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Abstract: On the basis of a direct current magnetron, a technology has been developed for producing
nanoscale-oriented nanorods from zinc oxide on an acrylic polymer. The technology makes it possible
to achieve different filling of the surface with zinc oxide nanorods. The nanorods is partially fused
into the polymer; the cross section of the nanorods is rather close to an elongated ellipse. It is shown
that, with intense abrasion, no delamination of the nanorods from the acrylic polymer is observed.
The zinc oxide nanorods abrades together with the acrylic polymer. Zinc oxide nanorods luminesces
with the wavelength most preferable for the process of photosynthesis in higher plants. It was
shown that plants grown under the obtained material grow faster and gain biomass faster than the
control group. In addition, it was found that on surfaces containing zinc oxide nanorods, a more
intense formation of such reactive oxygen species as hydrogen peroxide and hydroxyl radical is
observed. Intensive formation of long-lived, active forms of the protein is observed on the zinc oxide
coating. The formation of 8-oxoguanine in DNA in vitro on a zinc oxide coating was shown using
ELISA method. It was found that the multiplication of microorganisms on the developed material is
significantly hampered. At the same time, eukaryotic cells of animals grow and develop without
hindrance. Thus, the material we have obtained can be used in photonics (photoconversion material
for greenhouses, housings for LEDs), and it is also an affordable and non-toxic nanomaterial for
creating antibacterial coatings.

Keywords: ZnO; reactive magnetron sputtering; sputtering in an argon-oxygen mixture; photocon-
version materials; agrophotonics; biocompatibility

1. Introduction

Currently, LED technology has become a part of our life [1]. LED sources consist of
three main elements: a semiconductor crystal, a transparent body (reflector or lens), and
conductors [2]. In this case, only the diode body interacts with the outside world. The diode
body must be transparent, usually made of acrylic polymers or polystyrene [3]. It is known
that under conditions of high temperature and humidity, for example, in greenhouses,
various forms of life can comfortably develop on the surface of these polymers [4]. In this
regard, an important aspect of new materials is the presence of bactericidal properties [5].
Many metal oxides, such as ZnO, TiO2, MgO, Fe2O3, and others, have significant bacterici-
dal properties [6–8]. When these oxides are applied to surfaces, they retain high thermal
and chemical stability and often have high mechanical strength. A thin coating of ZnO
is transparent in the visible range of the spectrum [9], which means that such a coating
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can be used very widely, from glazing greenhouses and buildings to creating screens for
gadgets. Zinc oxide nanorods are the most effective against microorganisms. Moreover,
their antibacterial properties significantly depend on the microstructure [10]. It is possible
to enhance the antibacterial properties by parallel spatial orientation of one-dimensional
ZnO nanowires [11].

It should be noted that coatings based on ZnO and related compounds exhibit not only
bactericidal properties but also have significant photocatalytic properties [12]. Antibacterial
and photocatalytic properties are interrelated; more precisely, the antibacterial properties
of ZnO increase when exposed to light. This is implemented as follows: (1) excitation of a
semiconductor crystal with light; (2) the formation of electron-hole pairs; (3) generation of
ROS on the surface of the material; (4) damage of biomolecules from ROS; (5) and bacteria
death [13]. The main problem with antibacterial materials is the danger of these materials to
the environment and human health. One of the trends in the development of antibacterial
materials is the production of materials that affect the growth and development of bacteria
but mostly do not affect the growth and development of mammalian cells. It should be
noted that this problem is far from a successful solution [14].

Another important problem that thin coatings can take part in is the conversion of
light from a semiconductor crystal. LEDs often provide a rather narrow spectral line, which
is broadened by one or more fluorophores [15]. This technology is often used in commercial
LED “white” light sources. It is known that plants most efficiently absorb light quanta in
the spectral ranges of 400–490 nm and 630–710 nm [16]. In practice, LEDs with a corrected
spectrum are used in greenhouses [17]; in addition, photoconversion materials are used to
correct the spectrum of the sun [18]. It should be noted that nanosized fluorophores are
intensively used in various fields of human activity [19–22]. It was previously reported
that thin coatings consisting of ZnO-based nanorods are capable of intense luminescence
when illuminated with ultraviolet radiation [23]. This phenomenon largely depends on the
location and orientation of the nanorods. At present, no technologies have been developed
to achieve a comprehensive orientation of nanorods on the surface of materials [24].

