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Malaria, a significant global health challenge, is caused by Plasmodium parasites. The Plasmodium liver stage 
plays a pivotal role in the establishment of the infection. This study focuses on the liver stage development of 
the model organism Plasmodium berghei, employing fluorescent microscopy imaging and convolutional neural 
networks (CNNs) for analysis. Convolutional neural networks have been recently proposed as a viable option for 
tasks such as malaria detection, prediction of host-pathogen interactions, or drug discovery. Our research aimed 
to predict the transition of Plasmodium-infected liver cells to the merozoite stage, a key development phase, 
15 hours in advance. We collected and analyzed hourly imaging data over a span of at least 38 hours from 400 
sequences, encompassing 502 parasites. Our method was compared to human annotations to validate its efficacy. 
Performance metrics, including the area under the receiver operating characteristic curve (AUC), sensitivity, and 
specificity, were evaluated on an independent test dataset. The outcomes revealed an AUC of 0.873, a sensitivity 
of 84.6%, and a specificity of 83.3%, underscoring the potential of our CNN-based framework to predict liver 
stage development of P. berghei. These findings not only demonstrate the feasibility of our methodology but also 
could potentially contribute to the broader understanding of parasite biology.
1. Introduction

Malaria is a dangerous infectious disease caused by a variety of 
Plasmodium species that are transmitted to people through the bites 
of infected female Anopheles mosquitoes. In 2021, nearly half of the 
world’s population was at risk of malaria. That year, there were an 
estimated 247 million cases of malaria worldwide and the estimated 
number of malaria deaths stood at 619,000, according to the World 
Health Organization report from 2021. Studying Plasmodium parasite 
behavior [1], the epidemiology [2], diagnosis [3], treatment and risk 
factors [4,5] associated with malaria is crucial for effective control and 
prevention strategies. The progress in microscopy imaging has enabled 
advanced imaging of the Plasmodium falciparum erythrocytic cycle and 
the P. berghei pre-erythrocytic stages [6]. Tracking the development of 
infected cells is an essential step in understanding parasitic cell biology 
and host-pathogen interactions [7]. Traditionally, such procedures rely 
on manual expert evaluation of cell morphology in microscopy images 
and, therefore, can suffer from subjectivity regarding cell features and 
limited throughput [8], while an automated system based on tracking 
cell features over time could mitigate these issues.

* Corresponding authors.

Artificial intelligence using machine learning has been effectively 
used for various tasks in malaria research: prediction: predicting human-

parasite protein associations using network topological profiles and 
machine learning [9], parasite protein phosphosite prediction using 
machine-learning [10]; detection: detecting malaria parasites using light 
microscopy and convolutional neural networks (CNNs) [11,12], using 
patient information from parasite case reports, and machine learning 
techniques [13], using patient symptoms and demographic features to-

gether with machine learning models [14], using protein sequences and 
natural language processing techniques [15], or using bead-based anti-

gen detection assay in conjunction with decision trees [16], and drug 
discovery [17].

Most recent studies investigating the Plasmodium parasite used neu-

ral networks or an ensemble of neural networks [11]. Rajaraman et 
al. [18] used a pre-trained ResNet CNN model, while Hemachandran 
et al. used a pre-trained MobileNetV2 [19]. Masud et al. [20] proposed 
a custom CNN with four convolutional blocks and two fully connected 
layers, Cho et al. used a custom 3 layer neural network [21] and Alok 
et al. [22] proposed a custom CNN with 4 convolutional blocks and two 
fully connected layers for classification of malaria-infected or healthy 
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blood cells. A hybrid model with Bayesian optimization and Deep Resid-

ual CNN features was used for classification of malarial cell images by 
Di Ker et al. [23]. Single cells in thin blood smear slides were classi-

fied as infected or uninfected using a custom 16-layer CNN by Liang 
et al. [24]. A study from Huang et al. [25] used the Faster R-CNN 
to distinguish malaria-infected and healthy blood cells, while Fuhat et 
al. [26] used a custom 3-layer autoencoder. For the same purpose, a 
watershed algorithm was used together with a multi-layer perception 
(MLP) on predetermined features by Manning et al. [27], while Dey et 
al. [28] proposed a ResNet 152 model integrated with a Deep Greedy 
Network for training. De Souza et al. [11] proposed using the HSV color 
components as inputs to an MLP for pixel-wise segmentation together 
with a custom 34-layer CNN for the malaria classification tasks in thick 
blood smear images. Arshad et al. [29] proposed a U-net CNN together 
with a ResNet for cell localization and classification of the Plasmodium

life-cycle stage in 4 classes. Similarly, Yang et al. [30], developed a 
framework to segment the Plasmodium parasite from thin film images 
and to classify its species among four dominant classes using a U-net to-

gether with a custom CNN with 4 convolutional blocks and two fully 
connected layers.

