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Intestinal intraepithelial lymphocytes (IELs) potentially provide the first line of immune defense against enteric 
pathogens. In addition, there is growing evidence supporting the involvement of IELs in the pathogenesis of gut 
disorders such as inflammatory bowel diseases. Various kinds of molecules are involved in the dynamics of IELs, 
such as homing to the intestinal epithelium and retention in the intestinal mucosa. G protein-coupled receptors 
(GPCRs) comprise the largest family of cell surface receptors and regulate many biological responses. Although 
some GPCRs, like CCR9, have been implicated to have roles in IEL homing, little is still known regarding the 
functional roles of GPCRs in IEL biology. In this review, we provide a concise overview of recent advances in the 
roles of novel GPCRs like GPR55 and GPR18 in the dynamics of IELs.
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INTRODUCTION

Intestinal intraepithelial lymphocytes (IELs) are a 
heterogeneous T cell population localized within the intestinal 
epithelial layer, where they carry out various effector, regulatory, 
and protective functions [1]. IELs are distributed in the small 
intestine and large intestine, and it has been estimated that there 
is one IEL for every 4 to 10 intestinal epithelial cells (IECs) seen 
in the small intestine and for every 30 to 50 IECs found in the 
large intestine [2, 3]. These intraepithelial lymphocytes have been 
complicated by the heterogeneity of their functions, and these 
are represented by conventional (induced) and nonconventional 
(natural) T-cell subsets. On the basis of recent information, it is 
assumed that IELs play key roles in the induction and regulation 
of mucosal immunity. Therefore, revealing the mechanisms 
of the dynamics of IELs should be useful for providing novel 
therapeutic strategies for inflammatory bowel diseases and for 
understanding the gut mucosal immune system.

The G protein-coupled receptors (GPCRs) represent the 
largest and most versatile family of cell surface communicating 
molecules and are currently the most common targets in the 
pharmaceutical industry. GPCRs can be activated by a diverse 
array of ligands, including chemokines and lipid mediators. 
Therefore, GPCRs are involved in various key pathological 
and/or physiological processes. A variety of GPCRs and their 
mediators have been found to be involved in the immune system. 
Regarding gut immunology, the C-C chemokine receptor type 
9 (CCR9), also known as CD119, is a member of the GPCR 

supergene family selectively and functionally expressed on 
human and murine small-intestinal lymphocytes [4]. Murine data 
suggest that interactions between CCR9 and its ligand, CCL25, 
specifically contribute to IEL homing to the small intestine. 
However, given that CCR9- or CCL25-deficient mice showed 
decreased numbers of IELs in the small intestine [5], it has been 
assumed that other GPCRs besides CCR9 must be involved in the 
dynamics of IELs. Moreover, T-cell homing to the large intestine 
does not require CCR9, which is not expressed on colonic IELs. 
In this review, we focus on recent advances in IELs and related 
GPCRs such as CXCR3, GPR18, GPR55, and GPR15, especially 
on their dynamics and roles in physiological and/or pathological 
conditions.

HETEROGENEOUS POPULATION OF IELS

IELs are a heterogeneous population of T lymphocytes in 
the human and murine intestine and include both TCRαβ+ and 
TCRγδ+ IELs. These subsets are further subdivided on the 
basis of CD8 coreceptor expression. In the small intestine, the 
overwhelming majority of TCRγδ+ IELs are predominantly Vγ7+ 
IELs and express the CD8αα homodimer in mice, whereas about 
10% of the small intestinal IELs express TCRγδ in humans [6]. 
On the other hand, in the colon, the majority of CD8+ cells bear 
TCRαβ and express the CD8αβ heterodimer [3, 7]. TCRγδ+ 
IELs are very different from TCRγδ+ T cells located in lymphoid 
tissues, which predominantly lack CD8 expression. Unlike T 
cell populations in other tissues, most TCRαβ+ IELs in the small 
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intestine belong to the CD8+ subset [8]. Moreover, a sizeable 
fraction of TCRαβ+ IELs are CD8α+CD8β− cells [9], which 
are referred to as CD8αα IELs based on their expression of the 
CD8αα homodimer. In brief, TCRαβ+ IELs in the small intestine 
mainly consist of CD8αα, CD8αβ, and CD4. CD8αα+ IELs that 
express TCRγδ or TCRαβ but do not express either CD4 or 
CD8αβ are so-called natural IELs [1]. Regarding surface markers, 
unconventional CD8αα+ IELs do not express molecules typically 
expressed by conventional T cells but instead express natural 
killer cell receptors such as NK1.1 [1]. Moreover, CD8αα+ IELs 
constitutively express tissue-resident markers CD69 and CD103 
[10].