For the manufacture of coatings from metal oxides, various technologies are used,
such as hydrothermal synthesis [25]; sol-gel synthesis [26]; polymer-salt synthesis [10];
PVD methods, including magnetron sputtering [27]; and others. For practical application, it
is important that the method of obtaining bactericidal coatings provides high productivity
and is simple [28]. The first three methods are technologically simple and inexpensive;
however, these methods do not allow one to obtain both their zinc oxide nanorods and
to influence the orientation of nanoscale objects on the substrate. Apart from sputtering,
other physical vapor deposition (PVD) methods, such as arc evaporation, do not guarantee
the growth of the necessarily ordered structures of zinc oxide and, as a rule, have too high
deposition rates. On the other hand, presence of a substantial ionic flux to the sample
surface, which distinguishes magnetron sputter devices from evaporators, allows achieving
the growth of the required structures. In this work, we propose a method for producing
oriented nanoscale wires from zinc oxide. The method used is based on magnetron
sputtering on acrylic plastic under established boundary conditions. The magnetron’s
magnetic system is specially arranged to obtain maximum ion flux in the direction of the
substrate. It is shown that the resulting coatings have a luminescence stimulating the
growth and development of plants. In addition, the ZnO-based coatings show significant
antibacterial properties while exerting a minimal effect on the viability of mammalian cells.

2. Materials and Methods
2.1. Magnetron Sputter Deposition of Zinc Oxide on Acrylic Polymer

ZnO coatings were deposited on plastic samples in a dedicated ion-plasma processing
setup with a Magneto series magnetron (Pinch, LLC, Moscow, Russia). The setup diagram
is shown in Figure 1. A planar circular magnetron with a target 76.2 mm in diameter and
2-mm thick was used to prepare the samples. The magnetron was capable of changing the
magnetic field configuration by varying the positions of the magnets. The target was made
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of metallic zinc grade C0, purity 99.975% (Girmet, LLC, Moscow, Russia). Heat removal
from the target to a water-cooled copper cathode was provided with KPT-8 thermal paste.
The magnetic field of the magnetron was tuned to optimize the ion current value on the
substrate. In the present experiments, we used the magnetic configuration that maximized
the ion assistance of the film growth on the sample surface. Square, acrylic, 2-mm thick
plates were used as substrates. Before being placed in a vacuum chamber, the surface of
the samples was not subjected to any cleaning procedures. During deposition, each sample
was located at a distance of 100 mm from the target surface on a special stage.

Figure 1. Schematic of a magnetron deposition setup.

The residual background pressure in the vacuum chamber during evacuation by a
turbomolecular pump was less than 10−4 Pa. All coatings were obtained in the reactive
magnetron mode by Zn target sputtering in Ar with the addition of O2 in a 1:1 gas flow
rate ratio. This ratio was set by an automated gas-injection system based on Bronkhorst
El-Flow flow controllers. In our case, the total pressure during deposition was 0.5 Pa,
and the total flow rate of the gas mixture was 1.8 L/h or 30 sccm. A direct current (DC)
magnetron discharge with a fixed power of 100 W was created in this gas mixture once a
sufficient voltage was applied to the cathode. Typical discharge voltage was 340–360 V and
discharge current 0.28–0.29 A, as provided by the APEL-M series power supply (Applied
Electronics, LLC, Moscow, Russia). During the first 2 min after switching on, the magnetron
was shielded with a special shutter to ensure the stabilization of the discharge parameters
and increase the reproducibility of the results of coating deposition on the samples. Then,
the shutter was opened, and the deposition process was started. The substrate temperature
during deposition did not exceed 60 ◦C. The deposition process in the facility is illustrated
in Figure 2.
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Figure 2. Photograph of the magnetron and the sample stage during the coating process.

