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SUMO regulates the activity of 
Smoothened and Costal-2 in 
Drosophila Hedgehog signaling
Jie Zhang, Yajuan Liu, Kai Jiang & Jianhang Jia

In Hedgehog (Hh) signaling, the GPCR-family protein Smoothened (Smo) acts as a signal transducer 
that is regulated by phosphorylation and ubiquitination, which ultimately change the cell surface 
accumulation of Smo. However, it is not clear whether Smo is regulated by other post-translational 
modifications, such as sumoylation. Here, we demonstrate that knockdown of the small ubiquitin-
related modifier (SUMO) pathway components Ubc9 (a SUMO-conjugating enzyme E2), PIAS (a SUMO-
protein ligase E3), and Smt3 (the SUMO isoform in Drosophila) by RNAi prevents Smo accumulation and 
alters Smo activity in the wing. We further show that Hh-induced-sumoylation stabilizes Smo, whereas 
desumoylation by Ulp1 destabilizes Smo in a phosphorylation independent manner. Mechanistically, 
we discover that excessive Krz, the Drosophila β-arrestin 2, inhibits Smo sumoylation and prevents 
Smo accumulation through Krz regulatory domain. Krz likely facilitates the interaction between Smo 
and Ulp1 because knockdown of Krz by RNAi attenuates Smo-Ulp1 interaction. Finally, we provide 
evidence that Cos2 is also sumoylated, which counteracts its inhibitory role on Smo accumulation in the 
wing. Taken together, we have uncovered a novel mechanism for Smo activation by sumoylation that is 
regulated by Hh and Smo interacting proteins.

It has long been studied that the Hedgehog (Hh) morphogen controls development processes such as prolifera-
tion, embryonic patterning, and cell growth1,2. It has also been shown that malfunction of Hh signaling, e.g. muta-
tions in the Hh pathway components, causes many human disorders, including several types of cancers3–5. One 
good example is that abnormal activation of Smoothened (Smo), an atypical G protein-coupled receptor (GPCR), 
results in basal cell carcinoma (BCC) and medulloblastoma1,2, therefore Smo has been an attractive therapeutic 
target, exemplified by the newly FDA approved drugs6.

Most of what is known about the Hh signaling cascade comes from studies of Drosophila, where the path-
way was originally identified7. Hh receiving system consists of Patched (Ptc) and Smo at the plasma membrane. 
Smo acts as a signal transducer whose activity is inhibited by Ptc in the absence of Hh. How Ptc inhibits Smo is 
not completely understood, although recent studies indicate that phospholipids act in between Ptc and Smo in 
Drosophila Hh signaling8–10. Binding of Hh to Ptc alleviates Ptc-mediated inhibition of Smo, allowing Smo to 
activate Cubitus interuptus (Ci)/Gli transcription factors and ultimately induce the expression of Hh target genes, 
such as decapentaplegic (dpp), patched (ptc), and engrailed (en)11,12. The regulation of Smo is obviously a key event 
in Hh signal transduction.

Among the types of protein-based modifications, phosphorylation and ubiquitination of Smo have been 
extensively studied. In the absence of Hh, cytosolic Smo is highly unstable because of rapid degradation through 
both the proteasome- and lysosome-mediated pathways, which involve ubiquitination13–15. In a dose-dependent 
manner, thresholds of Hh promote Smo differential phosphorylation by multiple kinases including PKA, 
CK1 isoforms, aPKC, CK2, and G protein-coupled receptor kinase 2 (Gprk2)16–19, which induces the dimer-
ization and cell surface accumulation of Smo1,12,20. The stimulation of Hh promotes Smo deubiquitination by 
ubiquitin-specific protease 8 (USP8), which blocks Smo endocytosis and enhances Smo cell surface accumu-
lation14,15. Although Smo behaves differently from a typical GPCR, it has been shown that Krz, the Drosophila 
non-visual arrestin21, downregulates Smo signaling by promoting Smo internalization and degradation in 
ubiquitin- and Gprk2-independent manners15,22. It is possible that Krz downregulates Smo activation through a 
mechanism in parallel with phosphorylation and ubiquitination.
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The small ubiquitin-like modifier (SUMO) is post-translationally conjugated to lysine residues of nuclear 
proteins as well as cytosolic and plasma membrane proteins, resulting in changes in their transcriptional activity 
or intracellular trafficking23,24. Sumoylation is promoted by the SUMO-activating enzyme E1, SUMO-conjugating 
enzyme E2, and SUMO ligase E3, and the SUMO ligase E3 is responsible to recognize the substrate25. As a revers-
ible process, SUMO-protein cleavage, or desumoylation, is carried out by SUMO protease, which is also highly 
regulated in cellular mechanisms such as nuclear transcription factor regulation and intracellular protein traf-
ficking26. Interestingly, sumoylation was recently reported to regulate proteins involved in G-protein signaling27, 
however, it is unknown whether the activity of GPCR itself is regulated by SUMO.

To explore the possibility that SUMO regulates Hh signaling proteins, we performed a small scale genetic 
screen with RNA interference (RNAi) lines. This screen allowed us to determine whether inactivation of the 
SUMO pathway regulated Hh signaling activity in vivo. Further, we were able to examine sumoylation levels of 
individual Hh signaling component in S2 cells using immunoprecipitation assays. We found that Smo, Costal-2 
(Cos2), Fused (Fu), and Ci are all SUMO modified. In this report, we focused on the sumoylation of Smo and 
Cos2. We further found that the SUMO pathway proteins, including Ubc9 E2 enzyme, PIAS E3 ligase, and Smt3 
SUMO isoform, regulate the activity of Smo by elevating the accumulation of Smo in the wing disc and increasing 
the stability of Smo in S2 cells. In contrast, the ubiquitin-like protease 1 (Ulp1) destabilizes Smo by preventing 
Smo sumoylation. We further found that Hh promotes Smo sumoylation which activates Smo in a phosphoryl-
ation independent manner. Interestingly, we found that Krz inhibits Smo accumulation through blocking Smo 
sumoylation and that the C-terminal regulatory domain is responsible for Krz inhibitory activity. Finally, we pro-
vide evidence that Cos2 is sumoylated, which likely counteracts with its inhibitory activity on Smo accumulation 
and activation.

