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Abstract. Retinoblastoma is a common intraocular malignant 
tumor in children. However, the molecular and genetic mecha-
nisms of retinoblastoma remain unclear. The gene expression 
dataset GSE110811 was retrieved from Gene Expression 
Omnibus. After preprocessing, coexpression modules were 
constructed by weighted gene coexpression network analysis 
(WGCNA), and modules associated with clinical traits 
were identified. In addition, functional enrichment analysis 
was performed for genes in the indicated modules, and 
protein‑protein interaction (PPI) networks and subnetworks 
were constructed based on these genes. Eight coexpression 
modules were constructed through WGCNA. Of these, the 
yellow module had the highest association with severity and 
age (r=0.82 and P=3e‑07; r=0.72 and P=3e‑05). The turquoise 
module had the highest association with months (r=‑0.63 and 
P=5e‑04). The genes in the two modules participate in multiple 
pathways of retinoblastoma, and by combining the PPI network 
and subnetworks; 10 hub genes were identified in the two 
modules. The present study identified coexpression modules 
and hub genes associated with clinical traits of retinoblastoma, 
providing novel insight into retinoblastoma progression.

Introduction

Retinoblastoma is a retinal embryo malignancy that occurs in 
childhood and is triggered by mutations in the retinoblastoma 
gene (RB1) in cells of the developing retina (1,2). Retinoblastoma 
accounts for 3% of all cancer types in children, and is the most 
common intraocular malignancy in children (3). Moreover, 
children with a family history of retinoblastoma have a 
significantly increased risk of developing retinoblastoma (4). 
When diagnosed at an early stage and treated with standard 
regimens of systemic chemotherapy and topical consolidation 
therapy it is possible to successfully treat retinoblastoma, with 
most patients maintaining normal vision in at least one eye (5). 
However, retinoblastoma can cause blindness or death if not 
treated at an early stage (6). In addition, the use of standard 
chemotherapy regimens may result in notable toxicities and 
the development of secondary malignancies, such as soft tissue 
sarcomas, brain tumors and osteosarcoma (7‑9). Therefore, 
there is an urgent need to understand the molecular character-
istics of RB1 expression in order to improve the quality of life 
of patients with retinoblastoma (4,10).

It has been confirmed that clinical risk assessment in reti-
noblastoma requires combining clinical traits. For example, 
tumor staging, pathological grade and tumor laterality show 
associations with the patient's age at diagnosis, overall survival 
and second malignancy in retinoblastoma  (11). High‑risk 
histopathologic features (HRPFs) are closely related to poor 
prognosis, including tumor invasion of the optic nerve, choroid 
or anterior chamber, suggesting the need for postenucleation 
adjuvant chemotherapy (12). Therefore, it is necessary to iden-
tify gene coexpression modules associated with these clinical 
traits.

Network‑based analysis has been used to characterize clin-
ically significant genes and constitutes a means of presenting a 
variety of biological data, such as protein‑protein interactions, 
gene regulation, cellular pathways and signal transduction. 
The core elements of biological networks may be identified by 
measuring nodes based on their network features. In addition, 
weighted gene coexpression network analysis (WGCNA) has 
been widely applied to develop gene coexpression modules of 
various diseases. For example, Zhou et al (13) successfully 
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applied coexpression analysis to identify gene coexpression 
modules associated with the prognosis of pancreatic carci-
noma. However, there are few studies on the gene coexpression 
modules associated with the clinical traits of retinoblastoma 
using WGCNA.

In this study in order to comprehensively analyze the 
molecular characteristics of RB1 expression, the aim was to 
identify coexpression modules associated with the clinical 
traits of retinoblastoma based on WGCNA and pathways 
involving the genes in these modules, as well as identifying 
hub genes related to clinical traits by combining the findings 
with protein‑protein interaction (PPI) network. This study will 
contribute to an improved understanding of the development 
of retinoblastoma.