2.2. Manufacturing of Acrylic Polymer

Acrylic polymer in the form of rectangular sheets was obtained using an extruder. The
raw material was granular polymethyl methacrylate. The pellets melt in the extruder to
form a viscous liquid. The extruder itself is made in the form of a cylinder, inside which
there is a spiral screw that mixes the molten granules and turns them into a homogeneous
viscous mass. In addition, the screw creates excess pressure in the area of the die slot. After
exiting the die, the acrylic polymer is pulled between the rotating rolls. This allows us to
obtain a uniform thickness of the workpiece over the entire surface.

2.3. Characterization of the Surface Morphology of a Polymer with Zinc Oxide Nanorods

Photographs of the products were taken using an S8+ camera (Samsung, Suwon,
Korea). A Vega3 scanning electron microscope (Tescan, Brno, Czech) was used. Nanoscale
surface topology was explored using atomic force microscope, Nanopics 2000 (Seiko, Tokyo,
Japan), and high-resolution laser modulation interference microscope MIM 321 (Amphora
Lab, Moscow, Russia). The photoconversion properties of the AP-ZnO material were
investigated using a fluorimeter 8300 (Jasco, Tokyo, Japan) in the mapping mode.

2.4. Cultivation of Plants

The effect of light modulated by photoconversion films on the morphometric parame-
ters of plants was estimated in a climatic room. The plants were grown in soil. We tested
representatives of important crops: cucumber (Cucumis sativus) and chili pepper (Capsicum
annuum). The main morphometric indicator assessed was area of leaves. Image processing
and calculations were made using original GreenImage V.1.0 software developed by our
team. The algorithm of the program and the download link were published earlier [18].

2.5. Bacteriostatic Activity Assay

Experiments in a cultural environment. Gram-negative bacteria Escherichia coli were
cultured [29]. Using aseptic techniques, we carefully transferred a 5-mL aliquot of LB broth
into a sterile, lidded glass culture tube. Using a sterile applicator stick, one well-isolated
colony was transferred from the solid medium plate to the culture tube. Then, the colony
was resuspended in a glass culture tube. To determine the concentration of bacteria, a
spectrophotometric study was carried out. The optical density of the resulting medium
was determined using a drop spectrophotometer UV5Nano Excellence (Mettler Toledo,
Columbus, OH, USA). For analysis, 10 µL of the medium containing the bacteria was irre-
versibly taken. After determining the concentration of bacteria, the resulting concentrated
medium containing bacteria was diluted in a larger volume. For the experiments, films of a
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composite material with a thickness of 700–900 µm and a size of 10–15 mm were made. The
film was sterilized by soaking three times in ethyl alcohol for 30 min. After that, the film
was put on a round, sterile hoop. A nutrient medium with bacteria was poured into the
hoop, and the top of the hoop was sealed with a piece of glass slide. The resulting structure
was placed in an ES-20 incubator shaker (Biosan, Riga, Latvia) (37 ◦C, approximately
150 rpm). During incubation, the concentration of bacteria was estimated using microscopy
and an algorithm developed by us for determining optically dense objects in the frame.
At the end of the experiment, the structures were disassembled, and the concentration of
bacteria was estimated again using a drop spectrometer.

2.6. Cell Culture

Biocompatibility studies were performed using standard in-vitro test systems. The
SH-SY5Y human neuroblastoma cell culture was used as standard cell models. The cells
(Thermo Fisher Scientific, Waltham, MA, USA) were grown in a DMEM medium (Biolot,
Moscow, Russia) supplemented with 10% fetal calf serum (Gibco, Waltham, MA, USA),
30 µg/mL gentamicin at 37 ◦C, and 5% carbon dioxide in a CO2 incubator (Binder, Tut-
tlingen, Germany). Then, cells with a concentration of 104 cells/cm2 were inoculated on
the surface of material samples in a volume of 3 mL per dish. Cells were cultured on the
samples for 72 h. Cells growing on the samples’ surface were stained with fluorescent dyes,
2 µg/mL Hoechst 33342 (Sigma, Saint-Louis, MO, USA) and 2 µg/mL propidium iodide
(Sigma, Saint-Louis, MO, USA), to determine the number of live and dead cells, respectively
(Figure 3). Hoechst 33342 stains all cells (live and dead, Sigma, Saint-Louis, MO, USA). The
propidium iodide dye penetrates extremely slowly into live cells; therefore, during a short
incubation time (about 10 min), it stains only cells with a damaged plasma membrane. The
plasma membrane with breaks leading to dye penetration was one of the main criteria for a
cell to be dead. Thus, Hoechst 33342 stains both live and dead cells, while propidium iodide
only stains dead cells. Microscopic assay of the samples was carried out with an imaging
system based on Leica DMI6000 (Leica, Berlin, Germany). At least 500 cells were counted
on the surface of each sample for analysis [30]. The mitotic index of cells in the logarithmic
growth phase (3 days after seeding) was used to analyze cell proliferation. The number
of cells in a state of mitosis was determined using fluorescence microscopy using in-vitro
staining with the Hoechst 33342 fluorescent dye (Sigma, Saint-Louis, MO, USA) [31]. The
density of the culture was assessed using the approaches developed earlier [32].

