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ABSTRACT: We perform benchmark calculations of the
Bethe−Salpeter vertical excitation energies for the set of 28
molecules constituting the well-known Thiel’s set, comple-
mented by a series of small molecules representative of the dye
chemistry field. We show that Bethe−Salpeter calculations
based on a molecular orbital energy spectrum obtained with
non-self-consistent G0W0 calculations starting from semilocal
DFT functionals dramatically underestimate the transition
energies. Starting from the popular PBE0 hybrid functional
significantly improves the results even though this leads to an
average −0.59 eV redshift compared to reference calculations
for Thiel’s set. It is shown, however, that a simple self-consistent scheme at the GW level, with an update of the quasiparticle
energies, not only leads to a much better agreement with reference values, but also significantly reduces the impact of the starting
DFT functional. On average, the Bethe−Salpeter scheme based on self-consistent GW calculations comes close to the best time-
dependent DFT calculations with the PBE0 functional with a 0.98 correlation coefficient and a 0.18 (0.25) eV mean absolute
deviation compared to TD-PBE0 (theoretical best estimates) with a tendency to be red-shifted. We also observe that TD-DFT
and the standard adiabatic Bethe−Salpeter implementation may differ significantly for states implying a large multiple excitation
character.

1. INTRODUCTION

The accurate calculation of excited-state properties remains one
of the major challenges in theoretical chemistry. Among the
popular approaches in the field, one finds several single-
reference ab initio theories (e.g., time-dependent density
functional theory (TD-DFT),1,2 algebraic diagrammatic con-
struction (ADC),3−5 equation-of-motion coupled cluster
(EOM-CC),6−8 and symmetry adapted cluster configuration
interaction (SAC−CI))9,10 as well as multireference schemes
(e.g., complete active space second-order perturbation theory
(CAS-PT2)11 and multi-reference configuration interaction
(MR-CI)12). For a given problem, selecting the most efficient
theory in terms of accuracy/effort ratio is not straightforward.
This explains why, in recent years, there have been a wide
variety of benchmark studies designed to evaluate the pros and
cons of theoretical models in the framework of the
determination of transition energies between electronic states.
Among the sets of molecules used to perform these
benchmarks, the set defined in 2008 by Thiel and his co-
workers13−18 certainly remains the most widely investigated. It
is constituted of 28 small representative molecules for which a
large number of both singlet and triplet excited states have been

computed on a frozen ground-state geometry obtained at the
MP2/6-31G(d) level. In the original work, Schreiber et al.
defined theoretical best estimates (TBE) for 104 singlet-singlet
transitions as well as 63 singlet-triplet transitions.13 These TBE
values were obtained either from reference literature values or
from calculations performed with CAS-PT2, CC2, EOM-
CCSD, and CC3 theories using the TZVP basis set.13 In 2010,
Thiel and co-workers refined their own TBE using the aug-cc-
pVTZ atomic basis set for both CAS-PT218 and CC17

calculations. This led to the so-called TBE-2 estimates that
are used as reference values here. These TBE and/or TBE-2
references were applied previously to benchmark semiempricial
methods,16,19,20 to compare the merits of iterative and non-
iterative triples in third-order coupled-cluster estimations,15 to
test several wave function schemes based on CC or ADC21,22 as
well as to appraise the performances of a large panel of TD-
DFT approaches.14,19,23−35

The present study is devoted to the evaluation of the merits
of a family of techniques, namely, the many-body GW36 and
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Bethe−Salpeter37−39 formalisms, for the study of the vertical
transition energies in isolated organic molecules. These
methodologies pertain to a specific group of many-body
perturbation techniques that were not initially developed to
tackle gas phase small- or medium-sized organic molecules.
Indeed, the GW formalism was first used and tested to
determine the electronic properties of the electronic jellium
model36 with first ab initio implementation performed for the
accurate calculations of the band structure of simple semi-
conductors or insulators.40,41 Concerning the Bethe−Salpeter
Equation (BSE) formalism, it was initially derived in nuclear
physics42 before being imported to the field of semiconductor
physics at the semiempirical37−39 and later ab initio43−45 levels
of theory to determine the optical properties of extended
semiconductors, even though one of the first systems to be
tested was the silane molecule.
Recently, the use of the GW and BSE formalisms for the

calculation of the vertical excitation energies of gas phase
organic molecules has become more widespread46−67 with the
study of fullerenes, porphyrins, organic dyes, chromophores,
and so forth. In particular, it was shown that one of the specific
problems that the conventional TD-DFT formalism faces,68,69

namely, difficulties in describing charge-transfer excitations,
could be very efficiently and accurately cured by the BSE
formalism. This has indeed been demonstrated in an increasing
number of studies for both intramolecular52,57,59 and
intermolecular54−56,62 charge-transfer excitations going from
paradigmatic systems, such as dipeptides,52,59 up to “real-life”
donor−acceptor complexes, including fullerene/polymer ag-
gregates of interest for photovoltaic applications.55,56,62,66 In
addition, the BSE approach was also found to be accurate for
cyanine derivatives,63,64 another family of compounds partic-
ularly challenging for TD-DFT.70

We underline that to date, the results of GW and BSE
calculations were generally validated through comparisons with
experimental data with the limit that theoretical vertical
excitation energies have often no experimental counterpart.
Indeed, only in a few specific studies were comparisons of BSE
with high-level quantum-chemistry techniques, such as
CASPT2 or EOM-CC, performed.52,59,63 The present paper
thus aims to provide further assessment of the pros and cons of
GW and BSE formalisms in the framework of molecular
excitations using both Thiel’s reference values as well as an
additional group of molecules relevant for dye chemistry.

2. FORMALISMS
The calculation of the optical excitations within the present
GW/BSE scheme proceeds in two steps. One first performs a
GW calculation that aims at providing accurate occupied/virtual
electronic energy levels, labeled here below quasiparticle
energies, including the ionization potential and electronic
affinity in particular. In a second step, such output quasiparticle
energies and the calculated screened-Coulomb potential W
serve as an input to the Bethe−Salpeter equation that aims at
providing neutral excitations by calculating the electron−hole
interaction in particular. Our methodology section reflects this
two-step scheme, presenting first the GW formalism and
subsequently the Bethe−Salpeter equation.
2.1. Quasiparticle GW Formalism. The quasiparticle

(QP) formalism, namely the mapping of the true many-body
problem onto a single (quasi)particle framework, provides a
formal background for obtaining QP energies, that is the
electronic energy levels associated with occupied or virtual

states as measured by direct and inverse photoemission. The
associated eigenvalue equation reads

∫
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where we introduce a general Σ(r, r′; E) self-energy operator
for the exchange and correlation contribution. The self-energy
operator can be shown to be in general nonlocal, energy-
dependent, and non-Hermitian, such that the corresponding
eigenstates present an imaginary part interpreted as the lifetime
of the quasiparticles with respect to electron−electron
scattering.
Adopting Schwinger’s functional derivative approach to the

many-electron problem,71 Hedin36 showed that the self-energy
can be given by a set of coupled equations relating self-
consistently the one-body Green’s function, G, the screened-
Coulomb potential, W, and the irreducible polarizability, P

∫= + ΣG G d G G(12) (12) (34) (13) (34) (42)0 0 (2)

∫Σ = Γi d G W(12) (34) (13) (32; 4) (41)
(3)

∫= +W v d v P W(12) (12) (34) (13) (34) (42)
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(5)
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where v(12) = v(r1,r2)δ(t1 − t2) is the bare Coulomb potential,
ΔΓ(34; 2) = Γ(12; 3) − δ(12)δ(13), and Γ is the 3-body
vertex correction. Such a set of equations can in principle be
solved iteratively, starting from a zeroth-order system where the
self-energy is zero, namely, the Hartree mean-field solution,
yielding to first order: Γ(12; 3) = δ(12)δ(13). This simple
approximation for the vertex correction yields the famous GW
approximation for the self-energy,36 which can be written in the
energy representation as
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where sgn is the sign function, and 0+ is a small positive
infinitesimal. We have also introduced the zeroth-order one-
body (εn,ϕn) mean-field eigenstates. P0(r,r′; ω) is the
irreducible polarizability (the f i/j are the occupation factors)
whereas W̃ = (W − v). The summations over occupied and
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empty states lead to an O(N4) scaling for GW calculations with
respect to system size.
In practice, the mean-field starting point is never the Hartree

solution but more traditionally DFT Kohn−Sham eigenstates,
which in general represent the “best available” mean-field
starting point. This leads to the standard “single-shot
perturbative” G0W0 treatment, where the exchange-correlation
contribution to the DFT Kohn−Sham eigenvalues is replaced
by the GW self-energy operator expectation value onto the
“frozen” Kohn−Sham DFT eigenstates