Upon the bite of an infected Anopheles mosquitoe Plasmodium sporo-

zoites migrate from the skin to the liver, where they establish their 
initial site of replication within the host [31]. Therefore, understanding 
the liver stage development of the parasite is of great importance [32]. 
Upon rupture of the parasitophorous vacuole membrane, liver-stage 
merozoites were shown to destabilize and substantially alter the pro-

tein composition of the host cell membrane and induce separation 
of the host cell actin cytoskeleton from it [33]. Moreover, Burda et 
al. [34] tracked the development of the Plasmodium parasite plasma 
membrane, revealing the formation of membrane contact sites with the 
endoplasmic reticulum, which may facilitate lipid delivery to support 
the expansion of the plasma membrane during the parasite’s life cy-

cle. De Niz et al. have shown that the parasite fragments the host cell 
Golgi into miniaturized stacks, to optimize its own intracellular devel-

opment [35]. Niklaus et al. [36], characterized lysosomal interactions 
with the parasitophorous vacuole and provided insights into cellular 
details of intracellular killing and lysosomal elimination of Plasmodium

parasites independent of immune system cells.

In this study, we delve into the liver stage development of the P. 
berghei parasite and examine the host-parasite interactions using HeLa 
cells. HeLa cells, derived from a human cervical cancer cell line [37]], 
have been extensively utilized for P. berghei infections, as demonstrated 
in our recent publications [38–40]. This research is primarily focused on 
in vitro analysis and does not extend to in vivo applications. The reason 
is that traditional in vivo methodologies, such as intravital microscopy, 
are inherently invasive and applicable only for short durations, whereas 
bioluminescent imaging, though less invasive, does not provide detailed 
information on individual parasites. This study pioneers the integration 
of fluorescent microscopy with artificial intelligence to meticulously 
track and predict the developmental milestones of Plasmodium liver 
stage development.

2. Material and methods

2.1. Animal ethics statement

Animal studies were carried out under the approval of the Animal 
Research Ethics Committee of Canton Bern, Switzerland (License Num-

ber: BE86/19). Balb/c mice were purchased from Janvier Labs (Saint 
Berthevin, France) or bred in-house and used from 8-10 weeks of age.

2.2. Imaging

3D image acquisitions (10 μm) of infected cells were acquired 
hourly, starting at around 24 hours post-infection (hpi), using a fully au-
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tomated Nikon CSU-W1 spinning disc (4000 rpm) confocal microscope 
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set at 37 ◦C and 5% CO2 (Omicron Laser 561 nm, 100 ms exposures 
with 2x2 binning and 16-bit depth on Photometrics Prime BSI CMOS 
camera, Plan Apo 𝜆 40× (NA 0.95) objective). The resulting images 
were 𝑁𝑥 ×𝑁𝑦 ×𝑁𝑧. Specifically, 𝑁𝑥 = 1024, 𝑁𝑦 = 1024, and 𝑁𝑧 = 6, 
correspond to the image’s height, width, and depth, respectively, in pix-

els. At each acquisition, a 2D brightfield widefield image was acquired 
with an image size of 𝑁𝑥 ×𝑁𝑦 pixels.

2.3. Parasite infections

Blood stabilates of P. berghei constitutively expressing mCherry [41]

were used to infect mice. Upon sufficient sexual forms of the parasites 
(gametocytes), mice were anesthetized using Ketamin/Xylazine. Female 
Anopheles stephensi mosquitoes were allowed to feed on the anesthetized 
mice for 30 minutes. Mosquitoes were kept at 20.5 ◦C and > 80% rel-

ative humidity and fed daily with 8% fructose-containing 0.2% para-

aminobenzoic acid. From day 18 to 26 post feeding salivary glands of 
infected mosquitoes were dissected and used for liver-stage infections. 
Sporozoites were released using a pellet pestle mixer. Around 20,000 
Sporozoites released from salivary glands were used to infect confluent 
HeLa cells (40,000cells/96well in MEM10%FCS, PenStrep seeded the 
day before). Two hours post-infection the cells were detached with ac-

cutase (Innovative Cell Technologies) and reseeded onto 24 well-glass 
bottom well plates and incubated at 37 ◦C/ 5% CO2. Medium was re-

placed the next day (2 ml).