Results
Sumoylation regulates Hh signaling and Smo activity in Drosophila wing.  To explore whether 
SUMO pathway plays a role in Hh signaling, we collected RNAi lines from either Vienna Drosophila Research 
Center (VDRC) or Bloomington Stock Center (BSC) to target SUMO pathway protein expression. We found that 
inactivation of Ubc9 E2 enzyme or PIAS E3 ligase by RNAi driven by the wing-specific MS1096-Gal4 caused 
severe structural loss in adult wing (Fig. 1B,C, compared to control in Fig. 1A). To examine whether inactivation 
of the SUMO pathway regulates the activity of Smo, we used a sensitized genetic background by expressing the 
partial dominant negative SmoDN that we previously described as Smo−PKA12 in which two PKA phosphorylation 
sites were mutated to avoid phosphorylation28. Expressing SmoDN by the wing-specific C765-Gal4, a weaker Gal4 
line than MS1096-Gal4, resulted in a partial fusion of Vein 3 and Vein 4, a reproducible phenotype indicative of 
partial loss of Hh signaling activity (Fig. 1E, compared to WT wing in Fig. 1D). Knockdown of either Ubc9 or 
PIAS by RNAi in C765-SmoDN background resulted in small wings with the loss of intervein structures (Fig. 1F,G, 
compared to Fig. 1E), suggesting that inactivating Ubc9 and PIAS regulates Smo activity and dominantly modifies 
SmoDN phenotype. Multiple RNAi lines for each gene were tested to make sure the phenotypes were consistent.

SUMO1, SUMO2, and SUMO3 are three isoforms expressed in vertebrates, where SUMO2 and SUMO3 share 
97% identity with each other, SUMO1 shares 43% identity with SUMO2 and 3. In Drosophila, Smt3 is the single 
form of SUMO that shares 52% and 73% identity with vertebrate SUMO1 and SUMO2, respectively29. We found 
that RNAi of Smt3 also modified the SmoDN phenotype and resulted in smaller wings (Fig. 1H), suggesting that 
SUMO may possibly regulate Smo activity in the wing. Protein sumoylation is a dynamic process that often 
involves a desumoylase. In Drosophila, Ulp1 is one of the desumoylases with SUMO-specific protease activity. We 
found that RNAi of Ulp1 attenuated the activity of SmoDN, resulting in a partial rescue of Vein 3 and Vein 4 fusion 
phenotype (Fig. 1I), further indicating that changes in the expression of SUMO pathway proteins regulate Smo 
activity in the wing. In contrast, RNAi of Verloren (Velo), the other SUMO protease in Drosophila, did not modify 
SmoDN phenotype (Fig. 1J), indicating the specificity of Ulp1 in regulating Smo. In comparison, RNAi of Ubc9, 
PIAS, or Smt3 alone by C765-Gal4 produced mild phenotype in the adult wing (Fig. 1K–M), and RNAi of Ulp1 or 
Velo had no effect (Fig. 1N,O), suggesting that the phenotypes shown in Fig. 1F–I were due to the modification of 
SmoDN activity by inactivation of the SUMO pathway.

Inactivation of Sumoylation inhibits Smo accumulation by decreasing Smo stability.  To further 
examine the roles of sumoylation in regulating Hh signaling, we carried out a ptc-luciferase (ptc-luc) reporter 
assay in S2 cells to monitor Hh pathway activity when using RNAi to inactivate the SUMO pathway. We found 
that double-stranded RNA (dsRNA) targeting Ubc9, Smt3, or PIAS significantly reduced ptc-luc activity induced 
by the treatment with Hh in cultured S2 cells (Fig. 2A). RNAi of GFP did not change ptc-luc activity thus served as 
a control. dsRNA treatment consistently had high efficiency to knock down gene expression (Fig. 2B).

We wondered whether the inactivation of SUMO pathway could regulate endogenous Smo in the wing, given 
the fact that RNAi of sumoylation protein expression changed SmoDN activity (Fig. 1). We found that knockdown 
of Ubc9 by RNAi severely reduced Smo accumulation and attenuated dpp-lacZ expression in the wing imag-
inal disc, an early stage of wing development (Fig. 2D, compared to WT immunostaining shown in Fig. 2C). 
Similarly, RNAi of PIAS or Smt3 decreased Smo accumulation (Fig. 2E,F). We further found that the expression 
of a UAS-Ulp1 transgene inhibited Smo accumulation in wing disc (Fig. 2G), indicating that Ulp1 played a neg-
ative role in regulating Smo, which was consistent with the finding that RNAi of Ulp1 expression reduced the 
dominant negative activity of SmoDN in the wing (Fig. 1I). The severe or mild changes in Ci accumulation and 
ptc-lacZ expression (Fig. 2E–G, red and green panels) may not solely reflect the changes in Smo activity because 
it has been shown that Ci undergoes sumoylation regulation30,31, and because Cos2 also undergoes sumoylation 
that regulates its activity (see below).

In addition to examining Smo accumulation in wing discs, we further carried out a protein stability assay 
to determine the levels of Smo regulated by sumoylation pathway proteins. We found that inactivation of Ubc9 
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decreased, whereas inactivation of Ulp1 increased the levels of Smo in S2 cells (Fig. 3A). In contrast, the overex-
pression of Ubc9 increased, whereas the overexpression of Ulp1 decreased the levels of Smo (Fig. 3B). RNAi or 
overexpression of the other two desumoylases in Drosophila, Velo and CG1271732, did not change the levels of 
Smo in S2 cells (not shown), indicating the specificity of Ulp1 in regulating Smo. To examine Smo stability regu-
lated by Ulp1 and more precisely examine the stability of Smo protein, we carried out a time course experiment. 
We transfected S2 cells with Myc-SmoWT and monitored Smo levels at different time points after the treatment 
with the protein synthesis inhibitor cycloheximide (CHX). We performed western blots to determine the stability 
of the immunoprecipitated Myc-SmoWT and found that the half-life of Myc-SmoWT was increased by the inactiva-
tion of Ulp1 (Fig. 3C, top panels), compared to the half-life of SmoWT in cells without Ulp1 inactivation (Fig. 3C, 