ε ϕ ϕ= + ⟨ Σ − ⟩E E v( )n n n
GW

n n
QP DFT DFT QP XC,DFT DFT

(11)

Such a formulation for the search of the quasiparticle energies is
consistent with first-order perturbation theory, assuming in
particular, as discussed here below, that the self-energy operator
is diagonal in the Kohn−Sham basis.40 Taking the local density
approximation (LDA) to the exchange-correlation potential
vXC,DFT, for example, leads to the so-called G0W0@LDA
scheme, the most common approach for GW calculations in
solids.40,41 Next, we explore the merits of the non-self-
consistent G0W0@PBE and G0W0@PBE0 schemes, namely,
single-shot G0W0 calculations aimed at correcting the Kohn−
Sham PBE72 and PBE073,74 electronic energy levels.
As shown below and demonstrated in several recent

studies,58,75−85 the standard non-self-consistent G0W0@LDA
or G0W0@PBE do not offer sufficient accuracy for isolated
molecules, leading to underestimated ionization potential (IP)
and HOMO−LUMO gaps. This can be ascribed to the fact that
the starting point (zeroth-order) Kohn−Sham spectrum used
to build the one-body Green’s function and screening potential
W is too inaccurate when using the LDA or PBE exchange-
correlation (XC) functionals, such that a simple “single-shot”
perturbative treatment is not enough. Solutions to this problem
may consist of finding the “best” (optimized) DFT starting
point (e.g., using hybrid functionals with an “optimal” amount
of exact exchange)79,81 or starting with generalized Kohn−
Sham formulations designed to provide accurate frontier orbital
energies.86,87

Another approach to improve the calculated quasiparticle
energies is to use self-consistent GW calculations that offer the
extra advantage of removing the starting point dependency and
the need to optimize the Kohn−Sham functional for a given
family of systems. By self-consistency, we mean that the
corrected eigenvalues, and potentially eigenfunctions as well,
are reinjected into the calculation of G, W, and Σ. Such an
approach, in its various formulations, has been shown to
significantly improve the accuracy of the GW formalism in
many extended solids where single-shot G0W0 calculations are
unsatisfying.76,88−91 For molecular systems, much less data are
available, but self-consistency has been demonstrated to
improve on the standard non-self-consistent G0W0@PBE
approach, though it remains unclear whether such success is
systematic compared to single-shot G0W0 calculations starting
from a hybrid functional including an “optimal” amount of
exact exchange.65,76,84,85 We note that such a “best starting
point” for the single-shot G0W0 calculation was shown to be
system dependent, because Hartree−Fock appears to be an
excellent starting point for very small molecules,75−77 whereas
PBE0 with ∼25% exact exchange would be much more accurate
for medium-sized compounds.80,82,92

We explore here a simple and computationally efficient self-
consistent strategy that allows for the treatment of large

systems. Namely, we explore a “partially” self-consistent
scheme, where only the corrected eigenvalues are reinjected
in the construction of the polarizability P and the Green’s
function G. Once the updated self-energy is obtained, the
quasiparticle eq 11 is solved again, yielding updated
quasiparticle energies. Such a scheme was shown by several
groups to provide vastly improved ionization potentials and
HOMO−LUMO gaps58,77,93 compared to G0W0@LDA or
G0W0@PBE and subsequently to improve Bethe−Salpeter
excitation energies.56,58,77 The partial nature of the self-
consistency is justified below by showing that “freezing” (not
updating) the starting-point Kohn−Sham wave functions has a
very limited impact on the final result. Such a simple partially
self-consistent scheme is labeled evGW@PBE or evGW@PBE0
in the following when starting from PBE or PBE0 Kohn−Sham
eigenstates, respectively.

2.2. The Bethe−Salpeter equation. We introduce here
the BSE formalism in the language of linear response, which
allows a direct connection with TD-DFT. We also highlight the
basic approximations used in standard BSE calculations,
approximations that one may have to question in light of the
following results. We introduce the standard polarizability χ and
its four-point generalization L, such that

χ = ∂
∂

= ∂
∂

n
V

L
G

U
(1, 2)

(1)
(2)

and (1234)
(1, 2)

(3, 4)ext ext

(12)

where, for example, 1 = (r1, t1) is a space-time coordinate, n and
Vext are the standard charge density and external potential
common with the language of TD-DFT, respectively, G is the
one-body time-ordered Green’s function, and Uext is a nonlocal
external potential. Because the diagonal of G reduces to the
charge density, it stems that χ(1, 2) = L(11, 22). This simple
relation offers a fruitful direction to bridge linear response TD-
DFT with Green’s function many-body perturbation theory.
For this to proceed further, taking the derivative of the

relation relating G, G0, and Σ (see above) with respect to the
external potential Uext leads to a Dyson-like self-consistent
equation for L, such that

∫= +L L d L K L(12, 34) (12, 34) (5678) (12, 56) (56, 78) (78, 34)0 0

(13)

δ δ= + ∂Σ
∂

K v
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(56, 78) (57) (56) (78)
(56)
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where v is the bare Coulomb potential. Such an equation
resembles formally the fundamental TD-DFT equation for χ,
replacing the charge density derivative of the XC potential by
the (∂Σ/∂G) four-point generalized “kernel”. Although this
equation is exact, one now proceeds with approximations for
the self-energy operator. The spirit of the BSE formalism in
condensed matter physics is to use the GW approximation for
the self-energy Σ with the obvious derivation

∂
∂

= + ∂
∂

GW
G

W
W
G

This is consistent with the use of the GW approximation for
calculating the occupied and virtual energy levels that will be
used to build the optical excitations. It is assumed that in the
derivative of ΣGW, one may neglect the (∂W/∂G) variations.
Such an approximation has been used since the very early days
of the Bethe−Salpeter formalism applied to condensed-matter
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physics with a justification that can be traced back to the
original paper by Sham and Rice.37 The proposed argument is
that (δW/δG) is a vertex correction that can be neglected
consistently with the approximation leading to the GW
formalism, even though no explicit numerical evaluation of
such a term can be found in the literature for real systems. As a
result, the four-point kernel K reduces to

δ δ δ δ= −K v W(56,78) (57) (56) (78) (56) (57) (68) (15)

Finally, due to computational cost, the standard implementa-
tion of the BSE formalism assumes a static (frequency-
independent) approximation for the screened Coulomb
potential, namely, W(56) = W(r5,r6)δ(t5-t6). Such an
approximation is equivalent to assuming an adiabatic kernel
within the TD-DFT framework. It is known to significantly
affect the calculations of transitions with multiple-excitation
character because a static kernel is expected to shift the energy
of the single-electron transitions contained in the independent-
electron susceptibility without creating new poles associated
with multiple excitations.94,95 It is worth emphasizing at this
stage however that the “full” (dynamical) BSE formalism exists
on paper and has been explored under various approxima-
tions,96,97 but the cost associated with such an extension
impedes its systematic application to large molecules.
As a final step, we express the L operator in transition space

between occupied and virtual orbitals

= − ′L L t tr r r r(12, 34) ( , , , , )1 2 3 4 (16)

ω ω ϕ ϕ ϕ ϕ= * *L Lr r r r r r r r( , , , ; ) ( ) ( ) ( ) ( ) ( )kl
ij

i j k l1 2 3 4 1 2 3 4

(17)

where we have used the fact that a static screened-exchange W
leads to a “four-point one-time” only L(t−t′) operator, that is a
one-frequency L(ω) functional in the energy domain. Such a
treatment leads to a formulation that resembles the so-called
Casida’s equation to TD-DFT,2 and the optical excitations can
be obtained as the eigenvalues of the Bethe−Salpeter
eigenvalue problem that reads in transition space

λ
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where the indexes (i,j) and (a,b) indicate the occupied and
virtual orbitals, and (re,rh) indicate the electron and hole
positions, respectively. In this block notation, the vector [ϕa(re)
ϕi(rh)] represents all excitations (e.g., note that ϕa(re) means
that an electron is put into a virtual orbital), whereas the vector
[ϕi(re) ϕa(rh)] represents all de-excitations. As such, R (R*)
describes the resonant coupling between electron−hole
excitations (de-excitations), and the off-diagonal block C and
C* account for nonresonant coupling between excitations and
de-excitations. The TD-DFT and BSE resonant parts can be
directly compared, and we write here the Bethe−Salpeter
formulation in the approximation listed above

δ δ ε ε
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ϕ ϕ ϕ ϕ
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We use the notation ⟨...⟩ for the ∫ ∫ dr dr′ double integral. The
middle (last) line gathers terms with occupied and virtual

orbitals taken at different (identical) integration variables with
the important consequence that the W matrix elements do not
vanish for spatially separated electrons and holes, leading in
particular to the correct Mulliken limit for charge-transfer
excitations. For isolated systems, the wave functions can be
taken to be real. The resonant terms have been written above
for singlet excitations that will be the focus of the present study.
Obtaining the Bethe−Salpeter vertical excitation energies
comes thus at the same price as the standard TD-DFT within
Casida’s formulation, and we use recursive techniques to obtain
the lowest desired excitation energies. The eigenvectors
solution of the Bethe−Salpeter equation yields the electron−
hole two-body wave functions ψeh(re, rh) with the standard
interpretation that it represents the amplitude of probability of
finding an electron and a hole in (re, rh).