IELS AND INTESTINAL PATHOGENS

The intestine contains a dynamic community of trillions 
of pathogens. The intestinal immune system has a crucial role 
in limiting tissue invasion by the resident microbiota and is 
fundamentally important for preserving the symbiotic nature of 
these interactions [11]. For these roles, the intestinal immune 
system must avoid potentially harmful overreactions that could 
unnecessarily damage intestinal tissues or alter the crucial 
metabolic functions of the microbiota [12, 13]. Regarding the 
contribution of IELs to the system, these cells play a major role 
in protection against invasion and systemic dissemination of 
enteric pathogens and commensal bacteria [14, 15]. Although 
the microbiota has an effect on the composition and number of 
TCRαβ IELs, TCRγδ IEL numbers are unaffected in germ-free 
mice, indicating that the intestinal microbiota has little to no 
effect on maintaining TCRγδ IEL homeostatic numbers [16]. 
However, intestinal TCRγδ IELs have high expression of several 
cytolytic genes, such as granzymes A and B, indicating a cytotoxic 
potential towards pathogens and infected cells [17, 18]. Thus, 
TCRγδ IELs provide early protection of intestinal tissue against 
resident bacteria [19, 20]. Furthermore, γδ TCR-deficient mice, 
but not αβ TCR-deficient mice, are more susceptible to infection 
than control WT mice [17, 19, 21]. In particular, IELs play 
key roles in the host defense against intestinal pathogens such 
as Salmonella typhimurium and Toxoplasma gondii [22]. Thus, 
revealing the mechanisms of the dynamics of IELs should be 
useful for understanding how IELs contribute to early protection 
against pathogen entry from the intestinal surface.

DEVELOPMENT AND MATURAION OF IELS

IELs seem to have a unique development pathway, although 
controversy remains as to the extent to which IELs are thymus 
dependent. Conventional IELs, i.e., those originating from 
circulating T cells, are activated in lymphoid organs and 
imprinted for gut homing using α4β7 and CCR9. On the other 
hand, unconventional IELs derive from CD8αβ thymocytes 
that migrate to the intestinal epithelium and undergo further 
differentiation into IELs, although some of these IELs may also 
arise extrathymically [23, 24]. Of note, naive CD8αβ recent 
thymic emigrants already express α4β7 and CCR9 when they 
leave the thymus, and they directly home to the small intestines 
in a CCR9- and α4β7-dependent fashion [25].

The molecular mechanisms regulating gut homing receptor 
expression on primed T cells in Peyer’s patches (PPs) and/
or mesenteric lymph nodes (mLNs) still remain to be fully 

understood. However, one of the key inducers of gut homing 
receptors seems to be retinoic acid (RA), a vitamin A (retinol) 
metabolite [26]. Migratory intestinal DCs in the mLNs or PPs 
have an ability to process vitamin A to RA for presentation. RA 
imprints small-intestine homing properties on T cells activated 
in the mLNs, by inducing expression of integrin α4β7 and CCR9 
[27–29]. In in vitro experiments, addition of RA to anti-CD3 and 
anti-CD28 antibodies can induce expression of α4β7, CCR9, and 
GPR55 on stimulated T cells in a dose-dependent manner [26, 
30].

GPCRS INVOLVED IN IEL HOMING TO AND 
RETENTION IN THE INTESTINE

IEL homing to the intestine and retention in the intestinal 
mucosa are critically dependent on the expression of a variety 
of gut-specific homing molecules [31]. As for GPCRs, it is 
well known that T-cell homing to the small intestine requires 
CCR9 under homeostatic conditions [32]. However, during the 
inflammatory process, cell recruitment seems to be preferentially 
guided by other GPCRs, such as CXCR3, which has been 
suggested to be one of the most relevant chemokine axes that 
promotes the arrival of cells into inflamed gut tissues [33]. 
Recently, GPR18 and GPR55 have been reported to be other 
GPCRs that positively and negatively regulate CD8αα+TCRγδ+ 
IEL accumulation in the small intestine, respectively [30, 34]. 
These findings on the unique division of reverse roles by GPCRs 
suggest a complicated and elaborate mechanism underlying IEL 
homing to the small intestine. In addition, as for colonic IELs, 
GPR15 controls the specific homing of T cells to the large 
intestine [35, 36].