Figure 3. A typical photograph of a cell culture taken using a fluorescence microscope.

2.7. Determination of the Concentration of Reactive Oxygen Species

To determine the concentration of hydrogen peroxide, we used the method of en-
hanced luminescence in the luminol-p-iodophenol-horseradish peroxidase system [33].
Measures were carried out with ultrasensitive chemiluminometer Biotox-7A-USE (ANO
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Engineering Center-Ecology, Moscow, Russia). The sensitivity of the method makes it
possible to determine H2O2 at a concentration of <1 nM [34]. Evaluation of OH-radicals
concentration was carried out using the reaction with coumarin-3-carboxylic acid (CCA),
which led to the hydroxylation of CCA to 7-hydroxycoumarin-3-carboxylic acid (7-OH-
CCA). The 7-OH-CCA is a convenient fluorescent probe for determining the formation of
these radicals. The fluorescence of 7-OH-CCA (the product of the reaction of CCA with a
hydroxyl radical) was measured with spectrofluorimeter 8300 (JASCO, Tokyo, Japan) with
λex = 400 nm, λem = 450 nm. Calibration was performed using commercial 7-OH-KKK.
Methodical details have been described in detail earlier [35].

2.8. Determination of Biomacromolecules Damages

A non-competitive enzyme-linked immunosorbent assay (ELISA) using monoclonal
antibodies specific to 8-oxoguanin (anti-8-OG antibodies) was used to quantitatively mea-
sure 8-oxoguanine in DNA. The optical density of samples was measured with a plate
photometer FX (Titertek Multiscan, Vantaa, Finland) at λ = 405 nm. The method was
described in more detail earlier [36]. Long-lived reactive protein species concentration
were measured using a chemiluminescence method. The method was described in more
detail earlier [37].

3. Results
3.1. Material Surface Morphology

The nanoscale zinc oxide layer deposited on an acrylic polymer is visible on the
surface of the material (AP-ZnO) only in bright light and only at a certain angle. Figure 4
shows photographs of samples with and without ZnO coating. Interestingly, with intense
abrasion, no delamination of the zinc oxide layer from the acrylic polymer is observed.
Zinc oxide abrades together with the acrylic polymer.

Figure 4. Photographs of samples with ZnO coating (left) and without it (right).

The deposited ZnO coatings had too low electrical conductivity and could not be
directly diagnosed in a scanning electron microscope. To obtain images of the surface, an
additional 40-nm thick Ag coating was deposited. Figure 5 shows SEM (Tescan Vega 3,
Brno, Czech) images of the surface at various scales. It is shown that the surface is flat on a
scale of tens of micrometers. On a micrometer scale, the samples exhibit longitudinal and
transverse grooves. One should keep in mind that we had to deposit a layer of silver on
zinc oxide. How does this layer affect the surface morphology of the object? Is the surface
morphology of zinc oxide and silver different? It is obvious that it is rather problematic to
find an answer to these questions with the help of scanning electron microscopy.
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Figure 5. SEM images of a ZnO coating surface with a deposited Ag layer at different scales.