2.3. Computational Details. For the molecules of Thiel’s
set, we have used the MP2/6-31G(d) geometries supplied in
ref 13 and selected the most refined best estimates, the so-
called TBE-2 (see Introduction), as reference values. Our GW
calculations are performed at the all-electron level with the aug-
cc-pVTZ correlation consistent atomic basis set98,99 using the
FIESTA code,54,77 implementing resolution-of-the-identity (RI)
techniques. The input Kohn−Sham eigenstates are generated
with the NWChem package.100 The implemented RI or
Coulomb fitting technique expresses four-center integrals in
terms of three-center integrals combined with the aug-cc-
pVTZ-RI basis by Weigend and co-workers.101 We provide in
the Supporting Information (SI) a comparison with aug-cc-
pVQZ calculations for butadiene, benzene, benzoquinone, and
adenine, namely, one representative of each chemical family in
Thiel’s set.
All virtual states are included in the construction of both the

polarizability P and the self-energy Σ. The energy integration
required to calculate the correlation self-energy is achieved by
contour deformation techniques and does not involve any
plasmon-pole approximation. Because the correlation contri-
bution to the self-energy Σ(EQP) must be calculated at the
targeted (unknown) EQP quasiparticle energy, we calculate
Σ(E) on a fine energy grid to solve eq 11. We do not advocate
the standard linear extrapolation from the value of the self-
energy at the input Kohn−Sham DFT energy, which may lead
to sizable errors. We typically correct at the GW level all
occupied valence states and the same number of virtual states
above the gap, even though convergency tests show that for
medium size molecules, such as naphthalene or nucleobase,
correcting only 10 to 20 occupied and virtual states is enough.
For the BSE calculations, performed with the FIESTA code, all
valence and virtual states are included in the electron−hole
product space within which the electronic excitations are built.
We go beyond the Tamm−Dancoff approximation in the
present study, namely, we mix resonant and nonresonant
contributions.
To identify the transitions, we ran TD-PBE0 calculations

with Gaussian09102 and CC2 calculations with Turbomole,103

both using the aug-cc-pVTZ atomic basis set. Results (orbital
compositions, oscillator strengths, symmetry, etc.) were
compared to previous calculations of Thiel’s group17,18 to
establish the correct nature of the excited states. As noted in the
study by Thiel and co-workers devoted to basis size effects,17

the identification of transitions generated by two different
approaches is more complicated with the aug-cc-pVTZ atomic
basis set, as compared with the diffuse-less TZVP atomic basis
set, which yields less excited states. We therefore followed ref
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17 and discarded the few states located at high energy for which
the correspondence between TD-PBE0/CC2 and BSE data
were not convincing. As a result, we keep 90 transitions for
which the identification between the various single-shot and
self-consistent GW/BSE could be safely performed with respect
to both TD-PBE0 and TBE-2. This represents 86% of the 104
transitions for which TBE-2 data are available. Concerning
comparisons between BSE and TD-PBE0, our statistics are
based on 157 transitions because with the aug-cc-pVTZ basis,
several transitions intercalate between the excitations listed in
the original TZVP study.13 We underline that PBE0, which
contains 25% of exact exchange,73,74 was selected because it was
shown to be particularly accurate for Thiel’s set of
compounds.24 The selection of another exchange-correlation
functional for the TD-DFT calculations could lead to strongly
different estimates, a topic discussed in detail previously and
summarized below in section 3.2.5.
For the set of molecules treated in section 3.3, we have first

optimized the ground-state geometries at the MP2/aug-cc-
pVTZ level using Gaussian 09,102 applying a tight convergence
threshold (residual rms force <1.0 × 10−5 au). Next, theoretical
best estimates were obtained from CC2, CCSD, CCSDR(3),
and CC3 calculations using both aug-cc-pVDZ and aug-cc-
pVTZ (see section 3.3 for details). These EOM-CC
calculations were obtained with the Dalton code.104 The TD-
PBE0 and BSE energies have been obtained with the aug-cc-
pVTZ atomic basis set as explained above.

3. RESULTS
3.1. Importance of Self-Consistency: The Case of the

Nucleobase. To introduce our methodology and the
calculations that are carried out below, we first address the
specific case of the nucleobase, commenting on both the
electronic and optical properties. As emphasized in the
Introduction, the Bethe−Salpeter calculation of the optical
properties starts from a GW description of the occupied and
virtual electronic energy levels. Even though the present paper
focuses on optical excitations, the availability of CAS-PT2 and
EOM-CCSD(T) vertical ionization potential (IP)105 of the
nucleobase offers an excellent position to start illustrating the
importance of self-consistency at the GW level.

We compare in Table 1 the IP of the nucleobases calculated
non-self-consistently starting from PBE and PBE0 Kohn−Sham
eigenstates, using the G0W0@PBE and G0W0@PBE0 ap-
proaches, to the IP obtained through updated quasiparticle
energies labeled evGW@PBE and evGW@PBE0. For the
“standard” G0W0@PBE technique, it clearly appears that the IP
are dramatically too small, leading to a mean absolute error
(MAE) of 0.51 eV compared to the CCSD(T) benchmarks.
Such a large underestimation of the G0W0 IP when starting
from (semi)local functional Kohn−Sham eigenstates was
previously reported for various sets of compounds.76,77,82

This originates in the too inaccurate initial Kohn−Sham
spectrum. Subsequently, several solutions have been explored.
A first solution consists of optimizing the Kohn−Sham

starting point81 to provide a much better zeroth-order solution
to proceed with the G0W0 perturbative approach. In particular,
the use of the global hybrid PBE0 functional has already been
shown to provide very good results for a few systems.76,82,92

This is indeed what we observe in Table 1 with the MAE
reduced to 0.16 eV with values approaching the CCSD(T)
reference from below. Our study confirms previous reports that
the IPs are described much better when using the PBE0
functional to define the initial eigenstates. We show below that
this conclusion does not necessarily apply to optical properties.
Though excellent frontier orbital energies can be obtained

with optimally tuned functionals,86,87,93 the interest of the self-
consistent approach can be illustrated for the IP by comparing
evGW@PBE and evGW@PBE0 data to the reference
calculations. The agreement is excellent with MAEs of 0.14
and 0.15 eV, respectively. The good agreement between
evGW@LDA and CCSD(T) calculations for several states
around the gap was also illustrated in ref 78. A second
important feature is that the partially self-consistent evGW@
PBE and evGW@PBE0 techniques led to extremely similar
results. In other words, the “starting point” dependency is
dramatically reduced, and the need to optimize the XC
functional for a given class of compounds can be bypassed. This
comes at a somehow higher computational cost, however,
because ∼5 iterations are necessary to reach convergence. As
emphasized above in section 2.1, the remaining slight
discrepancy lies in the difference between the PBE and PBE0

Table 1. Theoretical GW Ionization Potentials (IP) and BSE Lowest Singlet Excitation Energies (S1) for the Nucleobase
Obtained with the aug-cc-pVTZ Atomic Basis Seta

G0W0@ ev(G)W0 evGW@

PBE PBE0 @PBE PBE PBE0 ref values ref

Ionization Potential (IP)
Cyt 8.16 (8.18) 8.56 8.59 8.90 8.90 8.73/8.76 105
Thy 8.60 (8.63) 8.95 8.88 9.18 9.23 9.07/9.04 105
Ura 8.98 (8.99) 9.35 9.32 9.60 9.65 9.42/9.43 105
Ade 7.84 (7.99) 8.11 8.11 8.30 8.33 8.37/8.40 105
MAE 0.51 0.16 0.18 0.14 0.15