2.4. Data annotation

To help with the data annotation process, a relevance filter was im-

plemented to filter out cells with living parasites in the last acquisition 
hours. Binary thresholding based on (expected) signal-to-noise ratio was 
used, with noise determined from empty images. In the post filtering 
images, the cell structure was visually inspected for manual annotation. 
Parasite shape, elevation, and merozoite formation were the assessed 
visual cues.

2.5. Parasite segmentation and deep learning classification model

Throughout this paper, we use the term capture position to denote the 
same 3D volume location acquired at every time point (hour) during the 
acquisition process. Therefore, each capture position may contain more 
than one infected cell, as it was not possible to control the number of 
infected cells at a certain location. Every capture position had a size of 
𝑁𝑥×𝑁𝑦×𝑁𝑧×𝑁𝑡, where 𝑁𝑡 is the number of acquired volumes. Adap-

tive binary thresholding was used, and small groups of pixels (<40) 
equivalent to less than 4.43 μm were filtered out and considered noise. 
Peak detection was used for single cell localization and k-means clus-

tering for cell boundary delineation. Parasite features such as position, 
volume, signal intensity, and bright elements inside the infected cell 
- a proxy for merozoites, and others, were calculated. Features were 
weighted according to their consistency for each parasite in consec-

utive time volumes. Using their position (x,y,z) and parasite volume, 
parasites were tracked across volumes with the Hungarian Algorithm 
for Linear Assignment Problem [42]. Throughout this paper, we use the 
term successfully developing to denote parasites that reach the merozoite 
stage of development and form detached cells by the last acquired vol-

ume. The term non-developing was used to denote parasites that died 
and lost fluorescent signal - or those that did not reach the merozoite 
stage.

Time series binary classification was used to distinguish between 
successfully developing and non-developing parasites from every time-

volume. For this, long short-term memory recurring neural networks 
were used, capable of learning long-term dependencies in time series se-

quence prediction problems. To handle data imbalances caused by a dif-

ferent number of images for each training class, the minority class was 

oversampled to that of the majority class during the training process. 
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To achieve this, random oversampling was used by randomly selecting 
samples from the minority class (with replacement) and adding them 
to the training dataset. To limit neural network overfitting, a dropout 
layer of 5% was used after the LSTM layer which consisted in 400 hid-

den units. Afterward, a fully connected layer was followed by a softmax 
activation function, which would output the score our model gives for a 
particular input image pertaining to a class. To train the model, stochas-

tic gradient descent [43] was used to optimize the binary cross entropy 
loss function (1).

crossentropy = −(𝑦 log(𝑝) + (1 − 𝑦) log(1 − 𝑝)), (1)

where y is the binary indicator (0 or 1) of the class label, and p is the 
predicted probability.

2.6. Evaluation metrics and statistical analysis

To evaluate the performance of our model, we compute various 
measures, including the area under the receiver-operating-characteristic 
curve (AUC), sensitivity = 𝑇𝑃

𝑇𝑃+𝐹𝑁
, specificity = 𝑇𝑁

𝐹𝑃+𝑇𝑁 , and weighted 
accuracy. Here, TP represents the true positives, TN the true negative, 
FP the false positives, and FN the false negatives. The weighted accu-

racy is defined as the sum of the proportion of correct classifications 
performed by our model in each class, weighted by the number of im-

ages in each class.

accw = 1
𝑛

𝑛∑
𝑐=1

𝑛𝑐∑
𝑜=1

𝑦𝑜,𝑐

𝑛𝑐
, (2)

where 𝑛𝑐 is the number of images in class c and 𝑦𝑜, 𝑐 is the binary 
indicator (0 or 1) if class label c is the correct classification for the 
observed image o. The Sorensen–Dice coefficient was used to estimate 
the similarity between the ground truth segmented data and the results 
of the automatized segmentation.

Dice(𝐴,𝐵) = 2|𝐴 ⋅𝐵|
|𝐴|+ |𝐵| , (3)

where A and B are binary vectors with positive values for elements 
inside the group and 0 otherwise, and signify the ground truth 
and segmentation result, respectively. The Permutation Importance 
method [44] was used to measure the influence that the features of 
our data (i.e., parasite properties) have on the predictions of the ma-

chine learning model. It consists of shuffling the values of each feature 
and calculating the decrease in the model’s performance (4).

ij = 𝑠− 1
𝐾

𝐾∑
𝑘=1

𝑠𝑘,𝑗 , (4)

where 𝑖𝑗 is the importance of feature 𝑓𝑗 , K is the number of times the 
shuffle-evaluation process is repeated, and 𝑠𝑘,𝑗 , the performance of the 
model on the shuffled feature j for repetition k. The kernel density 
estimation, a non-parametric approach for estimating the probability 
density function of a population, was used to model the probability 
density function for each parasite parameter across the positive and 
negative classes. The Hellinger distance, a type of f-divergence func-

tion that measures the difference between two probability distributions 
was used to quantify the similarity between positive and negative class 
parasite parameters.