The morphology of the material surface was investigated using an atomic force
microscope (Figure 6). It is shown that the surface of the material is generally homogeneous.
Longitudinal and transverse grooves are observed on the surface. In general, the direction
of the grooves is ordered. The average groove depth is about 50–100 nm. An atomic force
microscope is able to obtain information about surface topology but cannot determine the
mutual distribution of the materials, acrylic polymer and zinc oxide.

Figure 6. Reconstruction of the surface of the AP-ZnO material using atomic force microscopy.

It is known that acrylic and zinc oxide differ significantly in their optical properties. In
this regard, we used a modulation-interference microscope. This microscope allows us to
build 2D maps showing how the phase incursion changes at a particular point in space. In
the case of optically opaque objects, the microscope works as a high-precision profilometer.
Using modulation interference microscopy, it was shown that during deposition, zinc oxide
is distributed on the plastic in the form of oriented stripes (Figure 7A, green). Additionally,
after spraying on acrylic, the formation of deep grooves is observed (in the photo, there
are three grooves converging in the center) in which the growth centers of zinc oxide are
located. Interestingly, grooves form in acrylic but are not always filled with zinc oxide.
At higher magnification, it can be seen that, often, such grooves are adjacent to less deep
grooves running both along and across (Figure 7B,C). The size of such grooves varies
from 150 to 500 nm. Zinc oxide growth centers in the form of droplets 150–200 nm wide
are also found on the polymer (Figure 7D). In general, two types of polymers have been
investigated. In the first type of polymers, approximately 25% of the area is covered with
zinc oxide. The second type of polymer is approximately half coated with zinc oxide. The
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above observations are valid for both types of polymers, both with a coverage of 25% of
the surface and with a coverage of 50% of the surface.

Figure 7. Reconstruction of the surface of the AP-ZnO material using modulation interference
microscopy. (A) General view. (B,C) Maps with characteristic zinc oxide fusions. (D) Map with a
single point of growth of zinc oxide.

The data from the modulation interference microscope are confirmed by laser mi-
croscopy in transmitted light mode (Figure 8). It is shown that the surface of the material is
dotted with grooves extending in different directions. The size of the grooves obtained by
laser microscopy and by means of modulation interference microscopy is correlated.

Figure 8. Photograph of AP-ZnO material obtained using a laser microscope.
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Separately, elemental analysis was done (Figure 9). The chemical composition of the
nanorods was confirmed.

Figure 9. Elemental analysis of zinc oxide nanorods. (A) TEM image of group of zinc oxide nanorods;
analysis section is indicated by line. (B) Nanorods profile by Zn Kα1 and O Kα1.

3.2. Photoconversion Properties of the Material

The photoconversion properties of the AP-ZnO material were investigated (Figure 10).
Using a fluorometer equipped with shutter, the fluorescence of the AP-ZnO material was
investigated at excitation from 210 to 520 nm with a step of 1 nm. It was shown that
the strongest fluorescence is observed upon excitation at wavelengths close to 210 and
406 nm. Weak luminescence directly behind the shutter line can be seen with excitation
in the 250–300 and 430–500 nm wavelength ranges. When excited at 210 nm, the material
luminesces over the entire wavelength range from 280 to 700 nm. A pronounced maximum
of the luminescence intensity is observed at 430 nm. Local maxima are observed at 300 and
560 nm. When excited at 406 nm, the material has maximum luminescence at 435 nm. The
spectral range in which the luminescence of the material is observed is from 420 to 550 nm.

The AP-ZnO photoconversion material has a luminescence maximum of 430 nm.
It is known that plants most efficiently absorb light quanta in the spectral ranges of
400–490 nm and 630–710 nm. We assumed that the material we made could be used as
a photoconversion coating for greenhouses. It has been shown experimentally that the
photoconversion material of the AP-ZnO material increases the growth rate of cucumber
and pepper plants (Figure 11). The highest growth rate is observed in pepper plants. It has
been shown that the leaf area of pepper plants grown under a photoconversion coating by
the end of three weeks of vegetation is 35–40% larger than in the control group. Cucumber
leaves amassed only 25–30% more leaf area than control.
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Figure 10. Photoconversion properties of AP-ZnO material. On the left is a 2D graph characterizing the fluorescence
intensity of the material at all investigated wavelengths. On the right are the material fluorescence spectra upon excitation
at 210 nm (top) and 406 nm (bottom).