Figure 1.  Hh signaling and Smo activity are regulated by sumoylation. (A) A wild-type (WT) adult wing 
from flies with genotype MS1096-Gal4-yw shows interveins 1–5. Scale bar indicates 500 μ​m for all adult wing 
figures. (B,C) Abnormal wings shown for the phenotypes caused by Ubc9 and PIAS RNAi using MS1096-Gal4. 
(D) A control wing with the genotype of C765-Gal4-yw shows normal structure of interveins 1–5. (E) A wings 
from flies expressing Smo−PKA12 (SmoDN) by C765-Gal4. Arrow indicates the fusion between Vein 3 and Vein 4 
that is a partial loss of Hh phenotype. (F–I) Wings from flies expressing SmoDN together with Ubc9 RNAi, PIAS 
RNAi, Smt3 RNAi, Ulp1 RNAi, or Velo RNAi by C765-Gal4. Arrow in I indicates that the fusion phenotype 
caused by SmoDN is decreased by RNAi of Ulp1. Brackets in E, I, and J indicate the degree of fusion between 
Vein 3 and Vein 4. (K–O) Wing phenotypes from flies expressing Ubc9 RNAi, PIAS RNAi, Smt3 RNAi, Ulp1 
RNAi, or Velo RNAi by C765-Gal4. Of note, the C765-Gal4 is weaker than the MS1096-Gal4 therefore mild 
phenotypes were observed when using C765-Gal4.
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Figure 2.  Sumoylation promotes the accumulation and activity of Smo. (A) ptc-luc reporter assays in S2 
cells to examine the Hh signaling activity regulated by the SUMO pathway. Left panel, S2 cells were transfected 
with tub-Ci and treated with HhN-conditioned medium or control medium, in combination with the indicated 
dsRNA to knockdown gene expression. The y-axis represents normalized ptc-luc activity. *p <​ 0.001 versus 
high level of Hh in the second column (Student’s t test). Right panel, S2 cells were transfected with tub-Ci and 
treated either GFP dsRNA or Ulp1 dsRNA. *p <​ 0.001 versus GFP dsRNA in the second column (Student’s t 
test). (B) The efficiency of RNAi targeting the indicated genes. (C) A WT wing disc from third instar larva was 
immunostained for Smo, Ci, and ptc-lacZ. (D–F) Wing discs from third instar larvae expressing Ubc9 RNAi, 
PIAS RNAi, or Smt3 RNAi by the wing-specific MS1096-Gal4 were stained for Smo, Ci, and ptc-lacZ. Arrows 
in the grey panel indicate Smo accumulation inhibited by RNAi of the E2 and E3. Arrows in the red and green 
panels indicate the levels of Ci and ptc-lacZ expression. (G) A wing disc over-expressing Ulp1 by MS1096-Gal4 
was stained for Smo, Ci, and ptc-lacZ. Arrow in the grey panel indicates the decreased accumulation of Smo. 
Arrows in the red and green panels indicate the expression of Ci and ptc-lacZ. All imaginal discs shown in this 
study were oriented with anterior on the left and ventral on the top. The representative images shown in this 
study were from five or more images for each experiment.
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Figure 3.  Sumoylation stabilizes Smo. (A) S2 cells were transfected with Myc-SmoWT and treated with Ubc9 
dsRNA, Ulp1 dsRNAi, or control ds RNA. Cell extracts were subjected for immunoprecipitation and western 
blots with the anti-Myc antibody to detect the levels of Smo expression. Western blots with the anti-GFP 
antibody served as transfection and loading control. (B) S2 cells were transfected with Myc-SmoWT along or 
together with Flag-Ubc9 or HA-Ulp1. Cell lysates were immunoprecipitated and western blotted with the 
anti-Myc antibody to detect the levels of Smo. Western blots with the anti-GFP antibody served as transfection 
and loading control. The expression of Ubc9 and Ulp1 was monitored by western blots with the anti-Flag and 
the anti-HA antibody, respectively. (C) Smo protein stability assay. S2 cells were transfected with Myc-SmoWT, 
treated with or without Ulp1 dsRNA, and incubated with CHX for the indicated times. Cell lysates were 
immunoprecipitated with the anti-Myc antibody and western blotted with the anti-Myc antibody to examine 
the levels of Myc-SmoWT. GFP western blot serves as transfection and loading control. (D) The quantification of 
Myc-SmoWT levels at different time points. Signal density at t =​ 0 was defined as 100%, for either Myc-SmoWT or 
Myc-SmoWT combined with Ulp1 dsRNA. Data from four independent experiments. *p <​ 0.05 versus control 
(Student’s t test). (E) A sumoylation assay to detect the levels of Smo sumoylation. S2 cells were cotransfected 
with Myc-SmoWT and HA-SUMO, with or without Flag-Ubc9 in the absence or presence of Hh. Cell lysates were 
immunoprecipitated with the anti-Myc antibody and western blotted with the anti-HA antibody to examine 
the Smo-bound SUMO. Immumuprecipitated products were also western blotted with the anti-Myc antibody 
to monitor the levels of Smo. Cell lysates were also western blotted to examine the expression of Ubc9. Smo was 
normalized by the methods described (See Materials and Methods).
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lower panels). This was further demonstrated by a quantification analysis (Fig. 3D). These data support the idea 
that sumoylation enhances the stability of Smo and promotes the accumulation of Smo in wing disc.

To determine whether Smo indeed undergoes sumoylation, we performed a sumoylation assay by transfecting 
S2 cells with the epitope-tagged Smo and SUMO, followed by immunoprecipitation with one epitope tag and 
western blot with another tag. We found that the overexpression of Ubc9 elevated the levels of Smo sumoylation, 
which was further increased by Hh treatment (Fig. 3E). This finding suggests that the sumoylation of Smo is 
indeed regulated by SUMO pathway proteins and that Hh activates Smo by promoting Smo sumoylation.