H(P,Q) = 1√
2

√√√√ 𝑘∑
𝑖=1

(√
𝑝𝑖 −

√
𝑞𝑖
)2
, (5)

where P and Q represent the probability distribution of the positive and 
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negative class parasite features.
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Table 1

Dataset distribution overview.

Positive samples Negative samples Total

Training sets 49 - 50 200 249 - 250

Training sets [%] 19.7 - 20 80 - 80.3 -

Validation sets 12 - 13 50 62 - 63

Validation sets [%] 19.4 - 20.6 79.4 - 80.6 -

Total train_val 62 250 312

Total train_val [%] 19.9 80.1 -

Test set 61 129 190

Test set [%] 32.1 67.9 -

Total sets 123 379 502

Total sets [%] 24.5 75.5 -

3. Results

3.1. Dataset properties

We collected data from 400 capture positions yielding 502 infected 
cells. Among these, 123 cells harbored developing parasites, while the 
remaining 379 did not exhibit progression to the final developmental 
stage. These images were used to train, validate, and test the perfor-

mance of the deep learning system. The system was trained and vali-

dated on 250 capture positions consisting of 312 cells. An additional set 
of 150 capture positions collected at the same research facility but in a 
separate experiment and at a separate time consisting of 190 cells was 
used as a testing set. An overview of training, validation, and (holdout) 
test dataset population is summarized in Table 1. The infection rate was 
consistent between the two datasets.

The typical progression of parasite development, illustrated in 
Fig. 1A, is depicted through z-projections of fluorescent signals cap-

tured at key post-infection intervals. Initially, the parasite’s growth is 
predominantly two-dimensional, as shown in the first row, followed by 
an intensification of the fluorescent signal. By 55 hours post-infection 
(hpi), segmentations indicative of the cytomere stage become evident, 
leading to further segmentation into merozoites by 65 hpi, marking the 
final merozoite stage with dispersed merozoites within the host cell 
cytoplasm. Contrastingly, Figs. 1B-D present capture positions where 
parasites fail to progress to this final stage, highlighting the variability 
in development outcomes. Each panel in Fig. 1 represents the devel-

opment of a single parasite over time. Further elaboration on these 
observations, including supplementary fluorescence images juxtaposed 
with brightfield images, is provided in Fig. S1, showcasing a range of 
infected cell conditions.

The process of manual annotation and prediction was focused on 
the 55 hpi mark, a critical juncture expected to showcase the cytomere 
stage. The absence of segmentation at this stage signals developmental 
anomalies, serving as a basis for evaluating our deep learning model. 
The Dice score metrics was used to gauge the similarity between the 
manual segmentation, used as ground truth, and those generated by the 
automatized system. A subset of 600 images, equally divided between 
positive and negative classes, was manually segmented to generate 
ground-truth examples. The mean computed Dice score for the positive 
class was 0.86 (0.054 standard deviation) and 0.89 (0.075 s.d.) for the 
negative class. Using the segmented data, various parasite features were 
tracked over time: volume, convex volume, mean and maximum signal 
intensity, position, elevation, distance moved, principal axes lengths of 
the parasite ellipsoid, Euler angles, solidity (computed as ratio of vol-

ume to convex volume), number of bright elements inside the parasite-

infected cell, equivalent diameter (
√

6Volume
𝜋

), ratio of width to height 
and ratio of volume to equivalent diameter.

Fig. 2 delineates the features most indicative of parasite develop-

ment by 70 hpi, highlighting significant differences between successful 
and unsuccessful developmental outcomes. The mean feature values at 
every time point across the whole dataset are shown with a blue line 