Figure 11. Effect of photoconversion polymer film on plant leaf size. Representative photographs of plants grown under
AP-ZnO photoconversion material (left in pair) and acrylic polymer (right in pair). (A) Cucumber (Cucumis sativus).
(B) Chili pepper (Capsicum annuum).

3.3. Biosafety

The effect of zinc oxide nanorods on the generation of reactive oxygen species (ROS)
in aqueous solutions was studied. It was shown that acrylic does not significantly affect the
generation of ROS (Figure 12). At the same time, the AP-ZnO material with a coverage of
25% of the area with zinc oxide more than doubles the yield of hydrogen peroxide. AP-ZnO
coated with 50% of the area with zinc oxide increases the yield of hydrogen peroxide by
almost five times. AP-ZnO material coated with 25% of the area with zinc oxide more than
doubles the yield of hydroxyl radicals. At the same time, the AP-ZnO material coated with
50% of the area with zinc oxide increases the production of hydroxyl radicals by more than
4 times.
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Figure 12. Effect of material AP-ZnO on the reactive oxygen species generation. (A) Generation of hydrogen peroxide (2 h,
40 ◦C). (B) Generation of hydroxyl radicals (2 h, 80 ◦C). * indicate a significant difference at 5% level in comparison with the
control (p < 0.05). Data are presented as mean values and standard errors.

It is known that excessive generation of ROS is associated with damage to biomacro-
molecules in living cells and biological fluids. The effect of the AP-ZnO material on the
formation of such a key marker of oxidative stress as 8-oxoguanine in DNA in vitro was
studied (Figure 13A). It was found that acrylic does not significantly affect the formation of
8-oxoguanine in DNA in vitro. The rate of 8-oxoguanine formation in DNA significantly
increases with the appearance of zinc oxide in the polymer. The AP-ZnO material coated
with 25% of the area with zinc oxide more than doubles the yield of 8-oxoguanine in DNA.
AP-ZnO coated with 50% of the area with zinc oxide increases the yield of 8-oxoguanine
by almost four times.

Figure 13. Effect of material AP-ZnO on the generation on biomacromolecules damage. (A) Generation of 8-oxoguanosine
in DNA in vitro (2 h, 45 ◦C). (B) Formation of long-lived reactive protein species (2 h, 40 ◦C). * indicates a significant
difference at 5% level in comparison with the control (p < 0.05). Data are presented as mean values and standard errors.

The effect of AP-ZnO material on the formation of long-lived active forms of proteins
was studied (Figure 13B). It has been shown that acrylic does not affect both the formation
and the rate of decomposition of long-lived, active forms of proteins. The sputtering of zinc
oxide onto the polymer leads to a significant increase in the rate of generation of long-lived,
active forms of proteins. An increase in speed of 35% occurs on a material coated 25%
by zinc oxide. AP-ZnO coated on 50% of the area with zinc oxide increases the yield of
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long-lived, active forms of proteins by more than 60%. At the same time, zinc oxide coating
practically does not affect the average half-life of long-lived, active forms of proteins. The
half-life of long-lived, active forms of proteins is about 4–5 h in all experimental groups.

The influence of materials with zinc oxide sputtering on the growth and development
of E. coli bacteria was investigated (Figure 14). It was shown that the addition of acrylic
does not significantly affect the growth and development of bacteria. When AP-ZnO
material coated on 25% of the area with zinc oxide is added to the culture, a decrease in
cell concentration by about 45% is observed. When AP-ZnO material coated on 50% of the
area with zinc oxide is added to the culture, a decrease in cell concentration by more than
80% is observed.

Figure 14. Influence of material AP-ZnO on E. coli growth and development. * indicates a significant
difference at 5% level in comparison with the control (p < 0.05). Data are presented as mean values
and standard errors.