CCR9

The CCR9–CCL25 axis in mice plays a key role in the homing 
of CD8+ T lymphocytes to the small intestine [29], which is 
supported by studies using CCR9- or CCL25-deficient mice 
[5]. On the other hand, the situation in the large intestine is 
different, as colonic IELs require either α4β7 or α4β1, but not 
CCR9 [37]. In agreement with this, CCL25 was found at a higher 
concentration in the small intestine but not in the colon within 
the murine and human small intestine [38–40]. Remarkably, 
CCL25 expression decreases from the proximal to the distal small 
intestine in mice [41], and this is consistent with the abundance 
of IELs in the proximal part compared with the distal part in the 
small intestine. Of note, CCR9 is also highly expressed on IgA 
antibody-secreting plasma cells in the mLN and PP. Given this, 
CCL25 might selectively attract and direct these cells to the small 
intestine, where CCR9 is downregulated upon arrival [42–44]. 
Whether IELs recirculate or not is subject to debate. However, 
given that human IELs express CCR9 [4], peripheral blood 
CCR9+ T cells may include recirculating IELs.

CXCR3

As mentioned above, CCR9 is involved in the migration of 
IELs into the intestinal mucosa under homeostatic conditions. 
In addition to this, other GPCRs have been implicated to be 
involved in IEL recruitment to the small intestinal epithelium. 
For example, CXCR3 (GPR9/CD183), an interferon-inducible 
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chemokine receptor, is expressed on the surface of activated 
CD8+ IELs, and this CXCR3 expression by gut IELs has been 
attributed to chronic activation of these cells by pathogens in the 
lumen. CXCR3 knockout (KO) mice showed a decreased number 
of CD8αβ+ IELs and increased number of CD8αα+ IELs [45]. It is 
assumed that IEL recruitment is preferentially guided by CXCR3 
and its ligands, such as CXCL10, especially in inflamed gut 
tissues [33, 46–48]. In humans, the CXCR3/CXCL10 signaling 
axis is overactivated in the small intestinal mucosa in untreated 
celiac disease patients with increased production of CXCL10 
in the epithelium primarily by enterocytes [49]. This axis is 
known to be active not only in inflammatory bowel diseases but 
also in different chronic inflammatory processes [50]. Given the 
significance of CXCR3 in the inflamed condition rather than the 
homeostatic condition, this GPCR might be an ideal target for the 
treatment of inflammatory bowel diseases.

GPR18

Recently, several novel GPCRs have been reported to play 
roles in the T cell homing to the small intestine. The orphan 
receptor, G protein-coupled receptor 18 (GPR18), has been 
considered to be a putative cannabinoid receptor. Considering the 
high expression of GPR18 in immune cells, including CD8+ T 
cells, GPR18 is proposed and reported to have an immunological 
function, especially in CD8 T cells [51]. GPR18 is abundantly 
expressed in CD8αα+ IELs in the murine small intestine. GPR18 
KO mice showed reduced numbers of CD8αα+TCRγδ+ IELs [34, 
51, 52], showing that GPR18 and CCR9 have roles in augmenting 
the accumulation of CD8 T cells in the intestinal intraepithelial 
lymphocyte compartment compared with the lamina propria 
compartment. In detail, the GPR18-deficient TCRγδ+ IELs that 
remained had elevated Thy1, and there were fewer granzyme B+ 
and Vγ7+ cells, indicating a greater reduction in effector-type cells 
[34]. Therefore, GPR18 is possibly involved in IEL maturation.

