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INTRODUCTION

The creatine transporter (CT1 or SLC6A8) is a sodium- and chloride-dependent multi-pass
membrane protein required for the cellular uptake of creatine, a key high-energy phosphate-
storage molecule. This substrate-specific carrier (Table 1) is located across the plasmamembrane of
various energy-demanding cells and organs, including the brain, skeletal muscle and myocardium,
gastrointestinal tract, kidney and urinary bladder, male and female organs, skin, bone marrow,
and granulocytes. CT1 defect or malfunction is characterized by a severe depletion of the
intracellular creatine pool, accompanied by intellectual disability, seizures, and movement and
behavior disorders (1, 2). Transferring creatine through biomembranes thus represents an essential
component of normal high-energymetabolism, with CT1 often recognized as a possible therapeutic
target for themodulation of creatine homeostasis (3). This perspective paper explores several agents
and vehicles that could switch CT1 upregulation and facilitate creatine uptake, and discusses the
pros and cons of this strategy for experimental and clinical nutrition.

CT1 MODULATION BY SUBSTRATE AVAILABILITY

The activity of creatine carriers appears to be partially regulated by the levels of intracellular
creatine, with the amount perhaps modulating CT1 function by a feedback mechanism. The
upregulation of CT1 expression by low creatine concentrations probably happens at the post-
transcriptional level and may involve alternative splicing (4) and/or CT1 phosphorylation and
glycolysation (5). A group from Columbia University was arguably the first who showed that
creatine-starved myoblasts increased creatine transport activity for up to 3-fold above the levels
observed in the cells maintained in a medium containing creatine (6). The authors reported that
creatine must enter the cell to exert its regulatory activity on creatine transport by either regulating
the number or turnover of CT1. Similarly, creatine uptake activity was significantly augmented in
skeletal muscle membrane vesicles of rats who were subjected to 4-day creatine starvation (7) and
in isolated hearts from creatine-free guanidinoacetate N-methyl transferase knockout mice (5),
suggesting that fostering low creatine concentrations may upregulate CT1 and facilitate creatine
assimilation. On the other hand, the creatine uptake can be reduced by the addition of exogenous
creatine and consequent downregulation of CT1 expression, as seen in the skeletal muscle of
rats supplemented with creatine for up to 6 months (8). Whether exposure to low creatine and
concomitant upregulation of CT1 have any clinical potential remains unknown at the moment.
Theoretically, if a creatine-free diet that instigates CT1 upregulation is followed by creatine loading,
this could potentiate cellular uptake of creatine above normal amounts, a phenomenon that might
be referred to as “creatine super-compensation.” This event is supposed to be transitory since the
augmented intracellular creatine pool downregulates its own transport by 50% within 3–6 h (6).
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TABLE 1 | Basic structural and functional characteristics of the creatine

transporter.

Description

Protein Sodium- and chloride-dependent creatine transporter 1 (CT1)

Taxonomic ID 9606 (NCBI)

Gene* Solute carrier family 6 member 8 (SCL6A8), locus Xq28

Organism Homo sapiens

Size 635 amino acids (70.5 kDa); highly conserved (97%) between

species

Subcellular location Plasmalemma; possibly mitochondria

Tissue specificity Skeletal muscle and kidney, brain, heart, colon, testis,

prostate, etc.

Coupling ratio 2 Na+: 1 Cl−: 1 creatine

Km 15–77 µM

Sequences 4 Isoforms produced by alternative splicing

*Several studies reported the existence of another human creatine transporter gene

on chromosome 16p11.2; mRNA transcripts from this gene may only be expressed in

the testis.