The effect of AP-ZnO material on the viability of mammalian cells was studied
(Figure 15A). The number of non-viable cells grown on control substrates did not ex-
ceed 4%. Approximately the same number of non-viable cells was observed when grown
on untreated acrylic. The medical alloy TiNbTaZr was used as a negative control. When
using this alloy as a substrate, non-viable cells were observed almost 6%, almost 50% more
than in the control. On AP-ZnO material coated on 25% of the area with zinc oxide, almost
50% more non-viable cells were observed compared to the control. On AP-ZnO material
coated on 50% of the area with zinc oxide, almost 90% more non-viable cells were observed
compared to the control. It should be noted that the proportion of non-viable cells on
AP-ZnO materials did not differ statistically from the number of non-viable cells on the
TiNbTaZr medical alloy.

To determine the ability of cells to divide, the mitotic index of cells in the phase of
logarithmic growth was calculated (Figure 15B). It was found that the mitotic index of the
culture of cells growing on the surface of control samples is 1.4%. When TiNbTaZr is used
as a substrate, the mitotic index is almost 2%. The mitotic index of cells on untreated acrylic
on AP-ZnO materials coated on 25 and 50% of the area with zinc oxide did not differ from
the control.

The density of the cell culture was determined after 72 h of culturing cells on the
surface of the materials. The density of the cell culture grown under control conditions
averaged about 1000 cells/mm2 (Figure 15C). The density of cells grown on TiNbTaZr is
almost 1.5 times higher than in the control. The density of cells grown on AP-ZnO material
is in the range of 950–1100 cells/mm2.

The surfaces of AP-ZnO materials have been shown to be suitable for cell attachment
and spreading (Figure 15D). After 72 h of cultivation on the surface of all samples of
materials, the cells did not form a continuous monolayer; however, some elements of the
monolayer were observed. Cells on all materials occupy about three-quarters of the surface
available for growth. Moreover, according to the degree of suitability, AP-ZnO materials
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are comparable to culture plastic; however, they are 15% worse than the surfaces of the
TiNbTaZr medical alloy.

Figure 15. The effect of material AP-ZnO on the main characteristics of the growth and development
of cell cultures. (A) Effect of material AP-ZnO on cell viability. (B) Effect of material AP-ZnO on
the mitotic index of the cell. (C) Effect of material AP-ZnO on cell culture density. (D) Effect of
material AP-ZnO on the rate of colonization of the available area. TiNbTaZr is a medical alloy based
on the elements titanium, niobium, tantalum, and zirconium. * indicates a significant difference at
5% level in comparison with the control (p < 0.05). ** indicates a significant difference at 5% level in
comparison with the group TiNbTaZr (p < 0.05).

4. Discussion

In this work, using the additive technology, a thin, acrylic polymer with a nano-
sized ZnO coating was obtained. The coating was examined using scanning electron
microscopy (Figure 5), atomic force microscopy (Figure 6), modulation interference mi-
croscopy (Figure 7), and laser microscopy (Figure 8). It was shown that the most adequate
method for obtaining information about the coating is modulation interference microscopy.
Using this method, it was possible to show that during deposition, zinc oxide is distributed
on the plastic in the form of oriented stripes (Figure 7A). It looks like a flat nanorods fused
into a polymer. This achievement is based on: (1) selection of polymer and (2) fine tuning
of the installation for sputter deposition. The attachment of the zinc oxide nanorods to the
polymer is extremely strong. Abrasion of such a wire will occur only with abrasion of the
polymer. In principle, ZnO nanorods were obtained earlier [38]. However, in this work, the
nanorods were obtained by magnetron sputter deposition onto the sample. In this work,
we investigated two types of polymers (surface coverage by 25 and 50%). In principle, the
method we propose makes it possible to achieve any filling of the polymer surface.