Lowest Singlet Excitation S1
Cyt 3.54 4.12 4.11 4.53 4.57 4.66 18
Thy 3.47 4.20 4.42 4.79 4.72 4.82 18
Ura 3.44 4.16 4.40 4.75 4.70 5.00 18
Ade 4.08 4.59 4.54 4.83 4.93 5.12 18
MAE 1.27 0.63 0.53 0.17 0.17

aAll values are in eV. The GW IP data are compared to the CAS-PT2/CCSD(T) results of ref 105. The mean absolute errors take the CCSD(T)
value as the reference for the ionization potential, and the TBE-2 theoretical estimate of ref 18 for the S1 transition energy. The G0W0@PBE value in
parentheses refers to the “planewave/periodic boundary condition” calculations by Qian et al. in ref 106. The mean absolute error (MAE) are given
for both IP and transition energies.
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Kohn−Sham wave functions that are not self-consistently
updated in the partial self-consistent scheme adopted here.
We now turn to the transitions of the lowest lying singlet S1

states, again comparing BSE calculations starting from G0W0@
PBE or G0W0@PBE0 eigenstates to BSE results starting from
evGW@PBE and evGW@PBE0 calculations. As above, we
observe that the BSE/G0W0@PBE data provide very poor
results, leading to dramatically too small excitation energies
with an MAE of 1.27 eV. The BSE/G0W0@PBE0 estimates are
more accurate though the deviations remain large (MAE of
0.63 eV). The two self-consistent approaches, namely BSE/
evGW@PBE and BSE/evGW@PBE0, yield a much better
agreement with the reference data and a strongly reduced
starting point dependency. This is why we adopt this self-
consistent scheme in the following, systematically starting both
from PBE and PBE0 eigenstates to check for the consistency of
this approach. We also provide the popular BSE/G0W0@PBE0
results for the sake of comparison.
To conclude, let us consider the ev(G)W0 approach, namely,

an intermediate scheme where only the Green’s function G is
self-consistently updated while the screened-Coulomb potential
is kept frozen. Such an approach was advocated in solids107,108

and further presents the advantage that the polarizability matrix
does not need to be recalculated. Taking as a starting point the
PBE XC functional for which self-consistency is clearly needed,
the ev(G)W0 approach is found to significantly improve both
the IP and S1 estimates, even though a significant residual error
remains for the latter. Further, as shown in ref 109 for the
azabenzene family, a significant starting point dependency
remains in this intermediate scheme.
3.2. Thiel’s Set. We now turn to comparisons with the

TBE-2 values of Thiel’s set. The description of the molecules
can be found in Figure 1 of ref 13, which also provides the
atomic positions in the associated Supporting Information. We
divide our analysis in different subsets composed of compounds
belonging to the same chemical family. For all sets, we analyze
the Bethe−Salpeter data based on the non-self-consistent
G0W0@PBE0 approach and on the self-consistent evGW@PBE
and evGW@PBE0 schemes. Full data are provided in the SI.
These excitation energies are compared to TD-PBE0/aug-cc-
pVTZ results as well as to the TBE-2 theoretical best estimates
when available. The selection of PBE0 to perform the TD-DFT
reference calculations is justified by a previous benchmark of
TD-DFT performed for the Thiel set.24 In that work, it was
shown that among the 28 XC functionals considered, TD-PBE0

yields the smallest MAE (0.24 eV) and the largest correlation
or regression coefficient (r = 0.95) using Thiel’s TBE as
reference. Other XC functionals might deliver significantly
larger deviations, for example, an MAE of 0.53 eV with a nearly
systematic underestimation of the TBE values for TD-PBE and
an MAE of 0.31 eV with a tendency toward overestimation for
CAM-B3LYP.

3.2.1. Unsaturated Aliphatic Hydrocarbons. For the
unsaturated aliphatic hydrocarbons, the BSE and TD-PBE0
transitions have been considered up to the last transition for
which the TBE-2 values have been determined, leading to a
total of 29 transitions. The excitation energies, oscillator
strengths, and main characteristics of the states are given in the
SI. Our data are compiled in Figure 1, where statistics are
provided. Confirming our previous insight with the lowest lying
excitations for the nucleobase family, we found an excellent
correlation between the evGW@PBE and evGW@PBE0
energies with a correlation coefficient r of 0.993 and an MAE
of 0.09 eV (see Figure 1a). The close agreement between these
two data sets shows that the dependency on the starting point
DFT functional is dramatically reduced compared to standard
non self-consistent BSE approaches, indicating that the
discrepancies between the PBE and PBE0 wave functions that
are kept frozen in our approach do not significantly impact the
excitation energies.
The comparison between our BSE/evGW@PBE0 approach

(closed circles in Figure 1b,c) and the TD-PBE0 data also
reveals excellent correlation with a regression coefficient r of
0.984 and a small MAE of 0.11 eV. The largest deviation of 0.51
eV (indicated by a red arrow in Figure 1b) is associated with
the 21Ag (π−π*) transition in octatetraene. This is the
transition with the maximal weight of contributions from the
multiple excitations110 in the EOM-CC calculations of ref 13.
We comment on these specific states below.
The non-self-consistent BSE/G0W0@PBE0 approach (open

circles in Figure 1b) yields lower transition energies than both
the BSE/evGW@PBE0 and TD-PBE0 data with a mean
absolute deviation of 0.27 eV compared to TD-PBE0. This
conclusion is also confirmed by the histogram in Figure 2
showing the distribution of BSE transitions as a function of the
deviation with respect to TD-PBE0. Clearly, BSE/G0W0@PBE0
provides smaller values than TD-PBE0, whereas BSE/evGW@
PBE0 excitation energies are distributed around the TD-PBE0
values.

Figure 1. Unsaturated aliphatic hydrocarbons: plot of (a) BSE/evGW@PBE0 (closed circles) vs BSE/evGW@PBE, (b) BSE/evGW@PBE0 and
BSE/G0W0@PBE0 (open circles) vs TD-PBE0, and (c) BSE/evGW@PBE0 and TD-PBE0 (violet triangle) vs best theoretical estimates (TBE-2)
from ref 18. Energies are in eV. The regression coefficients r and MAE (in eV) are indicated. The red lines are the first diagonals as a visual reference.
The red arrow in (b) and the red arrow “1” in (c) indicate the 21Ag transition in octatetraene, and the red arrow “2” in (c) indicates the 21Ag
transition in hexatriene.
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We compare our data to TBE-2 in Figure 1c. The
discrepancies between BSE/evGW@PBE0 or TD-PBE0 with
the TBE-2 references are clearly larger than in the previous
graphs with correlation coefficients reduced to approximately
0.88 and 0.81 for the TD-PBE0 and BSE/evGW@PBE0
approaches, respectively, and an MAE of ∼0.48 eV for both
methods. Besides the case of the 21Ag transition in octatetraene
(red arrow “1” in Figure 1c), where the BSE/evGW@PBE0 is
∼1 eV too high in energy and clearly worse than the TD-PBE0
value, both approaches perform similarly compared to reference
wave function calculations. This is a first indication that BSE/
evGW@PBE0 and TD-PBE0 deviate significantly only for
transitions with multiple-excitation character despite the
adiabatic nature of the present TD-DFT and BSE implementa-
tions. EOM-CC calculations that include an explicit operator to
describe these multiple excitations, namely, excitations
involving the simultaneous promotion of more than one
electron in the virtual states, are expected to deliver a more
accurate picture of excited states presenting such character.
To start our discussion on this issue, we underline that for

the 21Ag transition in hexatriene, the aug-cc-pVTZ CC2 and
CCSDR(3) values are 6.43 and 6.09 eV, respectively,17 which
are 1.34 and 1.0 eV higher than the 5.09 eV TBE-2 value. For
this transition, the BSE/evGW@PBE0 (6.11 eV) results are
more accurate than CC2 and are very close to the CCSDR(3)
values. Similarly, for the 21Ag transition in octatetraene, the

CC2/aug-cc-pVTZ excitation energy is 5.74 eV,17 which is 1.27
eV above its TBE-2 counterpart (4.47 eV), whereas TD-PBE0
and BSE/evGW@PBE0 approaches overshoot the TBE-2
values by 0.53 and 1.05 eV, respectively. In other words, the
self-consistent BSE approach yield results that are closer to the
reference CC calculations than TD-PBE0 for the states with a
strong multiple-excitation character. Below, we will see other
examples confirming this observation.