(positive classes) and red line (negative classes), while the whole range 
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Fig. 1. Development of P. berghei parasites. Individual parasites were followed by time-lapse fluorescent microscopy. A) Normal development and (B-D) defective 
development are shown as still images for the indicated timepoints. In B) the parasite has lost its integrity at 50 hpi, in C) already at 35 hpi and in D) the parasite 
did develop normally till 45 hpi but then was not progressing.
of values is depicted with the corresponding lighter-shaded color. The 
overlapping values between classes are depicted with dark red. The fig-

ures illustrate that features related to size (volume, equivalent diameter, 
ratio of volume to equivalent diameter) are significantly larger in the 
positive class compared to the negative class. The mean signal intensity 
captured by the fluorescence microscope tends to increase in time at a 
higher rate in the positive class compared to the negative class, but then 
it decreases at 55-60 hours post-infection in the positive cases. Mean 
parasite elevation is similar in both classes but tends higher after 65 
hours post-infection in the positive class. The number of bright elements 
inside a parasite-infected cell - a proxy for merozoites, is observed to in-

crease at a faster rate in the positive class, reaching a 6-fold difference 
between classes at 70 hours post-infection. The mean solidity parameter 
is observed as static in time. However, after 60 hours post-infection it 
decreases in the positive class. The mean distance traveled, and the ratio 
of parasite width to length are similar in both classes. Notably, features 
like volume (and size related features) and the presence of bright inter-

nal elements, suggestive of merozoite formation, were markedly distinct 
in successfully developing parasites. The other features are shown to 
have a higher overlap between classes. This comprehensive tracking 
of parasitic features across the developmental timeline provides cru-

cial insights into the dynamics of P. berghei infection in vitro, offering 
a robust framework for predicting developmental outcomes based on 
early-stage observations.

3.2. Training characteristics

With these measured features, time series binary classification was 
used to train a classifier to distinguish between successfully developing 
and non-developing parasites at every time point. To reduce the risk 
of selection bias, the training and evaluation procedure was conducted 
using a five-fold cross-validation procedure. This involved running the 
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experiment five times, each using a different training and validation set. 
Here 80% of the data was used for training, 20% was used for valida-

tion (cf. Table 1). For every fold, training accuracy and loss plateaued 
and converged after 500 to 600 epochs. Our performance metrics are 
reported as means and standard deviations across the five test folds 
corresponding to each training cross-validation cycle. We report the 
performance metrics on the holdout test dataset by applying each of the 
five previously derived machine learning models to this dataset. This 
comprehensive validation process ensures the reliability and general-

izability of our classifier in distinguishing between the developmental 
outcomes of P. berghei parasites.

3.3. Classification performance in the validation dataset

Our analysis focused on evaluating the classifier’s performance at 
two critical junctures: as a classifier at the end of the data collection pe-

riod, approximately 70 hours post-infection (hpi), and as a predictive 
tool at 55 hpi, forecasting the development outcome of infected cells by 
70 hpi. In the validation dataset, our system discriminated successfully 
developing parasites from the non-successful ones (cf. Table 2) with an 
AUC of 0.933 (s.d. 0.0027), a sensitivity of 95.0% (s.d. 7.5), specificity 
of 82.8% (s.d. 7.6), and accuracy of 88.9% (s.d. 4). At 55 hours post-

infection the performance metrics were an AUC of 0.896 (s.d. 0.029), 
a sensitivity of 90.4% (s.d. 6.7) specificity of 82.0% (s.d. 6.2) and ac-

curacy of 86.2% (s.d. 2.1). The prediction accuracy plot from Fig. 3A 
rises from a mean of 50% at 32 hours post-infection to 89% at 70 hours 
post-infection. The receiver operator curves are plotted for the 70 and 
55 hours post-infection time points for each of the five folds in the val-

idation dataset (Fig. 3B-C). To contextualize these results, two human 
annotators performed the task of parasite development prediction at 
55 hours post-infection on a subset of 44 capture positions comprising 
of 78 infected cells. While all capture positions contain infected cells, 
by 55 hpi some parasites present in the early acquisition stages might 

have died or left the field of view. Predictions were made using the en-
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Fig. 2. Various parasite features tracked over time illustrating the parasite development: A) volume of parasite-infected cell, B) mean fluorescent signal intensity, 
C) infected cell elevation, D) number of bright elements inside a parasite-infected cell as proxy for merozoites, E) solidity - computed as ratio of volume to convex 
volume, F) distance traveled, G) ratio of volume to equivalent diameter, H) equivalent diameter, I) ratio of cell width to height. Mean values are shown with a blue 
line (positive) and red line (negative). The shaded areas represent the range of the features and overlapping ranges are marked with dark red.

Fig. 3. A) Prediction accuracy of parasite development at increments of 1 hour until end of acquisition. B) and C) receiver operator characteristic for the 5 cross 
338

validation folds for predicting P. berghei infected cell development in the validation dataset at 70 and 55 hours post-infection.
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Table 2

Performance metrics for validation dataset.