Hh promotes the sumoylation of Smo independent of phosphorylation.  The activity of most 
phosphomimetic mutant forms of Smo can still be upregulated by Hh stimulation, raising the possibility for Smo 
to be regulated beyond phosphorylation16,28. To test this hypothesis, we transfected S2 cells with Myc-SmoSD, a 
phosphomimetic form of Smo in which PKA and CK1 sites in the three phosphorylation clusters were mutated 
to aspartate (previously we named it SmoSD123), and treated cells with dsRNA targeting Ubc9, Smt3, and PIAS. 
We found that the ptc-luc activity of SmoSD was significantly reduced by RNAi of Ubc9, Smt3, and PIAS (Fig. 4A). 
Using the immunoprecipitation assay to examine the levels of Smo expression in cultured S2 cells, we further 
found that the stability of SmoWT, SmoSD, and SmoSA (a phosphorylation deficient form of Smo bearing Ser to 
Ala mutations in clusters of PKA and CK1 sites) were all decreased by the overexpression of Ulp1 desumoylase 
(Fig. 4B). These data suggest that Smo stability is regulated by sumoylation regardless of phosphorylation.

To explore the mechanisms of Smo regulation by sumoylation, we examined the physical interaction between 
Smo and its desumoylase Ulp1. We found that Myc-SmoWT was associated with HA-Ulp1 in the immunoprecipi-
tation assay (Fig. 4C). In addition, the treatment of Hh severely reduced Smo-Ulp1 interaction (Fig. 4C), indicat-
ing that Hh promotes Smo sumoylation by disassociating the desumoylase. We further explored the possibility of 
Ulp1 interaction with other forms of Smo. We found that Ulp1 physically interacted with the wild-type, phospho-
mimetic, and phosphorylation-deficient forms of Smo, and such interaction was attenuated by Hh stimulation 
(Fig. 4D). This finding explains why the stability of all forms of Smo was decreased by Ulp1 expression.

Krz destabilizes Smo through blocking Smo sumoylation.  It has been shown that the excessively 
expressed Krz prevents Smo accumulation, although Smo has no change in krz mutant cells15,22. In this study, 
we carried out experiments to determine how Krz blocks the accumulation and prevents the activation of Smo. 
Domain functions of β​-arrestin have not been well characterized, although β​-arrestin interacts with many protein 
partners and exhibits conformational changes during cell signaling33. The C-terminal regulatory domain consist-
ing of 44 amino acids is highly conserved among β​-arrestins34,35. We found that expression of KrzΔR lacking the 
regulatory domain did not prevent Smo accumulation in wing discs (Fig. 5B, compared to Fig. 5A). We also found 
that Krz, but not KrzΔR, interacted with Smo in an immunoprecipitation assay (Fig. 5C). These data suggest that 
the C-terminal regulatory domain is required for Krz to inhibit Smo accumulation.

To further investigate the role of Krz in regulating Smo, we transfected S2 cells with Myc-SmoWT with 
either Krz or KrzΔR to determine whether Krz regulates Smo sumoylation. We found that the overexpression of 
Flag-Krz, but not Flag-KrzΔR, blocked Smo sumoylation. One possibility was that Krz facilitated Ulp1 to desu-
moylate Smo. To test this, we cotransfected S2 cells with Myc-SmoWT and HA-Ulp1, treated cells with or without 
Krz dsRNA, and used the co-immunoprecipitation assay to examine the association of Smo and Ulp1. We found 
that RNAi of Krz decreased the interaction between Smo and Ulp1, suggesting that Krz facilitates Smo-Ulp1 
interaction (Fig. 5E). We then examined whether Krz was associated with Ulp1 in cultured S2 cells. Interestingly, 
both Krz and KrzΔR physically interacted with Ulp1 in the immunoprecipitation assay (Fig. 5F). Considering 
KrzΔR not interacting with Smo (Fig. 5C), our data suggest that Ulp1 and Smo interact with Krz through different 
domains, which support the idea that Krz inhibits Smo accumulation by facilitating Ulp1 to interact with and 
desumoylate Smo.

Given the fact that Hh activates Smo by promoting both phosphorylation and sumoylation of Smo, and the fact 
that Krz inhibits Smo sumoylation in cultured cells (Fig. 5D) and blocks Smo accumulation in wing disc (Fig. 5A), 
we wondered whether it was possible for Krz to regulate Smo phosphorylation. Using an in vitro kinase assay, we 
found that Krz and KrzΔR did not inhibit Smo phosphorylation detected by a phospho-Smo antibody (Fig. 5G). 
Consistently, Krz and KrzΔR did not inhibit Smo phosphorylation in cultured S2 cells (Fig. 5H). These results 
indicate that Krz inhibits Smo activation by specifically preventing Smo sumoylation, but not phosphorylation.