It was shown earlier that zinc oxide coatings and crystals are capable of intense lumi-
nescence [39]. The coating we applied also exhibits powerful luminescence when excited
at wavelengths close to 210 and 406 nm (Figure 10). When the coating is excited in the ul-
traviolet range, the material luminesces in the entire wavelength range from 280 to 700 nm,
with a pronounced maximum luminescence intensity at 430 nm. It is known that plants
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photosynthesize most efficiently in the spectral ranges of 400–490 nm and 630–710 nm [40];
that is, the AP-ZnO material can potentially increase plant productivity. Currently, a large
number of photoconversion materials are known [41–46]. At the same time, not many
materials can boast of an increase in biomass productivity by 30%. Usually, the maximum
luminescence of zinc oxide is near 380–390 nm [47]. It is known that the geometry and
morphology of zinc oxide crystals mainly affect the luminescence intensity [48]. In this case,
the wavelength at which photoluminescence is observed largely depends on the properties
of the substrate on which zinc oxide is deposited [49,50]. The luminescence of zinc oxide
can even shift towards the yellow region of the spectrum [51].

It is known that generation of reactive oxygen species (ROS) is observed on the sur-
face of zinc oxide coatings in in-vitro systems [52]. It is known that an increase in the
intracellular concentration of ROS often leads to the development of oxidative stress [53]
associated with lipid peroxidation [54], oxidative modification of proteins [55], and nucleic
acids [56]. Damage to biological molecules is associated with processes, such as mutagen-
esis, carcinogenesis, teratogenesis, aging, etc. [57]. Intense ROS generation is potentially
dangerous for all living systems [58]. This is especially true of physiological conditions
associated with the development of diseases associated with oxidative stress [59]. In the
presence of deposited ZnO, intense generation of ROS was observed (Figure 12). Moreover,
the intensity of ROS generation is proportional to the degree of filling the material surface
with zinc oxide. A similar behavior was observed in a large number of other systems in the
presence of variable valence cations [60].

It is known that ROS formed under the action of external factors or endogenously
are capable of damaging biological molecules and supramolecular formations [61,62]. The
effect of the AP-ZnO material on the generation of such damage to proteins as long-lived,
active forms of proteins was studied. Usually, long-lived, active forms of proteins are
understood to mean long-lived protein radicals and protein hydroperoxides. It is known
that long-lived, active forms of proteins can cause damage to nucleic acids [63]. In addition,
they are one of the reasons for the prolongation of oxidative stress [64]. We have shown
that the coating based on ZnO leads to the intensive formation of long-lived, active forms of
proteins (Figure 13). It has also been shown that the AP-ZnO material leads to the formation
of 8-oxoguanine in DNA, a key biomarker of oxidative DNA damage. 8-oxoguanine has the
properties of ambiguous coding and can lead to the formation of mismatched nucleotides
with adenine, which in turn makes GC-TA transversion possible [65]. In mammals, there
are at least four complex mechanisms for removing 8-oxoguanine from DNA and for
preventing its incorporation into DNA [66]. The presence of such a number of duplicating
mechanisms suggests that the cell perceives 8-oxoguanine as an extremely serious threat
that must be quickly eliminated [67].

Zinc, as a chemical element, is a rather toxic compound [68]. Fundamentally, the
antibacterial activity of the AP-ZnO material (Figure 14) can be explained by several
reasons: disruption of the cell membrane [69], binding to proteins and DNA [70], formation
of reactive oxygen species (ROS) [71], impaired amplification of bacterial DNA [70], and
changes (more often, suppression) of expression in a wide range of genes [72]. Interestingly,
with a pronounced antibacterial activity, AP-ZnO materials have almost no effect on the
growth, development, and ability to colonize the surfaces of eukaryotic cells (Figure 15). It
was found that cells growing on the TiNbTaZn medical alloy and on the AP-ZnO material
have similar growth and development indicators. It should be noted that alloys based on
TiNbTaZn are quite modern and advanced alloys [73,74]. It was shown that alloys based
on TiNbTaZn have better characteristics than the widely used alloy nitinol [75]. Thus, a
technology has been developed for producing nanoscale-oriented zinc oxide nanorods on
an acrylic polymer. The nanorods are partially fused into the polymer. It was found that
the reproduction of microorganisms on the material AP-ZnO is significantly hampered. At
the same time, eukaryotic cells of animals grow and develop without hindrance on the
developed coating. The use of AP-ZnO as an affordable, cheap, and non-toxic nanomaterial
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for the creation of antibacterial coatings that prevent the appearance of biofilms seems to
be very promising for a number of industries.
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