Balanced Accuracy Sensitivity Specificity AUC

Primary validation dataset

70 hours post-infection 88.9 ± 4 95 ± 7.5 82.8 ± 7.6 0.933 ± 0.027

55 hours post-infection 86.2 ± 2.1 90.4 ± 6.7 82 ± 6.2 0.896 ± 0.029

Test dataset

70 hours post-infection 83.9 ± 1.7 84.6 ± 3.0 83.3 ± 2.8 0.873 ± 0.009

55 hours post-infection 75.6 ± 1.0 68.2 ± 3.6 82.6 ± 1.9 0.825 ± 0.022

Fig. 4. A) Prediction accuracy of parasite development at increments of 1 hour until end of acquisition. B) and C) receiver operator characteristic for predicting P. 
berghei infected cell development in the test dataset at 70 and 55 hours post-infection.
tire time-volume sequence up to 55 hours post-infection. An accuracy 
of 79.3% was achieved by the first annotator and 72.5% by the second 
annotator.

3.4. Classification performance in the test dataset

In the test dataset the performance metrics at 70 and 55 hours 
post-infection were (cf. Table 2): an AUC of 0.873 (s.d. 0.009), respec-

tively 0.825 (s.d. 0.022), a sensitivity of 84.6% (s.d. 3), respectively 
68.2% (s.d. 3.6), a specificity of 83.3% (s.d. 2.8), respectively 82.6% 
(s.d. 1.9) and an accuracy of 83.9% (s.d. 1.7), respectively 75.6% (s.d. 
1.0). The prediction accuracy plot from Fig. 4A rises from a mean of 
50% at 24 hours post-infection to 83.3% at 70 hours post-infection. The 
receiver operator curves are plotted for both the 70 and 55 hours post-

infection time points on the test dataset for each model resulting from 
the cross-validation process (Fig. 4 B-C). The same two human annota-

tors performed the task of parasite development prediction at 55 hours 
post-infection, achieving an accuracy of 74.2%, respectively 77.6% .

3.5. Feature importance

We used permutation importance to evaluate our model’s reliance 
on each parasite feature. For each feature j ∈ {1, ..., 𝑝} in the dataset 𝑋, 
a new feature matrix 𝑋𝑗 was generated where values of feature j were 
permuted across the dataset 𝑋. The feature importance is reported as 
the prediction accuracy difference of each model on the initial dataset 
𝑋 and on the feature permuted dataset 𝑋𝑗 . This process was repeated 
ten times, generating a different permutation sequence for feature 𝑗
and each of the five models from the cross-validation process. Fig. 5

illustrates the computed feature importance for the validation and test 
dataset at 70 hours post-infection. The most important features in both 
cases were the volume, convex envelope, and maximum signal intensity, 
with the other features having an importance of less than 0.5%.

To study the effect of feature number, we trained new models on a 
subset of the 17 features. The subset was chosen by random sampling a 
number 𝑁𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 from the features that were used to train the model. 
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The 4 most important features (volume, convex envelope, mean and 
Fig. 5. Feature importance computed using the permutation importance al-

gorithm on the validation (top) and test dataset (bottom) for each of the 17 
parasite features.

maximum signal intensity) were always used. This was repeated ten 
times to account for stochasticity in training and random feature selec-

tion. The number of features 𝑁𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 was swept from 4 to 17. We did 
not identify any significant trend in the evaluation metrics at 70 and 55 

hpi, except for a larger standard deviation when 𝑁𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 is 4 (Fig. 6).
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Fig. 6. Accuracy (left) and AUC (right) for predicting parasite development at 
70 and 55 hours post infection as a function of the number of features used for 
training.

Fig. 7. Distance between features (volume, mean fluorescence signal intensity, 
parasite elevation, number of bright elements inside cell as proxy for mero-

zoites, cell solidity and ratio of volume to eq. diameter) of positive and negative 
classes at 32-33, 40, 55, and 70 hours post infection computed as Hellinger dis-

tance for validation and test datasets.

Another way to visualize the importance of features is to compute 
the distance between the feature values (seen as a probability distri-

bution) of the positive and negative classes. While the permutation 
importance was computed after the model was trained, this method 
is computed on the data itself without requiring training. Fig. 7 illus-

trates the Hellinger distance at 32, 40, 55, and 70 hours post-infection 
for the following features: volume, mean intensity, elevation, cell fine 
elements, solidity, and the ratio of volume to equivalent diameter. At 
70 hours post-infection the features offering the largest distance be-

tween classes were the number of bright elements inside the host cell, 
then volume, and the ratio of volume to the equivalent diameter of the 
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parasite.
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4. Discussion