The inhibitory role of Cos2 on Smo is attenuated by sumoylation.  When we examined Smo sumoy-
lation in S2 cells using the immunoprecipitation assay, we also discovered that other components in Hh signaling 
cascade were sumoylated. As shown in Fig. 6A, the sumoylated HA-tagged Cos2 was detected by an anti-Flag 
antibody in S2 cells cotransfected with HA-tagged Cos2 and Flag-tagged SUMO (Fig. 6A, lane 2, top panel). 
Similar to the pattern of Smo sumoylation, the Flag signal exhibited lower mobility shifts compared to the major 
band detected by the anti-HA antibody (Fig. 6A, lane 2, middle panel), indicating that these bands correspond to 
sumoylated forms of Cos2. Overexpression of Ubc9 caused an increase in the levels of Cos2 sumoylation, espe-
cially the stronger signal in the band with lowest mobility shift (Fig. 6A, lane 3, top panel). To further characterize 
Cos2 sumoylation, we transfected S2 cells with Myc-tagged Cos2 and treated cells with dsRNA targeting Ubc9, 
PIAS, or Ulp1. The ladder pattern of Flag signals was severely decreased by either Ubc9 or PIAS RNAi (Fig. 6B, 
lane 2 and 3, top panel), however increased by Ulp1 RNAi (Fig. 6B, lane 4, top panel). These data suggest that 
Cos2 undergoes sumoylation that is regulated by the same sets of proteins involved in Smo sumoylation. We 
further narrowed down the sumoylated region in Cos2. As shown in Fig. 6C,D, the N-terminus of Cos2 con-
taining the microtubule-binding domain and the neck domain barely exhibited any sumoylation, whereas Cos2 
C-terminus containing the coiled-coil and C-tail domains was sumoylated, indicated by the ladder pattern of 
sumoylation in the western blot with the immunoprecipitated Cos2.
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We have previously shown that Cos2 exhibits an inhibitory role on Smo phosphorylation and accumulation36. 
We therefore questioned the possibility for Cos2 to regulate Smo sumoylation. We thus transfected S2 cells with 
Myc-SmoWT and HA-Cos2WT and carried out immunoprecipitation assay to examine Smo sumoylation. We found 
that Cos2 blocked Smo sumoylation induced by the expression of Ubc9 (Fig. 6E), suggesting that Cos2 regulates 
the phosphorylation and sumoylation of Smo, adding an additional layer feedback regulation of Smo by Cos2.

To determine whether Cos2 sumoylation regulates its inhibitory activity on Smo accumulation, we turn to the 
Drosophila imaginal disc to examine the levels of Smo accumulation. Consistent with our previous findings36, the 
expression of CosWT blocked Smo accumulation in posterior compartment cells (Fig. 7A). Interestingly, coexpres-
sion of Cos2WT with Smt3 RNAi partially rescued Smo accumulation, although the accumulated Smo exhibited a 
punctate staining pattern (Fig. 7B). Changing the Ser182 of Cos2 to Asn (S182N) in the P-loop gave rise to a dead 
or a dominant-negative form37. Interestingly, the expression of Cos2S182N also blocked Smo accumulation in the 
wing disc (Fig. 7C), suggesting that the inhibitory role of Cos2 on Smo is independent of Cos2 activity, raising 
the possibility that Cos2 inhibits Smo through direct association between Cos2 and Smo. Moreover, coexpressing 

Figure 4.  Smo sumoylation regulated by Hh does not depend on phosphorylation. (A) S2 cells were 
cotransfected with Myc-SmoSD plus tub-Ci and treated with the indicated dsRNA, followed by an analysis of the 
ptc-luc reporter activity. *p <​ 0.001 versus high level of ptc-luc activity induced by the expression of SmoSD in the 
second column (Student’s t test). (B) S2 cells was transfected with Myc-SmoWT, Myc-SmoSD, or Myc-SmoSA in 
combination with or without HA-Ulp1. Cell lysates were immunoprecipitated with the anti-Myc antibody and 
western blotted with the anti-Myc antibody to examine Smo stability. Cell lysates were also subjected to western 
blot with the anti-HA antibody to monitor the expression of Ulp1. Lysates western blotted with GFP served as 
transfection and loading control. (C) S2 cells were transfected with Myc-SmoWT alone or together with HA-Ulp1 
in the presence or absence of Hh. Cell lysates were immunoprecipitated with the anti-Myc antibody and western 
blotted with the anti-HA antibody to detect Smo-bound Ulp1, or western blotted with the anti-Myc antibody to 
examine the levels of Smo. Smo was normalized by the methods described (See Materials and methods). Cell 
lysates were also western blotted with the anti-HA antibody to examine Ulp1 expression. (D) S2 cells were 
transfected with Myc-Smo constucts along with HA-Ulp1, followed by the treatement with HhN-conditioned 
medium or control medium. Cell lysates were immunoprecipitated with the anti-Myc antibody and western 
blotted with the anti-HA antibody to detect Smo-bound Ulp1, or western blotted with the anti-Myc antibody to 
examine the levels of Smo. Cell lysates were also subjected to western blot to examine HA-Ulp1 expression.
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Figure 5.  Krz inhibits Smo accumulation through preventing Smo sumoylation. (A,B) Wing discs 
expressing HA-Krz or HA-Krz∆R by the dorsal compartment-specific ap-Gal4 were stained for Smo and HA. 
Arrow in A indicates Smo accumulation severely decreased by HA-Krz. Arrow in B indicates the unaffected 
Smo accumulation. (C) S2 cells were transfected with Myc-SmoWT and either HA-Krz or HA-Krz∆R. Cell lysates 
were immunoprecipitated with the anti-Myc antibody, followed by western blot with the anti-HA antibody 
to examine the Smo-bound Krz. Cell lysates were also western blotted to examine the expression of Krz or 
Krz∆R. (D) Myc-SmoWT and HA-SUMO were cotransfected into S2 cells with HA-Krz or HA-Krz∆R, followed 
by immunoprecipitation with the anti-Myc antibody and western blot with the anti-HA antibody to examine 
Smo sumoylation, or with the anti-Myc antibody to monitor the level of Smo. Cell lysates were also western 
blotted to examine the expression of Krz or Krz∆R. (E) S2 cells were cotransfected with Myc-SmoWT and HA-
Ulp1, treated with Krz dsRNA or control dsRNA. Immunoprecipitates were western blotted with the anti-HA 
antibody to examine the Smo-bound Ulp1, or with the anti-Myc antibody to examine the levels of Smo. Cell 
lysates were western blotted with the anti-Krz antibody to examine the endogenous Krz expression. (F) S2 
cells were transfected with HA-Ulp1 and either Flag-Krz or Flag-Krz∆R, followed by immunoprecipitation 
with the anti-HA antibody and western blot with the anti-Flag antibody to examine the Ulp1-bound Krz. The 
expression of Krz and Krz∆R was examined by western blot with cell lysates. The asterisk in top panel indicates 
the mouse IgG. (G) in vitro kinase assay to examine Smo phosphorylation. GST or GST-Smo was incubated 
with recombinant PKA and CK1 kinases with either His-Krz or His-Krz∆R. Western blot with the anti-SmoP 
antibody examines the phosphorylation of Smo. (H) S2 cells were transfected with the indicated constructs 
followed by the treatment with HhN-conditioned medium of control medium. Immunoprecipitates were 
western blotted with the anti-SmoP antibody to detect the levels of Smo phosphorylation, or with the anti-Myc 
antibody to monitor the levels of Smo. In C, D, and H, Smo normalization described in Materials and Methods.
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Figure 6.  Sumoylation attenuates the inhibitory activity of Cos2 on Smo. (A) S2 cells were transfected 
with HA-Cos2WT alone or together with Flag-SUMO, or Flag-Ubc9 plus Flag-SUMO. Cell lysates were 
immunoprecipitated with the anti-HA antibody followed by western blotting with the anti-Flag antibody to 
examine Cos2 sumoylation (bands above the 170 kd marker). Cell lysates were also blotted with the anti-HA 
antibody to monitor Cos2 expression (bands around the 170 kd marker), and with the anti-Flag antibody to 
examine Ubc9 expression (band above the 15 kd marker). (B) S2 cells were cotransfected with Myc-Cos2WT 
and HA-SUMO, treated with control dsRNA, Ubc9 dsRNA, PIAS dsRNA, or Ulp1 dsRNA. Cell lysates were 
immunoprecipitated with the anti-Myc antibody and western blotted with the anti-HA antibody to examine 
Cos2 sumoylation. Lysates were also western blotted with the anti-Myc antibody to examine the levels of Cos2 
expression. (C) A schematic drawing of Cos2 full-length and its truncations. (D) S2 cells were transfected with 
the indicated Myc-tagged Cos2 construct combined with HA-SUMO, with or without Flag-Ubc9. Cell lysates 
were immunoprecipitated with the anti-Myc antibody followed by western blot with the anti-HA antibody to 
examine the Cos2-bound SUMO. Cell lysates were also subjected to western blot with the anti-Myc antibody to 
monitor the levels of Cos2 expression. (E) To determine whether Cos2 regulates Smo sumoylation, S2 cells were 
transfected with the indicated constructs followed by immunoprecipitation with the anti-Myc antibody to pull 
down Smo. Western blots were carried out using the anti-Flag antibody to examine Smo-bound SUMO, and 
using the anti-Myc antibody to monitor Smo expression. Cell lysates western blotted with the anti-HA antibody 
indicate the expression of Cos2. Smo normalization was described in Materials and Methods.
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Figure 7.  Sumoylation of Cos2 counteracts its inhibitory activity toward Smo. (A,B) Wing discs from 
third instar larvae expressing HA-Cos2WT with or without Smt3RNAi by the ap-Gal4 were immunostained 
for Smo, HA, and Ci. Arrow in C indicates Smo accumulation inhibited by Cos2 expression. Arrow in D 
indicates the partially restored Smo accumulation by RNAi of Smt3. (C,D) Wing discs expressing GFP-
Cos2S182N with or without Smt3RNAi by the ap-Gal4 were immunostained for Smo, HA, and Ci. Arrow in C 
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Cos2S182N with Smt3 RNAi also partially rescued Smo puncta accumulation (Fig. 7D). These data suggest that 
Cos2 sumoylation may antagonize its inhibitory role to block Smo phosphorylation and sumoylation.

