gut of the host.

4.4 | Dietary fibers and gut microbiota

Microbial community in the host intestine is a complex and dynamic 
ecosystem that produces crucial metabolites to regulate host me-
tabolism, such as SCFA, 5-hydroxytryptamine, polymyxin, and 
bacitracin. Microbial metabolites depress proliferation of harmful 
bacteria and balance interactive competition between “beneficial 
bacteria” and “harmful bacteria.” In addition, microbial metabolites 
play important roles in maintaining intestinal barrier, facilitating 
immunological function, and modulating gene expression of host 
metabolism (Cani, 2016; Guo et al., 2008). An increment of micro-
bial activity was found in the intestine of pigs fed diets containing 
a high content of dietary fiber, as indicated by increased bacterial 
counts and ATP concentration (Liu, Wang, et  al.,  2018; Liu, Zhao, 
et  al.,  2018). It indicates that dietary fibers can activate microbial 
activity, resulting in producing more microbial metabolites. Many 
reports have indicated that Firmicutes and Bacteroidetes are the two 
dominant phyla in the gastrointestinal tract of pigs and humans, 
which account for about 90% of the gut microbiota (Bian et al., 2016; 
Liu, Wang, et al., 2018; Liu, Zhao, et al., 2018). Firmicutes utilize di-
etary fibers to produce SCFA, especially butyrate. Bacteroidetes 
have a great capacity for degradation of dietary fibers to produce 
propionate, such as Prevotella (Flint et  al.,  2008). Mu et  al.  (2017) 
reported that dietary supplementation with alfalfa meal increased 
populations of Firmicutes and Bacteroidetes compared to wheat bran 
in neonatal piglets. Similarly, diets rich in resistant starch increased 
relative populations of some specific members of Firmicutes, as well 
as a ratio of Firmicutes to Bacteroidetes in human's intestine (Maier 
et al., 2017). In contrast, Ferrario et al. (2017) detected an increase in 
numbers of Bacteroidetes and a decrease in populations of Firmicutes 
in subjects supplied with dietary inulin. Further, specific bacteria in 
phylum of Firmicutes and Bacteroidetes to ferment different types of 
dietary fibers has not been known well.

A population of Lachnoclostridium in fecal samples is influ-
enced by dietary fibers supplementation, which has a connection 
with the obesity in humans (Amadou et al., 2016). The abundance 
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of Ruminococcus_1 increased when pigs were fed diets contain-
ing soybean hulls, and it was reported that Ruminococcus_1 can 
ferment dietary fibers to produce SCFA (Pryde et  al.,  2002). Che 
et  al.  (2014) and Chen et  al.  (2014) showed that diets contain-
ing pea fiber increased the number of Lactobacillus in the colon 
of pigs, but pea fiber had no significant effects on the number of 
Bifidobacteria and Escherichia coli, while diets containing wheat 
bran significantly increased the number of Bifidobacteria in pigs. 
The relative abundances of Lactobacillus, the dominant species of 
the lactate-producing bacteria in the ileum, and Prevotella in the 
colon were positively correlated with the concentration of dietary 
chicory fiber (Liu et  al.,  2012). Furthermore, high resistant starch 
supplementation in diets of adult pigs increased the relative abun-
dances of Faecalibacterium prausnitzii and Ruminococcus bromii, and 
reduced the population of pathogenic bacteria Escherichia coli and 
Pseudomonas (Haenen et al., 2013).