The initial stage of Plasmodium infection occurs in the liver, where 
tens of thousands of blood-infectious merozoites are generated in each 
infected hepatocyte. The entire liver stage is typically asymptomatic; 
however, the emergence of parasites into the bloodstream marks the 
onset of symptomatic malaria, such as recurring fever. A deeper under-

standing of this liver stage is crucial for developing targeted treatments. 
Our study embarked on exploring the potential of an automated system 
to predict the developmental outcomes of the P. berghei parasite during 
this critical stage. Our first goal was to develop a method for parasite 
segmentation and tracking to extract physical parameters for charac-

terizing parasite development. Our second goal was to evaluate the 
performance of the proposed convolutional neural network-based al-

gorithm on predicting parasite development at 55 hours post-infection. 
This time-point was chosen based on the expected onset of the cytomere 
stage of the parasite [41]. Our principal discovery was the system’s ca-

pability to anticipate which parasites would progress to a stage where 
merozoites freely navigate within host cells.

In our test set, we achieved a balanced accuracy of 75.6%, sensitivity 
of 68.2%, and specificity of 82.6% for predicting the final develop-

ment of Plasmodium parasite development at 55 hours post-infection. 
The results are similar to those of human annotators of 75.9% accuracy 
and indicate the feasibility of the proposed method. To our knowledge, 
this marks the first instance of employing fluorescent microscopy im-

ages alongside machine learning techniques for predicting, rather than 
merely classifying, parasite development. Such predictive capabilities 
could significantly benefit in vitro studies by identifying parasites un-

likely to complete their developmental journey. Automating these pre-

dictions not only alleviates the manual annotation workload but also 
offers clearer, more interpretable results with reduced computational 
demands.

Moreover, we hypothesize that tracking the evolution of various cell 
features, such as volume, elevation, shape, and others, might yield ad-

ditional insights, especially in drug discovery contexts. Fig. 2 shows 
that features related to parasite size are larger in the positive class. It is 
known that quite a substantial number of parasites are eliminated dur-

ing liver stage development [36]. Normal growing parasites increase in 
mass, which can be seen by the larger sizes and increased fluorescence 
intensity. However, there was no difference between the positive and 
negative classes concerning the ratio of cell length to width. The fluo-

rescent signal decreases in intensity from 60 hours post-infection. This 
can be explained by the rupture of the parasitophorous membrane and 
liberation of merozoites into the host cell cytoplasm and therefore, dis-

persion of the fluorescent signal. The same explanation holds for the 
solidity parameter, which is observed to decrease after 60 hours post-

infection in the positive class. Merozoites get liberated and move freely 
in the host cell cytoplasm. The infected host cells undergo dramatic cy-

toskeletal changes at late stage parasite development. Virtually all actin 
cytoskeleton retracts from the host cell plasma membrane, which in 
vitro leads to contact loss from cell culture vessel/surface [33]. The de-

tached cell resembles a spherical shape and should be seen at higher 
elevations. However, cell elevation was similar before 65 hours post-

infection in both classes, we hypothesize this is because cells undergo 
division two to four times during the imaging period, which causes tem-

porary cell elevation. Also, if not only the parasite dies but also the host 
cell, the dead cell also loses contact with the culture vessel and elevates. 
While the distance traveled did not seem to be an important parameter 
in these experiments, it could provide additional insights when con-

ducting future studies, for example, for drug therapies that might affect 
infected cell motility [45]. Interestingly, we observed in ≈ 5% of the 
cases in our experiments that a cell division after 50 hours post-infection 
causes a several hour delay in the development of the parasite.

In both validation and test dataset we observe a consistent increase 
in prediction accuracy up to ≈ 45 hours post-infection, followed by 

a slower increase till ≈ 65. The prediction accuracy is experiencing a 
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Fig. 8. Accuracy (left) and AUC (right) for predicting parasite development at 
70 and 55 hours post infection as a function of training data subsampling factor.

qualitatively sharper increase again until the end of the imaging pe-

riod. We assume this last increase is because, at this time, merozoites 
appear, and detached cells start to form. Therefore, different parasite 
features might be more important in each development period. We ob-

serve the standard deviation of prediction accuracies to be lower in 
the test dataset. We believe this is because, during the five-fold cross-

validation process, the models are evaluated on the different data splits. 
In the test dataset case, all the models are evaluated on the same test 
dataset. This also explains the coarser look of the receiver operator 
characteristic curves in the validation dataset. In the cross-validation 
process, the validation dataset was split into five, leading to 62-63 cap-

ture positions in each validation set, compared to 190 in the test dataset.