3.2.2. Aromatic Hydrocarbons and Heterocycles. We now
consider the cyclic molecules contained in Thiel’s set, namely
11 molecules for a total of 70 transitions. We follow the same
procedure as above, starting by confirming the good agreement
between BSE/evGW@PBE and BSE/evGW@PBE0 figures to
validate the present self-consistent scheme. Indeed, as shown in
Figure 3a, the two sets of data agree with a large linear
regression coefficient (r = 0.998) and a small MAE (0.07 eV).
The agreement between BSE/evGW@PBE0 (closed circles

in Figure 3b) and TD-PBE0 is overall excellent with a
regression coefficient of 0.9815 and an MAE of 0.16 eV. In
contrast, the non-self-consistent BSE/G0W0@PBE0 scheme
yields much larger deviations compared to TD-PBE0 (MAE of
0.51 eV). A comparison of the self-consistent BSE/evGW@
PBE0 and TD-PBE0 results with the theoretical best estimates
(TBE-2) leads to the same MAE of 0.22 eV for both methods
(see Figure 3c) with a regression coefficient slightly in favor of
the former theory. The analysis of the histograms showing the
deviations of TD-PBE0 (Figure 4a) and BSE/evGW@PBE0
(Figure 4b) with respect to TBE-2 indicates that although both
peaked at approximately −0.15 eV, the TD-PBE0 (BSE) error
distribution tends to have a stronger weight at higher (lower)
energies.
The transitions for which TD-PBE0 overestimates the TBE-2

values by more than 0.3 eV are collected in Table 2, which
provides TD-PBE0, BSE/evGW@PBE0, and CC2 errors with
respect to the TBE-2 reference values. As can be seen from the
percent T1 values taken from ref 13, all of these transitions
imply a quite large weight (>10%) of multiple excitations.110

There is, as expected, a strong correlation between a large
multiexcitation character and the failure of TD-PBE0. This is
related to the adiabaticity of the TD-DFT kernel that does not
allow for the capture of multiple excitations.94,95 Even though
the present BSE implementation relies as well on a static
(adiabatic) approximation, the BSE excitation energies do not
undergo such a severe blueshift, confirming that BSE and TD-
PBE0 behave differently for these states. To be thorough, we
have repeated our calculations with the cc-pVTZ atomic basis

Figure 2. Histograms showing the number of transitions as a function
of the difference in energy (eV) with respect to TD-PBE0 data for the
(a) BSE/G0W0@PBE0 and (b) BSE/eGW@PBE0 results. The red
arrow indicates the 21Ag transition in octatetraene.

Figure 3. Aromatic compounds: plot of (a) BSE/evGW@PBE0 (closed circles) vs BSE/evGW@PBE, (b) BSE/evGW@PBE0 and BSE/G0W0@
PBE0 (open circles) vs TD-PBE0, and (c) BSE/evGW@PBE0 and TD-PBE0 (violet triangle) vs best theoretical estimates (TBE-2) from ref 18. See
Figure 1 caption for more details.
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set to check if possible intruder states could bias our analysis.
The difference between TD-PBE0 and BSE/evGW@PBE0
reduced from 0.55 to 0.51 eV for the 11B2u state of tetrazine,
which shows the largest discrepancy between the two
approaches. The second largest deviation (0.51 eV for the
11B2u state of pyrazine) is reduced to 0.41 eV. In short, removal
of the diffuse orbitals does not lead to the disappearance of the
differences between TD-PBE0 and BSE/evGW@PBE0.
Whereas the BSE excitation energies were larger than that of

TDPBE0 for the 21Ag transitions in hexatriene and octate-
traene, showing a significant multiexcitation character as well,
the BSE transition energies here stand significantly below their
TD-PBE0 counterpart in much better agreement with the TBE-
2 reference. It is certainly too early to provide a definitive
explanation for such a behavior, but we similarly observe that
CC2 energies were significantly larger than that of TD-PBE0
for the 21Ag transitions in hexatriene and octatetraene, whereas
here, on the contrary, both CC2 and BSE data stand at lower
energy, much closer to the TBE-2 references. Again, even
though “adiabatic” in its present implementation, the BSE
formalism yields transition energies closer to CC data for
transitions showing multiple-excitation character, the BSE

energies being even closer to TBE-2 values than their CC2
counterparts.

3.2.3. Aldehydes, Ketones, and Amides. The third family of
molecules in Thiel’s reference set is composed of representa-
tives of the aldehyde, ketone and amide families. We have
encountered specific problems for the amide derivatives: using
the aug-cc-pVTZ atomic basis set anomalously yields large
instability for the lowest lying 11A2′′ (n−π*) excitations within
the GW/BSE formalism. As can be seen in Table 3, this

problem is related to the presence of diffuse orbitals because
BSE and TD-PBE0 agree extremely well at the cc-pVTZ level.
Further, the augmentation of the atomic basis set significantly
increases the discrepancies between BSE/evGW@PBE and
BSE/evGW@PBE0 to values as large as 0.5 eV, which largely
exceed the typical 0.1 eV deviation found for most molecules.
This instability originates in the GW correction to the final state
of the transition, namely, the (LUMO+1) virtual state at the
aug-cc-pVTZ level, which is lowered by more than 1 eV when
switching to the augmented basis. For the sake of comparison,
the HOMO is lowered by only ∼0.1 eV. Such an instability is
tentatively attributed to the intercalation below the cc-pVTZ
LUMO of a diffuse (virtual) orbital upon basis augmentation,
which might not be well described (delocalized enough) with a
simple augmentation.111 Consequently, below, rather than
discarding the three amide molecules, we used the BSE/cc-
pVTZ values in our statistical analysis comparing them to the
corresponding TD-PBE0/cc-pVTZ values.
Under such a restriction, we recover the behavior observed

for the previous families, namely, that the BSE/evGW@PBE
and BSE/evGW@PBE0 transition energies come in very good
agreement with each other with a correlation coefficient close
to 1 and an MAE of 0.10 eV (see Figure 5a). It is obvious from
Figure 5b that inclusion of self-consistency increases the
transition energies, which is consistent with the previous
findings. The non-self-consistent BSE/G0W0@PBE0 data
underestimates the TD-PBE0 energies with an MAE of 0.37
eV and a mean signed error (MSE) of −0.35 eV. Contrary to
other families, we note here that the self-consistent BSE/
evGW@PBE0 tends to overestimate the TD-PBE0 energies
with an MAE of 0.30 eV and an MSE of +0.23 eV.
The advantage of self-consistency becomes clear, however,

when comparing with the TBE-2 data, because the BSE/
G0W0@PBE0 approach leads to 0.63 eV MAE discrepancy,
which is reduced to 0.24 eV with BSE/evGW@PBE0. Similarly,
the mean signed error with respect to TBE-2 reduces from
−0.63 to −0.07 eV upon switching on the self-consistency. A
comparison of BSE/evGW@PBE0 and TD-PBE0 values to
their TBE-2 counterparts is provided in Figure 5c. The two
approaches provide rather similar trends with a nevertheless
smaller MAE for the TD-PBE0 approach (0.18 eV) than for the
BSE model (0.24 eV). The TD-PBE0 r is also larger than its
BSE counterpart. The analysis of the histograms showing the
deviations of these two theories (Figure 6) confirms that TD-

Figure 4. Histograms showing the number of transitions as a function
of the difference in energy (eV) with respect to the theoretical TBE-2
best estimates data for (a) the TD-PBE0 and (b) BSE/evGW@PBE0
results for the derivatives of Figure 3. The dashed box in (a) indicates
the set of high lying TD-PBE0 excitations showing a large multiple-
excitation character.

Table 2. Error with Respect to the Theoretical Best Estimate
for Selected Transitions with Multiple Character As
Indicated by the T1 Diagnostic Taken from Thiel’s Study13

by Comparing the Present TD-PBE0 and BSE/evGW@PBE0
Calculations to the CC2 Estimates of Ref 17a

error vs TBE-2

CC3 (%T1) TD-PBE0 BSE CC2

pyridine 11B2 85.9 0.68 0.23 0.41
tetrazine 11B2u 84.6 0.52 −0.03 0.08
triazine 11A2′ 85.1 0.49 0.05 0.09
pyridazine 21A1 85.2 0.44 −0.04 0.12
pyrimidine 11B2 85.7 0.44 −0.03 0.12
pyrazine 11B2u 86.2 0.40 −0.11 0.10
benzene 11B2u 85.8 0.37 −0.04 0.14
naphthalene 21Ag 82.2 0.31 −0.06 0.11

aAll errors are in eV and have been determined with the aug-cc-pVTZ
atomic basis set.

Table 3. Amide 11A2′′ (n−π*) excitations with three atomic
basis sets. TD-PBE0 value and, in parentheses, the difference
between the TD-PBE0 and BSE/evGW@PBE0 values

atomic basis set formamide acetamine propanamide

aug-cc-pVTZ 5.51 (0.29) 5.54 (0.98) 5.57 (0.99)
cc-pVTZ 5.61 (0.03) 5.64 (0.08) 5.67 (0.12)
cc-pVDZ 5.64 (−0.06) 5.65 (0.04) 5.70 (0.06)
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PBE0 provides less disperse estimates but with a stronger
tendency toward underestimation than BSE. Indeed, the MSE
attains −0.16 eV with TD-PBE0 but only −0.07 eV with BSE/
evGW@PBE0.
3.2.4. Nucleobase. We conclude the exploration of Thiel’s

set of families by returning to the nucleobase case, now
exploring higher energy excitations. We provide comparisons
for the 20 states for which TBE-2 values are available in Figure
7. Following the same comparison sequence as before, we first
find that the BSE/evGW@PBE0 and BSE/evGW@PBE data

are extremely similar to a mean absolute deviation of 0.06 eV
with a very large linear regression coefficient r of 0.990. Next,
the analysis of Figure 7b confirms that the non-self-consistent
BSE/G0W0@PBE0 scheme underestimates the TD-PBE0 data
by an average of 0.47 eV, whereas the self-consistent BSE/
evG0W0@PBE0 approach gives a much smaller difference with
an MAE of 0.12 eV and an MSE of −0.02 eV, indicating a
trifling redshift compared to TD-PBE0. Finally, the comparison
with TBE-2 in Figure 7c indicates that both BSE/evGW@PBE0
and TD-PBE0 provide rather accurate estimates with MAEs of
0.17 and 0.13 eV, respectively, and a linear regression
coefficient that is larger for TD-PBE0. The BSE/evGW@
PBE0 statistics are mainly impaired by two outliers compared
to TBE-2, and these correspond to the 11A″ et 21A″ states of
cytosine. It is for this latter state that the identification between
BSE and TD-PBE0 was less obvious. In short, in the absence of
excitations showing clear multiple character, the TD-DFT and
BSE formalisms perform well, provided that self-consistency is
accounted for in the latter.