Improved numbers of Bifidobacteria spp. and a decrease popu-
lations of total anaerobes or Clostridia in the feces were observed 
when the pigs were fed diets containing 0.5% fructo-oligosaccharide 
in combination with Bifidobacterium longum (Clarke et  al.,  2017). 
Zhao et  al.  (2018) reported that dietary barley supplementation 
increased Lactobacilli spp. and Bifidobacterium spp. populations, 
but decreased numbers of Enterobacteria spp. in the cecum of pigs 
in comparison with a corn-based diet, which may be attributed to 
greater β-glucan levels in barley diet compared with a corn diet (Zhao 
et al., 2018). Oat fiber and β-glucan isolates, coming from fermented 
oat-based products containing both native and microbial β-glucan, 
promote growth of Bifidobacteria spp. in the intestine of pigs and hu-
mans (Martensson et al., 2005). Pieper et al. (2008) found that dehu-
lling barley with high amounts of soluble nonstarch polysaccharides 
favored growth of xylan-degarding and glucan-degrading bacteria 
(Pieper et al., 2008), whereas β-glucan from hulled barleys favored 
growth of Lactobacilli spp. in weaned pigs (Pieper et al., 2008). These 
results suggest that different sources of β-glucan have inconsistent 
responses on microbial composition and abundance in the intes-
tine of the host, which could be associated with the structure and 
physical properties of different β-glucan source, such as solubility 
and molecule weight. Moreover, an increase of Bifidobacteria spp. 
and Enterobacteria spp. abundances in ileal digesta were observed 
when growing pigs were fed diets supplemented with guar gum or 
cellulose (Owusu-Asiedu et al., 2006). Nielsen et al. (2014) showed 
that diets supplemented with arabinoxylan increased populations of 
Bifidobacterium spp. and Lactobacillus spp. in the colon of pigs.

Small intestine is mainly responsible for food digestion and ab-
sorption, while large intestine is important for microbial fermenta-
tion of substances (Healey et al., 2020). Hindgut of pigs and humans 
contain a larger proportion of Firmicutes than small intestine, indi-
cating that large intestine might undertake a crucial role in microbial 
fermentation of dietary fiber (Flint et al., 2008). Escherichia-Shigella, 
Lactobacillus, Streptococcus, and Enterococcus, dominant genera of 
intestinal microbiota in ileal digesta, are the major bacterial species 
with greater abundances compared with large intestine of the pig 

(Zhao et  al.,  2019). Greater populations of Escherichia-Shigella and 
Streptococcus are always considered as pathogenic bacteria re-
lated to host infection and enteric diseases, such as diarrhea symp-
toms. Thus, occurrences of enteropathies are primarily associated 
with microbial composition in the upper gut (Healey et  al.,  2020). 
Lactobacillus is a beneficial bacterial specie to improve gut health of 
the host, so that it is extremely crucial to maintain balance of differ-
ent bacteria in the gut by dietary nutrients intervention. An altered 
gut microbiota composition derived from lack of low dietary fibers 
could lead to a severe deterioration of mucus layer and increased 
susceptibility to infections and chronic inflammatory diseases (Desai 
et  al.,  2016; Makki et  al.,  2018). Therefore, dietary fiber ingested 
from foods has a potential to prevent against metabolic diseases in 
humans by reshaping composition of gut microbiota. However, ef-
fects of dietary fiber on intestinal bacterial community vary among 
different studies, which could be attributed to different types of di-
etary fiber types, as well as variation on quantity of dietary fiber, 
available for microbial fermentation in the gut. Furthermore, a study 
reported consuming inulin at breakfast after a longer fasting period 
had a greater response on fecal microbiota of individuals (Sasaki 
et  al.,  2019), which indicated dietary habit play an important role 
in regulation of microbial community after ingesting dietary fibers.

5  | SUMMARY AND PERSPEC TIVE

There are many complicated and subtle interactions between types 
of dietary fiber and gut microbiota, SCFA production, and host 
health. It has been widely accepted that SCFA, especially butyrate, 
plays a critical role in modulating and improving gut health. However, 
there are still many vague aspects about underlying relationships 
between dietary fiber and host health. Major challenges related to 
dietary fiber research may include (1) to identify the specific mecha-
nisms of SCFA produced from dietary fiber fermented by gut mi-
crobiota on functions of animal tissues and organs, (2) to clarify the 
relationship between host health and gut microbiota shaped by the 
dietary intervention with dietary fibers, (3) to further illustrate dif-
ferent responses of various dietary fibers derived from edible foods 
and their combinations on host health. Overall, we suggest that 
more attention should be focused on specific chemical constituents 
and physical characteristics of various dietary fibers when they take 
actions in regulating host metabolism and health.
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