Discussion
The intracellular trafficking of Smo has been speculated as the critical step in Hh-stimulated Smo accumulation 
and activation. Smo cell surface accumulation and activation are promoted by phosphorylation that triggers Smo 
dimerization, and inhibited by ubiquitination that mediates Smo endocytosis10,17. Although a recent study showed 
that cell surface accumulation of Smo requires sumoylation, which antagonizes its ubiquitination-mediated 
endocytosis31, whether and how the intracellular Hh signaling components regulates Smo sumoylation remains 
unclear. In this study, we provide consistent evidence that SUMO pathway enzymes regulate the stability and 
activity of Smo. Importantly, we show that Krz, through its regulatory domain, inhibits Smo by preventing Smo 
sumoylation but not phosphorylation. We further show that Cos2 is also sumoylated, which antagonizes its inhib-
itory activity on Smo accumulation. We provide a model for Smo regulation by sumoylation and its interacting 
proteins including Krz and Cos2 (Fig. 7E). The mechanisms of Smo regulation by sumoylation and other intracel-
lular signaling components may provide novel insights in the regulation of other GPCR family members.

It would be of great interest if the sumoylation residue(s) were identified in Smo. In the preparation of this 
manuscript, an independent study was published in which Lys851 was identified as a critical sumoylation site in 
Smo C-tail31. The same study also found that mutating Lys851 to Ala decreased Smo stability and downregulated 
Smo activity31. Although we mutated Lys851 to Ala in order to block sumoylation at this residue and carried out 
immunoprecipitation assay to determine the levels of Smo sumoylation in S2 cells, we still observed high levels 
of sumoylation in Smo (data not shown). It is possible that other residues in Smo are also sumoylated, which may 
play similar roles in regulating the stability and signaling activity of Smo.

To identify the sumoylation residue(s) in Cos2, we carried out immunoprecipitation assays using a series 
of Cos2 truncations as previously described36. We found that the microtubule binding domain and the neck 
domain of Cos2 did not undergo any sumoylation. In contrast, the coiled-coil domain and C-tail were sumoylated 
(Fig. 6D). However, mutating four lysine residues (Lys715, Lys892, Lys922, Lys979) in the coiled-coil domain did 
not affect Cos2 sumoylation. It has been shown that Cos2 C-tail is responsible for Cos2 to inhibit Smo36, how-
ever Cos2 still underwent the same levels of sumoylation when Lys1083 in the C-tail was mutated. Furthermore, 
mutating these lysine residues did not change the ability of Cos2 to inhibit Smo sumoylation. We speculate that 
Cos2 is sumoylated at other lysine residues.