3.2.5. Statistics for the Full Set. For the full set of excited-
states, we obtained a deviation between the BSE/evGW@PBE
and BSE/evGW@PBE0 estimates limited to 0.08 eV with a
very large correlation coefficient (0.9979). Similar to that for
the individual chemical families analyzed above, the use of self-
consistency not only decreases the dependence to the original
Kohn−Sham eigenvalues but also drastically diminishes the
discrepancy with TD-PBE0 that amounts to 0.18 eV for BSE/
evGW@PBE0 compared with 0.44 eV for BSE/G0W0@PBE0.
In Table 4 and Figure 8, we provide a statistical analysis
considering all families. Clearly, the non-self-consistent BSE/

Figure 5. Aldehydes, ketones, and amides: plot of (a) BSE/evGW@PBE0 (closed circles) vs BSE/evGW@PBE, (b) BSE/evGW@PBE0 and BSE/
G0W0@PBE0 (open circles) vs TD-PBE0, and (c) BSE/evGW@PBE0 and TD-PBE0 (violet triangle) vs best theoretical estimates (TBE-2) from ref
18. See Figure 1 caption for more details.

Figure 6. Histograms showing the number of transitions as a function
of the difference in energy (eV) with respect to the theoretical TBE-2
best estimates data for the (a) TD-PBE0 and (b) BSE/evGW@PBE0
results for the compounds in Figure 5.

Figure 7. Nucleobases: plot of (a) BSE/evGW@PBE0 (closed circles) vs BSE/evGW@PBE, (b) BSE/evGW@PBE0 and BSE/G0W0@PBE0 (open
circles) vs TD-PBE0, and (c) BSE/evGW@PBE0 and TD-PBE0 (violet triangle) vs best theoretical estimates (TBE-2) from ref 16. See Figure 1
caption for more details.
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G0W0@PBE scheme is very unsatisfying with a large MAE
(0.615 eV) and a quasi-systematic underestimation of the
reference transition energies. Nevertheless, this popular
approach provides the trends accurately (r = 0.980). The
results obtained with the self-consistent BSE and TD-PBE0
approaches are rather similar with MAEs of 0.253 and 0.232 eV,
respectively, and equivalent correlation coefficients, though the
BSE/evGW@PBE0 dispersion appears slightly tighter in Figure
8. It remains that TD-PBE0 provides a trifling MSE, whereas
BSE/evGW@PBE0 underestimates the TBE-2 values by
−0.142 eV on average. As we show below, this underestimation
can be partly ascribed to the most compact molecules in the set.
We also highlight that the very good performance of TD-DFT

reported in Table 4 and Figure 8 is related to the selection of
the XC PBE0 functional shown to be one of the most accurate
for Thiel’s set.24 Indeed, at the bottom of Table 4, we provide
comparisons with the results of a previous TD-DFT bench-
mark. Obviously, the statistical data obtained for TD-PBE0 is
rather independent of the selection of the TZVP or aug-cc-
pVTZ atomic basis set. It is also clear that both TD-CAM-
B3LYP and TD-PBE yield significantly less accurate results for
Thiel’s set. This also illustrates the advantage of the BSE/evGW
scheme that is free of such XC “optimization”.

3.3. Additional Chromogens. In addition to the Thiel set,
we decided to tackle a small set of molecules originating from
dye chemistry. Our objective was to assess the performances of
BSE/evGW@PBE0 for less “academic” structures. The treated
compounds are displayed in Scheme 1. To obtain CC3

reference values, we have first selected quite compact molecules
and, in particular, n → π* chromogens.112 Indeed, our set
includes members of the nitroso (1113 and 2113), thiorcarbonyl
(3,114 4115 and 5116), and diazo (6,117 7,118 and 8118) families.
We also added a bicyclic aromatic (9119), a well-known
solvatochromic probe (10120), two of the most popular
fluorophores (11121 and 12122), and the photoactive trans-
azobenzene (13123) to represent medium-sized dyes. The
results are listed in Tables 5 and 6.
For this set, we used MP2/aug-cc-pVTZ ground-state

geometries and computed reference transition energies at the
CC2, CCSD, CCSDR(3), and CC3 levels of theory using both
aug-cc-pVDZ and aug-cc-pVTZ atomic basis sets. We followed
a protocol very similar to the one of Thiel and co-workers17 to
determine our own TBE. Indeed, for compounds 1−10 we
determined TBE at the CC3 level,17 which was chosen as the
best available single-reference method by first performing CC3/
aug-cc-pVDZ calculations and next correcting for basis set
effects using the difference between CCSDR(3)/aug-cc-pVDZ
and CCSDR(3)/aug-cc-pVTZ transition energies. For five
excited-states, it was possible to perform CC3/aug-cc-pVTZ
computations, and the differences with respect to our reference
TBE were smaller than 0.01 eV. For the three largest molecules
(11−13, see Table 6), CC3 calculations are not technically
possible, and the TBE estimates were obtained by correcting

Table 4. Statistical Analysis Obtained by Comparing Three
Approaches to the Full List of TBE-2a

method MSE MAE RMSD max(+) max(−) r

BSE/G0W0@
PBE0

−0.595 0.615 0.647 0.464 −0.966 0.980

BSE/evGW@
PBE0

−0.142 0.253 0.328 1.047 −0.673 0.972

TD-PBE0 −0.008 0.232 0.294 0.729 −0.641 0.974
TD-LDA
(TZVP)

−0.48 0.57 0.68 0.95

TD-PBE
(TZVP)

−0.45 0.53 0.64 0.95

TD-B3LYP
(TZVP)

−0.08 0.26 0.32 0.97

TD-PBE0
(TZVP)

0.05 0.24 0.32 0.97

TD-CAM-
B3LYP
(TZVP)

0.22 0.31 0.42 0.96

aFor each method, we provide MSE, MAE, root mean square
deviation (RMSD), maximal positive and negative deviations [max(+)
and max(−)] as well as the linear regression coefficient. All values but
the latter are expressed in eV. At the bottom of the table, for
completeness, we also reproduce several TD-DFT statistical data
obtained through a comparison with the theoretical best estimate in a
previous TZVP study (ref 24).

Figure 8. Histograms showing the number of transitions as a function
of the difference in energy (eV) with respect to the theoretical TBE-2
best estimates data for (a) BSE/G0W0@PBE0, (b) TD-PBE0, and (c)
BSE/GW@PBE0 results for all states in the Thiel set. The red arrows
indicate the 21Ag states in hexatriene and octatetraene.