STIMULATION OF CT1 BY KLOTHO
PROTEIN

Klotho protein (Clotho; HFTC3) exists in both full-length
membrane form and soluble secreted form, playing a modulatory
role in aging, bone metabolism, and endothelial dysfunction
(9). Klotho, an enzyme and hormone, has been reported to
participate in the regulation of cellular transport processes
across the plasma membrane either indirectly through inhibiting
calcitriol [1,25(OH)2D3] formation or other mechanisms or by
directly affecting transporter proteins, including ion channels,
cellular carriers, and Na(+)/K(+)-ATPase (10), and this might
include CT1. The researchers from the University of Tübingen
explored the effect of Klotho protein on CT1 modulation in
the Xenopus oocyte experimental model (11). The authors
found that the co-expression of Klotho protein increases a
creatine-induced current in CT1-expressing oocytes, suggesting
a Klotho-driven upregulation of creatine carriers, presumably by
stabilizing the carrier protein in the cell membrane. The increase
in creatine-induced current was reversed by a β-glucuronidase
inhibitor (D-saccharic acid 1,4-lactone monohydrate), implying
that upregulation of CT1 requires the β-glucuronidase activity
of Klotho protein. In addition, Klotho protein levels required
were within the range of concentrations encountered in vivo,
which indicates that the stimulation of CT1 by Klotho likely
exists in physiological conditions. Since Klotho protein can be
activated by phosphate restriction, curcumin, or vitamin D [for
a review see (12)], targeting the Klotho-CT1 axis by specific
dietary interventions might therefore expedite creatine uptake
and contribute to high-phosphate bioenergetics balance.

GLUCOCORTICOID-INDUCIBLE KINASES
AND CT1

The serum and glucocorticoid-regulated kinases are among
the candidates involved in the regulation of CT1. These
protein kinases are mainly expressed in the gut, brain, and

endocrine tissues and play an important role in cellular
stress responses by activating potassium, sodium, and chloride
channels (13, 14). It appears that creatine transporter activity can
be stimulated by glucocorticoid-inducible kinases in Xenopus
oocytes heterologously expressing human CT1. Shojaiefard et al.
(15) demonstrated that the serum and glucocorticoid-regulated
kinases SGK1 and SGK3 stimulate CT1 by increasing the
maximal transport rate of creatine through the carrier, an
activity that may revive energy storage in myocytes and neurons.
Tuning creatine uptake by SGK1 and SGK3 might happen
due to ubiquitination, IGF-1-mediated pathway, osmolyte
regulation, and/or phosphatidylinositol-3-phosphate-5-kinase
activation (16), under both physiological and pathophysiological
conditions. Kinetic analysis revealed that SGK1 enhanced the
maximal current of creatine without significantly altering its
affinity; the impact of SGK1 could be mimicked by the
constitutively active isoform SGK3 but not by inactive SGK3. In
terms of nutrition, 24-h starvation appears to display high levels
of SGK1 in IIB fibers from the tibialis anterior (17), with SGK1
required to maintain pharyngeal muscle performance during
starvation in C. elegans (18). Although CT1 expression and
activity were not evaluated in these studies, triggering the serum
and glucocorticoid-regulated kinases by food deprivation might
be considered as yet another route for controlling the uptake
of creatine.

PROTEIN KINASE MTOR AND CT1

The mammalian target of rapamycin (mTOR) is a protein
kinase that plays a major role in the regulation of cell growth,
proliferation, and autophagy, while sensing cellular nutrient
availability and energy levels. The mTOR pathway appears to
be the central regulator of mammalian metabolism of tissues
including the liver, skeletal muscle, adipose tissue, and brain
(19), with the regulation perhaps including creatine metabolism.
The group of Florian Lung from the University of Auckland
demonstrated thatmTOR affects creatine turnover by stimulating
CT1 function (20), through mechanisms similar to the serum
and glucocorticoid-inducible kinases. The authors found that co-
expression of mTOR increased maximal creatine current through
CT1 in Xenopus oocytes expressing bovine SLC6A8, while pre-
incubation of the oocytes with rapamycin decreased the creatine-
induced current and abrogated its stimulation by mTOR.
Whether mTOR cross talks with SGK1 in the regulation of CT1
remains currently unknown, yet both kinasesmight participate in
the adjustment of cellular creatine content to nutrient and energy
supply (21). For instance, mTOR can be activated by various
amino acids (22), time-of-day-dependent caloric restriction (23),
or carbohydrate-restricted feeding (24), with diet-driven mTOR
activation potentially followed by creatine stream via CT1.