In this study, we found that both the wild-type Cos2WT and dead form Cos2S182N inhibited Smo accumulation 
in wing disc (Fig. 7A,C), suggesting that Cos2 inhibits Smo accumulation in a Cos2-activity-independent man-
ner. In addition, the inactivation of Smt3, the single form of SUMO in Drosophila, counteracted the inhibitory 
activity of Cos2WT and Cos2S182N in regulating Smo accumulation in the wing (Fig. 7B,D), indicating the inhibi-
tory activity of Cos2 is regulated by the SUMO pathway. Interestingly we found that Smo was partially recovered 
as many tiny puncta in the wing (Fig. 7B,D). This punctate pattern suggests that Smo is located in the intracellular 
compartments, and these forms of Smo are likely in their inactive states. It is possible that these forms of Smo 
are not sumoylated because Smt3 is inactivated by RNAi. The downregulation of Smo sumoylation by RNAi of 
Smt3 likely prevent Smo accumulation and activation in the wing disc, although the inhibitory activity of Cos2 
is compromised. Future studies could be designed to examine the co-localization of Smo with intracellular com-
partments labeled by different markers, which will provide a better understanding Smo intracellular trafficking. 
Multiple Hh signaling components are sumoylated, resulting in difficulty analyzing the phenotypes in adult wings 
and wing discs. For example, Ci is sumoylated, which promotes the activity of Ci in regulating cyst stem cell 
(CySC) proliferation30 (Fig. 7E). However, we are able to distinguish the roles of Smo and Cos2 sumoylation using 
both the wing disc phenotypes and cell cultured assays to examine the levels of protein sumoylation.

The other very critical finding in this study is that Krz prevents Smo accumulation by inhibiting the sumoyla-
tion of Smo. More importantly, the regulatory domain of Krz is responsible to inhibit Smo sumoylation, however, 
none of the Krz forms regulate Smo phosphorylation. These data suggest the specificity of Krz in regulating 
Smo sumoylation, accumulation, and ultimate activation. Our observation is in line with the previous finding in 
which Krz mediated Smo degradation partially through the proteasome pathway in an ubiquitination independ-
ent manner15. However, our data presented in this study and those from the previous study15 did not exclude the 
possibility for Krz to downregulate Smo accumulation and activation through another intracellular signaling 
pathway. In this study, we found that the excessively expressed Krz prevents Smo sumoylation likely by facilitating 
Ulp1 to interact with Smo. However, it should be noted that the loss of endogenous Krz does not cause changes 
in Smo accumulation in wing disc. It might be possible that other arrestins, such as arrestin-1 and arrestin-2 in 
Drosophila, compensate the loss of function of Krz. We found that RNAi of Krz decreased the interaction between 
Smo and Ulp1 (Fig. 5E). Although the RNAi of Krz was very efficient, there was still weak interaction between 
Smo and Ulp1 (Fig. 5E), raising the possibility that other arrestins might have similar roles.

indicates Smo accumulation inhibited by Cos2S182N expression. Arrow in D indicates the partially restored 
Smo accumulation by RNAi of Smt3. Of note, Smo exhibited punctate pattern when Cos2 and Smt3 RNAi 
were coexpressed by the ap-Gal4. (E) A model for sumoylation to activate Smo. In the absence of Hh, Smo 
is ubiquitinated and internalized for degradation. Krz, Cos2, and Ulp1 downregulate Smo stability through 
inhibiting Smo sumoylation. In the presence of Hh, Ubc9 and PIAS sumoylation proteins promote sumoylation 
and therefore the accumulation and activation of Smo on the membrane. In turn, sumoylation of Smo recruits 
USP8 deubiquitinase to inhibit Smo ubiquitination and degradation. Cos2 sumoylation attenuates its ability to 
inhibit Smo. Hh stimulation reduces the interaction between Smo and Ulp1. Ci is directly sumoylated by the 
sumoylation proteins, which promotes Ci activity in regulating CySC proliferation in the testis.



www.nature.com/scientificreports/

1 2Scientific Reports | 7:42749 | DOI: 10.1038/srep42749

Materials and Methods
Constructs, mutants, transgenes.  Myc-SmoWT, Myc-SmoSD (i.e. SmoSD123), Myc-SmoSA (i.e. Smo-PKA123), 
Flag-SmoDN (i.e. Smo−PKA12), HA-Cos2WT, HA-Cos2∆C, and HA-Cos2∆N constructs and transgenic lines have been 
previously described28,36. HA-tagged Ulp1 (HA-Ulp1), HA-tagged Velo (HA-Velo), and HA-tagged CG12717 
(HA-CG12717 were gifts from Dr. Liqun Luo32. Epitope-tagged Krz and Krz∆R were PCR amplified from 
cDNA clone (LD31082) and sub-cloned into UAST-2x HA or UAST-2xFlag vectors within NotI and KpnI sites. 
HA-SUMO and Flag-SUMO were generated by inserting SUMO cDNA (PCR amplified from clone LD07775) 
to the UAST-5xHA and UAST-2xFlag vector, respectively. Flag-PIAS were constructed by inserting PIAS cDNA 
(clone LD27861) to UAST-2xFlag vector. Myc-Cos2WT, Myc-Cos2∆C, and Myc-Cos2∆N were generated by inser-
tion of Cos2 full-length or Cos2 fragments (from HA-Cos2∆C, and HA-Cos2∆N) into the UAST-5xMyc vector. 
His-Krz and His-KrzΔR contained Krz amino acids 1-470 or 1-426 lacking the regulatory domain. Transgenic 
Ubc9 (CG3018) RNAi lines were obtained from either BSC (#31396) or VDRC (v33685), and line v33685 was 
used for most of the experiments as these lines gave rise to similar phenotypes. PIAS [CG8068, Su(var)2-10] 
RNAi lines (#31623 and #29448) and Smt3 (CG4494) RNAi line (#28034) were obtained from BSC. Ulp1 
(CG12359) RNAi lines were from BSC (#31624), VDRC (v31744), and Dr. Alexey Veraksa38. The line v31744, 
combined with Dicer co-expression, was used for most of the experiments. Velo (CG10107) RNAi line (v103524) 
was from VDRC. Flag-PIAS, Flag-Ubc9, HA-Krz, and HA-KrzΔR transgenic lines were generated using the 75B1 
attP locus39. HA-Ulp1 and GFP-Cos2S182N transgenic lines were obtained from BSC. MS1096-Gal4, ap-Gal4, and 
C765-Gal4 have been described40,41.