Scheme 1. Representation of the Molecules under
Investigation in Section 3.3

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.5b00304
J. Chem. Theory Comput. 2015, 11, 3290−3304

3299

http://dx.doi.org/10.1021/acs.jctc.5b00304


CCSDR(3)/aug-cc-pVDZ values for basis set effects deter-
mined at the CCSD level.
From Table 5, it appears that the basis sets effects for the

EOM-CC calculations are relatively small: the use of the
double-ζ basis set induces a mean increase of the computed
transition energies by only ∼0.05 eV. Likewise, the use of
noniterative triples [CCSDR(3)] provides a good approxima-
tion of the iterative triple results for the present set with an
average deviation of 0.03 eV. It also appears that CC2 tends to
give slightly more accurate estimates than CCSD, despite the
larger computational cost of the latter. As expected, the various

CC approaches provide extremely large correlation coefficients
with respect to the TBE. All of these conclusions are well in line
of the findings of previous works.13,15,17 TD-PBE0 performs
very well for the investigated series, providing a MSE of −0.10
eV (slight underestimation of the TBE) and a MAE of 0.14 eV
in line of the one of CC2. TD-PBE0 also delivers an r of 0.99.
These errors can be viewed as very small for TD-DFT14,24 and
this is in part related to the selection of n→ π* chromogens for
which TD-DFT is known to be especially accurate.124,125 For
the compounds of Table 5, BSE/evGW@PBE0 delivers less
satisfying results than TD-DFT with an average error of 0.35

Table 5. Computed Vertical Transition Energies (eV) for the First Ten Molecules Shown in Scheme 1a

aug-cc-pVDZ aug-cc-pVTZ aug-cc-pVTZ experimental

molecule state CC2 CCSD CCSDR(3) CC3 CC2 CCSD CCSDR(3) TBE
TD-
PBE0

BSE/evGW@
PBE0 ΔE ref

1 A″ (n → π*) 1.985 1.983 1.970 1.980 1.958 1.958 1.943 1.953 1.772 1.513 1.82 113
2 A″(n → π*) 2.341 2.285 2.267 2.261 2.302 2.248 2.233 2.227 2.026 1.789 2.09 113
3 A2 (n → π*) 2.920 2.835 2.806 2.807 2.839 2.778 2.744 2.745 2.760 2.443 2.58 114

A1 (π → π*) 5.348 5.348 5.209 5.172 5.263 5.285 5.140 5.103 5.025 4.724 4.81 114
4 A (n → π*) 2.344 2.296 2.249 2.248 2.295 2.257 2.208 2.207 2.121 1.895 2.14 115

A (π→ π*) 6.704 6.747 6.550 6.491 6.598 6.617 6.425 6.366 6.010 5.518 b 115
5 A2 (n → π*) 4.010 3.864 3.814 3.802 3.934 3.814 3.764 3.752 3.741 3.432 3.52 116

A1 (π→ π*) 6.551 6.455 6.332 6.298 6.455 6.382 6.257 6.223 6.271 5.823 6.08 116
6 Bg (n → π*) 3.765 3.775 3.735 3.743 3.692 3.702 3.665 3.673 3.477 3.283 3.65 117
7 A′ (n → π*) 3.935 3.949 3.900 3.903 3.882 3.898 3.856 3.859 3.655 3.473 3.64 118
8 B1 (n → π*) 3.514 3.540 3.492 3.494 3.466 3.494 3.494 3.496 3.477 3.283 3.29 118
9 B1 g (n → π*) 2.974 3.354 3.188 3.081 2.938 3.348 3.176 3.069 2.762 2.931 3.01 119

B2u (π→ π*) 4.357 4.386 4.315 4.234 4.309 4.363 4.299 4.218 4.454 4.114 3.86 119
10 A1 (π→ π*) 3.952 4.285 4.106 3.964 3.925 4.278 4.106 3.964 3.905 3.800 3.59 120

MSE 0.132 0.161 0.077 0.045 0.072 0.112 0.033 −0.100 −0.345
MAE 0.147 0.161 0.078 0.045 0.100 0.112 0.036 0.143 0.345
RMSD 0.180 0.194 0.092 0.055 0.124 0.153 0.056 0.179 0.388
r 0.998 0.999 1.000 1.000 0.998 0.998 0.999 0.994 0.992

aNote that the experimental values on the rightmost part of the table correspond to λmax and cannot be compared directly to vertical theoretical
estimates (see text). At the bottom of the table, the results of a statistical analysis using the TBE as a reference are given. MSE, MAE, and RMS are in
eV; r is dimensionless. bA second band, as weak as the lowest n → π*, has been measured at ∼3.9 eV, but no π → π* was reported in the original
work.

Table 6. Computed Vertical Transition Energies (eV) for the Last Three Molecules Shown in Scheme 1a

aug-cc-pVDZ aug-cc-pVTZ aug-cc-pVTZ experimental

molecule state CC2 CCSD CCSDR(3) CC2 CCSD TBE TD-PBE0 BSE/evGW@PBE0 ΔE ref

11 A1 (π→ π*) 4.096 4.364 4.209 4.067 4.341 4.186 3.773 3.680 3.60 121
12 B2 (π→ π*) 2.923 2.888 2.821 2.906 2.896 2.829 3.134 2.725 2.46 122
13 Bg (n → π*) 2.884 3.006 2.940 2.836 2.968 2.902 2.621 2.540 2.76 123

Bu (π→ π*) 4.069 4.380 4.228 4.036 4.350 4.198 3.704 3.696 3.92 123
aSee Table 5 caption for more details.

Figure 9. Comparisons between: BSE and TBE values (left); experimental and TBE values (center); experimental and BSE values (right) for the set
of transitions listed in Tables 5 and 6. The blue squares (red dots) correspond to the first eight (last five) dyes of Scheme 1.
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eV and a systematic underestimation of the reference values
(see Figure 9a). These underestimations are especially strong
for the most compact molecules for which deviations exceeding
0.40 eV can be found. In fact, BSE/evGW@PBE0 outperforms
TD-PBE0 for only the two states of compound 9 (the largest
compound of Table 5) for which it provides a splitting between
the two states of 1.18 eV, which is in much better agreement
with the TBE value (1.15 eV) than TD-PBE0 (1.69 eV). Given
the fact that BSE/evGW@PBE0 transition energies were also
too small for the most compact structures of Thiel’s set, namely
ethene and formaldehyde, for which BSE/evGW@PBE0
underestimates the lowest lying TBE-2 excitations by 0.48
and 0.47 eV, respectively, we suspected that the smallest
possible chromogens (constituted of two atoms and three
“active” orbitals: n, π, and π*) are particularly challenging for
BSE. For this reason, we also considered the largest systems
listed in Table 6. Although this set is too small to draw
statistical conclusions, we note that, for 11 and 13, both TD-
PBE0 and BSE/evGW@PBE0 are significantly smaller than the
reference values but the deviations between the two approaches
remain below 0.1 eV. For 12, BSE provides a value significantly
smaller than that of TD-PBE0 but in much better agreement
with the TBE. In short, it indeed appears that BSE/evGW@
PBE0 has difficulties in describing very compact structures. In
Figure 9a, one indeed notices that the blue squares
corresponding to the smallest systems deviate more signifi-
cantly from the TBE than the red circles corresponding to
medium-sized chromogens. We tentatively ascribe this outcome
to the so-called self-screening problem in the limit of very few
electrons.126 While such a statement clearly calls for more
fundamental investigations, we believe that these problems
become of much less relevance for medium to large size
molecules for which BSE is more useful.
Let us now turn to comparisons with the available

experimental values shown in Figure 9b and c. We underline
that these values correspond to experimental λmax and cannot
therefore be rigorously compared to theoretical vertical
transition energies. This is why the TBE values are systemati-
cally larger than their experimental counterparts that are
influenced by geometrical and vibrational relaxation effects.
This deviation attains 0.22 eV on average, which is consistent
with previously reported amplitudes for these relaxation
effects.127−131 Nevertheless, the TBE and experimental values
correlate very well (r = 0.991). When comparing the BSE/
evGW@PBE0 energies to experimental values, one obtains a
match that is superior to the one reported at the bottom of
Table 5. Indeed, as shown in Figure 9c, the correlation is
excellent (r = 0.983) and the mean absolute deviation attains
only 0.19 eV. This result obviously originates from an error
compensation mechanism and illustrates that special care must
be taken when comparing vertical theoretical excitation
energies to experimental λmax. This also strongly suggests that
calculations of 0−0 energies with BSE would be welcome64

with the delicate issue of calculating (analytic) forces in the
excited states within the BSE formalism.132

4. CONCLUSIONS AND OUTLOOK
We have assessed the accuracy of the Bethe−Salpeter
formalism in its standard adiabatic implementation for the
calculation of the vertical excitation energies of small- and
medium-sized organic molecules. To this end, we have applied
a large diffuse-containing atomic basis set, namely aug-cc-
pVTZ, and considered the set of 28 compounds proposed by

Thiel and co-workers, together with a new set of small dye
chromophores constituted of 13 molecules and 18 transitions
to low-lying excited-states for which theoretical best estimates
have been obtained.
Several conclusions can be drawn from the present study.