GPR55

GPR55 was originally identified as an atypical cannabinoid 
receptor, and lysophosphatidylinositol (LPI) was subsequently 
found to be an endogenous ligand for GPR55 [53]. GPR55 
has been reported to be involved in various physiological and 
pathological processes, such as in the central nervous system 
or bone dynamics [54, 55]. Recently, GPR55 was revealed to 
mediate migration inhibition in response to LPl. LPI inhibited 
IEL migration to the CCR9 ligand, CCL25, and this effect was 
lost when using IELs from GRP55-deficient mice. The inhibitory 
effect of LPI was most potent for γδT IELs, which showed 
remarkably high endogenous expression of GPR55 [30]. In mice 
lacking GPR55, there was a selective increase in γδT IEL cell 
frequencies and numbers. To support this, multiple forms of 
LPI were detected in the small intestine by LC-MS/MS. These 
lines of observation showed that GPR55 negatively regulates 
CD8αα+TCRγδ+ IEL accumulation in the small intestine [30]. 
Notably, GPR55 is the first reported molecule that can inhibit IEL 
homing to the small intestine. IELs are distributed throughout 
the epithelium in the small intestine. Even under homeostatic 
conditions, IELs actively migrate almost exclusively in the 
space between the epithelial layer and the basement membrane 
and showed transient movements in close association with 

epithelial cells [30, 56, 57]. Although some molecules, such as 
transforming growth factor (TGF)-β, are reported to be crucial for 
IEL retention in the epithelium [58], which GPCRs are involved 
in IEL retention in the intestinal mucosa has remained obscure. 
Intravital imaging showed that GPR55-deficient IELs migrate 
faster and interact more extensively with epithelial cells. From a 
pathological perspective, GPR55 deficiency in γδT IELs protects 
mice from indomethacin-induced intestinal damage, possibly due 
to the frequent IEL-epithelial cell crosstalk [30].

GPR15

Compared with IELs in the small intestine, a lot still 
remains unknown about the factors controlling the dynamics 
of colonic IELs. The epithelium of the large intestine produces 
the chemokine CCL28, which binds to the receptor CCR10. 
Although CCR10 mediates localization of plasmablasts to the 
colon, CCR10 is not expressed on colonic IELs and does not 
appear to contribute to their recruitment [59]. However, GPR15 
was recently revealed to mediate homing of regulatory T (Treg) 
cells in the mucosa of the large intestine [35]. In addition, GPR15 
is also expressed by mouse Th17 and Th1 effector cells [36]. 
GPR15-mediated Treg homing is required for efficient control 
of gut inflammation in a Citrobacter rodentium-induced colitis 
model [35]. Moreover, GPR15-mediated T-effector-cell homing 
is crucial in the pathogenesis in the T-cell transfer colitis model 
[36]. In humans, it is noteworthy that GPR15 is expressed by 
effector cells, including pathogenic Th2 cells, in ulcerative colitis 
but is not expressed by Treg cells [36]. Thus, GPR15 may help 
target pathogenic Th2 cells to the colon in humans but is probably 
less important in humans than in the mouse for the homing and 
function of Treg cells in the gut wall. Future studies of the role 
of this chemoattractant receptor in intestinal immune biology 
are required, and identification of the physiologic ligand(s) for 
GPR15 might help us understand the dynamics of colonic IELs.

CONCLUSION

As described in this review, gut IELs are a heterogeneous 
population, and several GPCRs have unique roles in the dynamics 
of IELs (Fig. 1). Future studies should be performed to define the 
detailed mechanisms of IEL homing to and retention in the gut 
epithelium under physiological and pathological conditions. IELs 
and their interaction with epithelial cells are crucial for intestinal 
homeostasis, immune surveillance, and maintenance in epithelial 
integrity [60]. These crucial roles contribute to tissue damage 
and inflammatory bowel diseases [61, 62] and celiac disease [63, 
64]. In addition, IELs contribute to host-microbial relationships. 
Specifically, intestinal bacteria are linked to the number of IELs 
and their activation [19, 65, 66]. Several studies suggest that 
intestinal IELs play roles in limiting mucosal penetration by 
intestinal pathogens during tissue homeostasis and/or following 
epithelial damage [19, 21, 22, 67]. As described in this review, 
although a lot remains unclear, recent accumulating evidence has  
revealed that novel GPCRs regulate the dynamics of IELs in a 
unique manner. Recent technological advances will help us to find 
more novel GPCRs and make further advances in understanding 
the functions of IELs in the near future. Furthermore, given that 
GPCRs represent the leading family of validated drug targets in 
biomedicine, insights concerning the involvement of functional 
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GPCRs in the dynamics of IELs may provide new therapeutic 
strategies for various intestinal diseases, including inflammatory 
bowel disease and viral/bacterial infections.
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