Cell culture, transfection, immunoprecipitation, and western blot.  S2 cell culture and transfection 
using Effectene transfection reagent (Qiagen) has been previously described16. Forty-eight hours post-transfection, 
cells were harvested and treated with lysis buffer [100 mM NaCl, 50 mM Tris-HCl (pH8.0), 1.5 mM EDTA, 10% 
(vol/vol) glycerol, 1% (vol/vol) Nonidet P-40, and protease inhibitor tablet (Roche)]. Cell lysate was obtained by 
centrifugation at 12,000 rpm for 10 min. A total of 6 ×​ 106 cells were harvested and lysed in 450 μ​L lysate buffer. 
50 μ​L was saved for direct western blots, out of which 4 μ​L was used for each load. The remaining 400 μ​L was used 
for IP assay. The cell lysate was added with beads of Protein A Ultralink Resin (Thermo Scientific) after adding 
the proper primary antibody for 2 h. The samples were then resolved by SDS-PAGE and transferred onto PVDF 
membranes (Millipore) for western blot. About 16 times more of the immunoprecipitation sample was analyzed 
compared with the corresponding lysate. Western blot analysis was performed using the indicated antibodies and 
the enhanced chemiluminescence (ECL) protocol. To normalize the levels of Smo, 50 μ​M MG132 (a proteasome 
inhibitor, Calbiochem) and 15 mM NH4Cl (a lysosome inhibitor, Sigma-Aldrich) were used to block Smo degrada-
tion, and samples were normalized for loading14,16. For Smo stability assay, Cycloheximide (Sigma) treatment was 
performed at a final concentration of 100 μ​M for the indicated time points before harvesting S2 cells36. Density of the 
western blot was analyzed by ImageJ software. Hh treatment achieved by transfection with HhN cDNA combined 
with treatment with 60% of HhN-conditioned medium to achieve high level of Hh signaling activity, and RNAi 
achieved by adding dsRNA to cell culture in 6-well plates have been previously described16,39. GFP dsRNA was used 
as previous described14. Ulp1 dsRNA was synthesized against coding sequence 171–720, Velo dsRNA was against 
2100–2640, CG12717 dsRNA was against 1–500, PIAS dsRNA was against 131–680, Krz dsRNA against 192–798, 
Smt3 and Ubc9 dsRNAs were against full coding sequence plus 3′​-UTR. Antibodies used for western blotting: 
mouse anti-Myc (9E10, Santa Cruz, 1:5,000), anti-HA (F7, Santa Cruz, 1:5,000), anti-Flag (M2, Sigma, 1:10,000), 
and anti-GFP (Millipore, 1:1,000); rabbit anti-Krz (Thermo Scientific, 1:2,000). The consistency of western blots was 
confirmed by three to five individual repeats.

In vitro kinase assay, RT-PCR, and luciferase reporter assay.  For in vitro kinase assay, GST-SmoK 
containing aa656–753 of Smo, His-Krz, and His-Krz∆R fusion proteins were expressed in bacteria and purified 
with GST beads. 3 μ​g of Smo were incubated at 30 °C for 30 min in 50 μ​L of assay buffer (20 mM Tris-HCl at 
pH8.0, 10 mM MgCl2, 0.2 mM EDTA, 1 mM DTT), and 2.5 μ​M ATP in the presence of commercial recombinant 
PKA and CK1 (New England Biolabs) followed by western blotting with antibodies to examine Smo phosphorylation. 
Antibody used: rabbit anti-GST (Santa Cruz, 1:500), anti-SmoP (1:20)16, mouse anti-His (H8, Millipore, 1:1,000).

To examine the levels of gene expression, RT-PCR was carried out using S2 cells with the primers for Ubc9  
(5′​-TGG CGC AAG GAT CAC-3′​; 5′​-GCC CGC CCT CCC AGG-3′​), PIAS (5′​-CAG CTG CCT AAT GTC ATT C-3′​;  
5′​-GAC ACC ACT GAA CCG-3′​), Smt3 (5′​-AGA AGG GAG GTG AGA C-3′​; 5′​-CGT TCA TCA GCT TCC 
TC-3′​), and Ulp1 (5′​-CGG GAT TCC AGG CTC-3′​; 5′​-GTC CAC ACG CCG GTA C-3′​).

The ptc-luc reporter assay has been described with S2 cells cultured in 6-well plates and transfected with 50 ng  
tub-Ci and 150 ng ptc-luc reporter constructs followed by activity analysis using the Dual-Luciferase Reporter 
Assay System (Promega, Madison, WI, USA) combined with the GLOMAX Multi Detection System (Promega)16. Each 
ptc-luc experiment was repeated three times and the error bars indicated standard deviation (S.D.) from four repeats.

Immunostaining of wing imaginal discs.  Wing discs from third instar larvae with specific genotypes 
were dissected in PBS then fixed with 4% (vol/vol) formaldehyde in PBS for 20 min. After permeabilization with 
PBST [PBS supplemented with 1% (vol/vol) Triton X-100], discs were incubated with the indicated primary 
antibodies for 3 h and the corresponding second antibodies for 1 h, and then washed with PBT for three times, 
for 20 min per wash. Primary antibodies used in this study: mouse anti-SmoN (DSHB, 1:10); rabbit anti-β​-Gal 
(Cappel, 1:1,500), anti-HA (Santa Cruz, Y-11, 1:100); rat anti-Ci (Developmental Studies Hybridoma Bank, 1:10). 
Secondary antibodies were from Jackson ImmunoResearch Laboratories Inc., affinity-purified for multiple labe-
ling (1:500). Samples were mounted on slides in 80% glycerol and Fluorescence signals were acquired with the 20 x  
objective on an Olympus confocal microscope. The images shown represent five or more images collected for 
each experiment.
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