The first important finding is that the “standard” Bethe−
Salpeter calculations based on non-self-consistent G0W0
calculations starting from Kohn−Sham eigenstates generated
with semilocal functionals, such as PBE, dramatically under-
estimate transition energies. The situation improves when
starting with a global hybrid such as PBE0 even though the
resulting excitation energies are still too small with a mean
absolute error of ∼0.6 eV.
Although adjusting the starting functional may be an

interesting solution, we have shown that a simple self-
consistent-scheme with updates of the quasiparticle energies
allows for the BSE excitation energies to be brought into much
better agreement with the theoretical best estimate, with an
MAE of ∼0.25 eV, and a small dependency on the starting
functional related to the Kohn−Sham wave functions that are
kept frozen. Indeed, the BSE/evGW@PBE and BSE/evGW@
PBE0 agree within 80 meV (MAE) with a linear regression
coefficient of 0.998. With such a self-consistent scheme, the
BSE approach yields a mean average error within 20 meV of the
most accurate TD-DFT calculations obtained with the PBE0
XC functional.
The present findings concerning the stability with respect to

the starting functional are consistent with early observations in
sp-bonded solids40 that the Kohn−Sham wave functions, even
calculated with local functionals, agree nicely with the
quasiparticle ones, even though the Kohn−Sham and GW
energy differ significantly. This conclusion should be mitigated
in the case of tight 3d orbitals, for example, where due to
significant self-interaction the Kohn−Sham wave functions may
differ significantly from ones of the self-consistent GW.76,88−90

In the case of molecular systems, a recent GW/BSE study of
cyanines63 demonstrated that Kohn−Sham and self-consistent
GW wave functions (within the static COHSEX approxima-
tion) would hardly differ for occupied levels. Deviations could
be observed for unoccupied states but with an impact on the
BSE absorption energy no larger than 0.2 eV. Special care must
be taken with such small molecules, however, because the
LUMO level is bound within DFT-PBE, for example, but
unbound (negative electronic affinity) within GW, a situation
that does not occur for larger molecules.
The overall comparison should be mitigated by a closer

inspection of specific cases. As a first observation, it seems that
the Bethe−Salpeter formalism faces difficulties for tiny
molecules, yielding transition energies located 0.4−0.5 eV too
low in energy relative to reference data, even in the present self-
consistent implementation. Further investigation on a larger set
of very small molecules should be conducted. Such a tendency,
which may be attributed to the self-screening problem,97 is
probably of limited practical importance because it disappears
for small molecules such as benzene and the nucleobases.
A second potentially important difference between TD-PBE0

and BSE was found during the analysis of the transitions
displaying significant multiple-excitation character. For such
transitions, differences as large as 0.5 eV can be observed
between TDP-BE0 and BSE. Although not affecting the overall
statistics much (they represent only ∼10% of the transitions
considered here), they bear significant conceptual importance
because the present Bethe−Salpeter implementation is
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adiabatic. Although the BSE formalism tends to worsen the
comparison with the theoretical best estimate (TBE-2), as
compared to TD-PBE0, for the 21Ag transition in both
octatetraene and hexatriene, it is found to dramatically improve
the agreement with TBE-2 in the case of transitions in aromatic
molecules with a large multiple-excitation weight. In all cases,
the BSE formalism comes much closer to CC2 or CCSDR(3)
data than TD-PBE0 for such transitions, and even yields more
accurate results than CC2. Such a different behavior between
TD-PBE0 and BSE, both adiabatic in their present
implementation, is a remarkable finding that needs further
investigation.
In a recent study by Rebolini and co-workers on the

excitations of the paradigmatic H2 molecule as a function of
bond length,133 it was noted that model Bethe−Salpeter
calculations starting from an independent-particle polarizability
based on the “exact” one-particle Green’s function (that is, a
Green’s function with poles at the proper quasiparticle energies,
including further satellites) could very nicely reproduce the
second singlet excitation energy bearing significant double-
excitation character. Such an observation is very consistent with
what we observe during our study of transitions with multiple
excitation character starting from self-consistent GW calcu-
lations providing correct quasiparticle energies to build the
needed polarizability. The authors concluded, as we do, that it
is indeed remarkable that such an adiabatic formalism may
apparently capture some multiple-excitation character.
As another recent example, it was demonstrated in the case

of the cyanine family63,64 that the same adiabatic self-consistent
Bethe−Salpeter approach provides the lowest singlet excitation
energies in very close agreement with exCC3 reference
calculations, whereas standard TD-DFT calculations with
various semilocal, global, or range-separated hybrid functionals
deliver excitation energies that are significantly too large. This is
again very consistent with what was observed here in the case of
the aromatic molecule transitions showing significant multi-
excitation character (see Table 2).
Although such evidence seems to validate the idea that the

Bethe−Salpeter formalism, even in its adiabatic formulation,
yields superior results to those of TD-DFT for such
problematic transitions, further tests should be performed on
a larger set of transitions displaying multiexcitation character.
Further, it would be interesting to conduct Bethe−Salpeter
calculations with dynamical screening. Inclusion of dynamical
screening is expected to lower the excitation energies of such
transitions,96 which may not play in favor of improving the
agreement with reference TBE-2 calculations (see Table 2).
Overall, the good agreement with the best TD-DFT

calculations for the present set of molecules, the ability to
tackle charge-transfer excitations, the lack of dependency with
respect to the starting functional in the present case of self-
consistent GW calculations, and, potentially, more favorable
behavior than TD-DFT for transitions with multiple-excitation
character are encouraging results for the use of the present
adiabatic implementation of the Bethe−Salpeter formalism.
Although Bethe−Salpeter calculations require the same
computational effort as TD-DFT calculations, the preceding
GW calculations, even though offering an O(N4) scaling in the
present Coulomb-fitting implementation, still remain more
demanding than standard DFT calculations. On that account,
the recent efforts to provide accurate quasiparticle energies
within generalized Kohn−Sham formalisms stand as a very
competitive approach to serve as a starting point for Bethe−

Salpeter calculations. It would be interesting to explore the
merits of TD-DFT calculations based on such functionals with
respect to transitions with multiple-excitation character.
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(41) Godby, R. W.; Schlüter, M.; Sham, L. J. Phys. Rev. B 1988, 37,
10159−10175.
(42) Salpeter, E. E.; Bethe, H. A. Phys. Rev. 1951, 84, 1232−1242.
(43) Rohlfing, M.; Louie, S. G. Phys. Rev. Lett. 1998, 80, 3320−3323.
(44) Benedict, L. X.; Shirley, E. L.; Bohn, R. B. Phys. Rev. Lett. 1998,
80, 4514−4517.
(45) Albrecht, S.; Reining, L.; Del Sole, R.; Onida, G. Phys. Rev. Lett.
1998, 80, 4510−4513.
(46) Tiago, M. L.; Chelikowsky, J. R. Solid State Commun. 2005, 136,
333−337.
(47) Tiago, M. L.; Kent, P. R. C.; Hood, R. Q.; Reboredo, F. A. J.
Chem. Phys. 2008, 129, 084311.
(48) Foerster, D.; Koval, P.; Sanchez-Portal, D. J. Chem. Phys. 2011,
135, 074105.
(49) Palummo, M.; Hogan, C.; Sottile, F.; Bagala,́ P.; Rubio, A. J.
Chem. Phys. 2009, 131, 084102.
(50) Kaczmarski, M. S.; Ma, Y.; Rohlfing, M. Phys. Rev. B 2010, 81,
115433.
(51) Ma, Y.; Rohlfing, M.; Molteni, C. J. Chem. Theory Comput. 2010,
6, 257−265.
(52) Rocca, D.; Lu, D.; Galli, G. J. Chem. Phys. 2010, 133, 164109.
(53) Garcia-Lastra, J. M.; Thygesen, K. S. Phys. Rev. Lett. 2011, 106,
187402.
(54) Blase, X.; Attaccalite, C. Appl. Phys. Lett. 2011, 99, 171909.
(55) Duchemin, I.; Deutsch, T.; Blase, X. Phys. Rev. Lett. 2012, 109,
167801.
(56) Baumeier, B.; Andrienko, D.; Ma, Y.; Rohlfing, M. J. Chem.
Theory Comput. 2012, 8, 997−1002.

(57) Faber, C.; Duchemin, I.; Deutsch, T.; Blase, X. Phys. Rev. B
2012, 86, 155315.
(58) Hogan, C.; Palummo, M.; Gierschner, J.; Rubio, A. J. Chem.
Phys. 2013, 138, 024312.
(59) Faber, C.; Boulanger, P.; Duchemin, I.; Attaccalite, C.; Blase, X.
J. Chem. Phys. 2013, 139, 194308.
(60) Varsano, D.; Coccia, E.; Pulci, O.; Mosca Conte, A.; Guidoni, L.
Comput. Theor. Chem. 2014, 1040−1041, 338−346.
(61) Coccia, E.; Varsano, D.; Guidoni, L. J. Chem. Theory Comput.
2014, 10, 501−506.
(62) Baumeier, B.; Rohlfing, M.; Andrienko, D. J. Chem. Theory
Comput. 2014, 10, 3104−3110.
(63) Boulanger, P.; Jacquemin, D.; Duchemin, I.; Blase, X. J. Chem.
Theory Comput. 2014, 10, 1212−1218.
(64) Boulanger, P.; Chibani, S.; Le Guennic, B.; Duchemin, I.; Blase,
X.; Jacquemin, D. J. Chem. Theory Comput. 2014, 10, 4548−4556.
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