HYPERAMMONEMIA ELEVATES CT1
EXPRESSION

Hyperammonemia is a metabolic condition characterized by the
elevated levels of blood ammonia (4–150 times normal), leading
to alterations in brain energy metabolism, blood–brain barrier
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dysfunction, and encephalopathy. Exposure to ammonium
chloride (5mM for 72 h, corresponding to pathophysiological
levels observed in the brain in acute liver failure) resulted in a
significant increase in mRNA levels of CT1 (1.9-fold increase)
in conditionally immortalized mouse brain capillary endothelial
cells (25). At the same time, the uptake of radiolabeled 14C-
creatine was significantly increased by 18% in cells exposed to
ammonia, possibly as a consequence of increased CT1 activity.
The authors suggested that the augmented creatine transport
across the blood–brain barrier in hyperammonemia could be
implicated in neuroprotective mechanisms since creatine can
afford significant neuroprotection (26). This is in line with
Kosenko et al. (27), who reported that chronic hyperammonemia
induced by a 20-day ammonium-containing diet ameliorated the
clinical symptoms of acute ammonia intoxication and prevented
the associated deficits in energy metabolism. Maintained levels
of high-energy phosphates in the brain indicate that diet
containing ammonium salts instigates adaptive alterations in
energy metabolism that might be due to hyperammonemia-
dependent upregulation of CT1. Still, creatine appears to
be poorly taken up by immature embryonic brain cells in
urea cycle defects that are accompanied by ammonia toxicity
(28), suggesting a rather complex interconnection between
hyperammonemia and creatine transport.

OTHER CT1 STIMULANTS

Creatine accumulation via direct or indirect CT1 stimulation can
be achieved by various hormones and hormone analogs
(e.g., noradrenaline, isoproterenol, clenbuterol, 3,3′,5-
triiodothyronine, amylin, growth hormone, insulin, insulin-like
growth factor 1) (29–31). Schlattner et al. (32) reported an
upregulation of CT1 after wounding of murine skin and
increased abundance of creatine carriers in psoriatic human
skin, leading to the accumulation of intracellular creatine.
Pre-treatment with calyculin, a protein phosphatase 1a/2a
inhibitor, abrogates the doxorubicin-induced creatine transport
decrease (33), suggesting that CT1 stimulation is mediated
by phosphorylation or a yet to be identified signal (34). CT1
expression and creatine uptake increase after adenoviral
overexpression of peroxisome proliferator-activated receptor-γ
coactivators 1a and 1b via estrogen-related receptor alpha (35),
possibly identifying a new therapeutic gene target to increase
intracellular creatine and tackle cellular energy homeostasis. A
mechanistic nexus between diet and above CT1 excitants that
might be involved in CT1 upregulation remains to be discovered.

POSSIBLE RISKS OF CT1
OVEREXPRESSION

Reduced levels of intracellular creatine critically imperil cellular
bioenergetics, fostering CT1 upregulation and expedited creatine
uptake. However, the cell appears to have an upper limit
of creatine accumulation as well, implying a delicate balance
between creatine levels and CT1 modulation on both sides of the
coin. For instance, long-term creatine ingestion downregulates

CT1 in order to prevent the excessive (and potentially harmful)
intramuscular accrual of creatine (8). Wallis et al. (36) nicely
demonstrated that the overexpression of CT1 in transgenic
mice induces an excessive accumulation of creatine inside
the myocytes, with an abnormally high intracellular creatine
pool (66 ± 6 nmol/mg protein in wild-type controls vs.
133 ± 52 nmol/mg protein in CT1-overexpressing transgenic
mice), accompanied by left ventricular dysfunction, myocardial
hypertrophy, and heart failure. Likewise, mice overexpressing
the myocardial CT1 experienced chronically increased levels
of myocardial creatine and developed age-specific progressive
hypertrophy and heart failure (37). Supra-normal myocardial
creatine and phosphocreatine concentrations thus might lead
to energetic impairment, probably due to the fact that the
myocardium is incapable of keeping the augmented creatine pool
adequately phosphorylated. On the other hand, Santacruz et al.
(38) found no cardiac damage in mice with supraphysiological
cardiac creatine levels. Adult transgenic animals showed an
increase of 5.7-fold in the content of myocardial creatine, yet
cardiac morphometry, echocardiography, and pressure–volume
loop analyses demonstrated mild hypertrophy but normal
function. Another trial suggested that mice overexpressing the
creatine transporter in the heart (accompanied by the elevation
of myocardial creatine by 20–100%) actually experienced a
reduced myocardial stunning and ischemia/reperfusion injury
(39), implying that increasing myocardial creatine for up to
100% was not detrimental but beneficial. Having this in mind,
the magnitude of CT1 upregulation turns out to be of crucial
importance for cell survival, since themaximumCT1 activity that
can be attained without adverse metabolic effects is unknown at
the moment. A risk-free ceiling for transporter function (along
with maximal creatine levels) may vary from one cell type to
another, requiring additional CT1 kinetics studies that address
salient features encountered in creatine conveyance.