We used permutation importance to evaluate our model’s reliance 
on each cell parameter. The assumption is that if a feature is signifi-

cant, shuffling its values will lead to a significant drop in the model’s 
performance. It does not require model retraining and can capture vari-

able interactions. Our results in Fig. 5 show a good agreement between 
validation and test data feature importance, indicating the generaliz-

ability of our model. Interestingly, the number of bright elements inside 
a parasite-infected cell was not identified as an essential feature. While 
shown to be effective [44], a drawback of this method is that the im-

portance of correlated features may be overestimated [46] and that the 
feature importance accuracy is highly dependent on the model’s accu-

racy.

Fig. 7 illustrates the Hellinger distance between features at 32, 40, 
55, and 70 hours post-infection. As expected, in the early to late sch-

izont phase (32,40 hours post-infection), the feature distance between 
classes is very small (< 0.1), resulting in poor predictions. We assume 
this is because up to the point of ≈ 55-65 hours post-infection, the hall-

marks of a successfully developing parasite are not yet visible.

We compared the results of our method to those of a logistic re-

gression based classifier. For training, the dataset 𝑋𝑗,𝑡, with features 𝑗
∈ {1, ..., 𝑝} and time-points 𝑡 ∈ {1, ..., 𝑝} was flattened into a training set 
𝑋𝑟𝑗𝑡, with 𝑗𝑟𝑒𝑔 ∈ {1, ..., 𝑝 × 𝑡}. The regression-based classifier resulted 
in an accuracy of 81.2 (s.d. 11.5) and AUC of 0.883 (s.d. 0.1), at 70 
hpi and an accuracy of 78.5 (s.d. 11.3) and AUC of 0.832 (s.d. 0.126) 
at 55 hpi for the validation set. We assume the proposed LSTM model 
performed better because it can handle sequential data and learn rela-

tionships between past and current data points.

The performance of our model trained using oversampling of the 
minority class was also compared with a model trained without data 
balancing. The model without oversampling resulted in lower accuracy 
metrics, with an accuracy of 81.3 (s.d. 8.9) and AUC of 0.930 (s.d. 
0.025), at 70 hpi and an accuracy of 64.5 (s.d. 8.3) and AUC of 0.874 
(s.d. 0.027) at 55 hpi for the validation set.

To study the importance of dataset size, new models were trained 
on a subset of the data with a subsampling factor ranging from 0.1 to 
1. This was repeated five times to account for stochasticity in training 
and random data selection. Larger standard deviations were observed 
starting from a subsampling factor of 0.95, with twice higher standard 
deviations after a subsampling of 0.5. Moreover, a decrease in AUC and 
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accuracy can be observed after the 0.5 subsampling factor (Fig. 8).
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Despite these advancements, our study is not without limitations. 
First, the infection process was not controlled leading to an uneven 
distribution of infected cells across the petri dish, which can create 
high-confluency cell areas. These were not included in our study. The 
challenges of ensuring a balanced dataset, given the uncontrolled in-

fection rates and the variable outcomes of parasite development, were 
addressed through a five-fold cross-validation approach and random 
sampling which ensured similar class ratios for each training-validation 
split. Moreover, to ensure that the training, validation, and testing of 
our neural network model were not affected by variability in the num-

ber of cases in each class, we used oversampling of the minority classes 
to the number of images in the majority class during training. When re-

porting the results, we used a weighted accuracy instead of standard 
accuracy as an evaluation metric, to further ensure our results are not 
biased by the number of images in each class. Secondly, compared to 
a few other studies [16,47,30] which were collected from diverse data 
sources, our data was collected in a single center, the University of Bern 
using the Nikon microscope. Therefore further investigation is required 
to determine if these results are generalizable to other acquisition de-

vices or specimens prepared in a different way. Thirdly, it is important 
to note that our model classifies the data only of the fluorescent signal of 
mCherryexpressing parasites, without using the brightfield microscopy 
image data. Moreover, although we acquired z-stack fluorescent data at 
every hour with very low laser energy, we cannot exclude phototoxicity 
affecting the parasite development [48]. However, this effect could be 
lessened in future studies by using the proposed approach of predicting 
parasite development and therefore stopping the experiments early.

5. Conclusion

In this study, we explored the integration of fluorescent microscopy 
imaging and neural network based algorithms to predict the devel-

opment of P. berghei during its liver stage. Our automated approach 
for cell segmentation and tracking has proven effective, successfully 
identifying developing parasites with an accuracy of 87.3%. Crucially, 
our method achieved a 75.6% prediction accuracy at 55 hours post-

infection, paralleling the proficiency of human annotators. These find-

ings affirm the potential of our approach to enhance the study of Plas-

modium liver stage development, offering a promising tool for malaria 
research with implications for both understanding the disease and de-

veloping new treatments.
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