DIET AND CT1 UPREGULATION: WAITING
IN THE WINGS

Only a small number of in vivo studies reported the effects of
controlled dietary regimens on CT1 upregulation, including a 4-
day starvation test in male rats (7), a 6-month creatine-free diet
in mice (5), and a 7-week creatine depletion feeding in rats (40).
All regimens elicited a significant increase in creatine uptake and
CT1 activity in the heart and skeletal muscle of experimental
animals, likely due to an increased transporter protein expression
mediated by low creatine concentrations (41). Those pilot
studies were not followed by a torrent of pre-clinical studies
and human trials probably due to the somewhat challenging
quantification of CT1 expression, activity, and density in target
cells (42). An interesting small-scale study observed lower muscle
creatine levels and increased capacity to load creatine in seven
vegetarian men (four vegans and three lacto-ovo vegetarians)
who consumed a vegetarian diet for at least 6 months before
the experiment (43). Muscle CT1 mRNA levels tended to be
higher in vegetarians against non-vegetarian controls, which
could partially explain an increased capacity to accumulate

Frontiers in Nutrition | www.frontiersin.org 3 May 2021 | Volume 8 | Article 660021

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Ostojic Modulation of CT1 Function

FIGURE 1 | The candidate regulators of creatine transporter (CT1) function and expression, with possible nutrition-related cofactors and modulators (small circles).

The plus sign (+) indicates the stimulation of CT1 activity while the minus sign (–) indicates possible inhibition of CT1 function. GUSB, β-glucuronidase; Vit D, vitamin

D; CUR, curcumin; SGK, serum and glucocorticoid regulated kinases; IGF-1, insulin-like growth factor 1; PI3P5, phosphatidylinositol-3-phosphate-5-kinase; CR,

calorie restriction; mTOR, mammalian target of rapamycin; AA, amino acids; CHR-F, carbohydrate-restricted feeding; PGC-1a, peroxisome proliferator-activated

receptor-γ coactivators 1a.

creatine in vegetarians subjected to creatine loading. Better
control for diet composition in this pilot trial (i.e., the amount
of creatine in vegan and lacto-ovo vegetarian nutrition has not
been calculated) along with the inclusion of more participants
would possibly reveal a more significant effect of creatine-free
diet on CT1 upregulation. However, other possible mechanisms
that rule out CT1 expression and density might be involved as
well, including an acceleratedmaximal velocity of CT1, a reduced
creatine efflux from the cell, or other unknown channels. An
upregulation of CT1 gene expression and creatine deposition
has been described in pigs and broilers who were supplemented
with guanidinoacetic acid (GAA), a natural precursor of creatine
(44, 45), yet the mechanism of GAA-driven CT1 stimulation
remains unaddressed. Another nutritional study reported an
elevated gene expression of CT1 in mice exposed to a 10-
week high-fat diet and treated with nitrite (46), perhaps due
to mechanisms that are both dependent and independent of
proton-gradient uncoupling. Those exploratory studies lay the

first stone of a possible role for diet in CT1 upregulation. This
presumably complex tie-in urgently requires auxiliary research,
including time-dependent changes in CT1 upregulation driven
by a specific dietary regimen (e.g., acute vs. chronic effects
of creatine-free diet), a food-driven CT1 triggering in various
organs, stages of the life cycle and pathologies, and a possible
synergism (or antagonism) of two or more food components
to produce a combined effect on CT1 activity, to name
just a few.

CONCLUSION

Several vehicles are identified to upregulate or modulate CT1
function and uplift creatine allocation in a handful of in
vitro and in vivo studies (Figure 1). Those include carrier
modulation by low substrate availability, protein kinases,
and hyperammonemia. Importantly, upregulation of CT1 also
appears to be triggered by caloric restriction, creatine-free diet
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and exposure to ammonium-containing food. Upregulating CT1
could be therefore perceived as an up-and-coming target in
nutritional sciences, yet its clinical efficacy, safety, and feasibility
require a rather careful scrutinization in the forthcoming years.
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