Materials and methods

Raw data and pretreatment. The GSE110811 dataset was down-
loaded from Gene Expression Omnibus (https://www.ncbi.nlm.
nih.gov/geo/). The dataset contains the gene expression profiles 
of 28 retinoblastoma samples based on the GPL16686 plat-
form (Human Gene 2.0 ST array; Affymetrix; Thermo Fisher 
Scientific, Inc.) (12). Annotation information of microarray data 
was used to match probes with corresponding gene information. 
Probes matching with more than one gene were excluded, and 
average expression values were calculated for genes matching 
with more than one probe. Corresponding clinical information 
was also obtained. The workflow chart is shown in Fig. 1.

Construction of the gene coexpression network by WGCNA. 
A gene coexpression network was built with the WGCNA 
algorithm (14). Before constructing the network, the number 
of genes with different expression threshold was calculated, 
and the appropriate soft threshold value was then determined. 
Cluster analysis of 28 samples was performed at the appropriate 
threshold value using the flashclust package in R. The func-
tion pickSoftThreshold was applied to the calculate scale‑free 
topology model fitting index (R2) and mean connectivity values 
corresponding to different soft threshold values (β; ranging 
from 1‑20). The connectivity suggests the degree of correla-
tion to which a gene is related to other genes in the network. 
The appropriate power value was estimated when R2 was 0.85. 
Furthermore, the gene expression matrix was transformed into 
an adjacency matrix and a topological overlap matrix (TOM). 
The corresponding dissimilarity of TOM (1‑TOM) was calcu-
lated. The topological overlap is a measure of gene biological 
similarity based on pairwise gene coexpression correlation. 
A cluster dendrogram was constructed based on 1‑TOM, 
and the DynamicTreeCut package (http://www.genetics.ucla.
edu/labs/horvath/CoexpressionNetwork/BranchCutting/) 
was used to assign branches and generate modules. The 
heatmap package was employed to visualize the TOM among 
400 randomly selected genes. For module construction, the 
default for maxBlockSize was 5,000, and deepSplit was set 
to 2. After calculating module eigengenes (MEs) using the 
function moduleEigengenes, modules with similar expression 
patterns were merged by the function mergeCloseModules. 
During this process, MEs are the major components of the first 
principal component in a module with the same expression 
profile, which can reflect the entire features of module genes.

Module‑trait relationship construction. Correlation between 
MEs and clinical traits was analyzed by Pearson correlation 
analysis. R>0.8 was considered to indicate a strong correla-
tion. For each expression profile, gene significance (GS) was 
calculated as the absolute value of the correlation between the 
expression profile and each clinical trait. Module membership 
(MM) was defined as the correlation between the expression 
profile and each ME (15). Thus, genes with a high significance 
for clinical traits and MM were identified by two parameters.

Functional and pathway enrichment analyses. To explore the 
biological processes and pathways in which the genes indi-
cated in the module participate, functional enrichment analysis 
was performed via the clusterProfiler package in R language, 
including Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) enrichment analyses (16). GO 
terms include ‘biological process’, ‘molecular function’ and 
‘cellular component’. P<0.05 after correction was set as the 
cutoff criterion.

PPI network and core subnetwork construction. PPI network 
analysis is a powerful tool for understanding the biological 
responses occurring in retinoblastoma. In the PPI network, a 
protein is defined as a node, and the interaction between two 
nodes is defined as an edge. The size of a node represents a 
degree: The larger the node, the larger the degree (17). The 
thickness of an edge indicates a correlation: The thicker 
the edge, the higher the correlation. Genes in the indicated 
modules were entered into the STRING online database 
(http://string‑db.org/), and the cutoff value was set to 0.17. 
Related pairs of genes were retrieved and visualized with 
Cytoscape (version 3.4.0)  (18). As an open platform with 
numerous plugins, the function of Cytoscape is to expand 
visualization options and network analysis power. Cytoscape 
cytoHubba plugin was used to select the top ten hub nodes 
according to maximal clique centrality (MCC)  (19), and 
the Cytoscape MCODE plugin was applied to identify core 
subnetworks with highly interconnected nodes (20).

Results

Gene expression data. The box plot shows the expression 
value of each gene in 28 retinoblastoma samples (Fig. 2A). 
The average expression value of all mRNAs in each sample 

Figure 1. Workflow chart for the construction of the gene coexpression 
network.
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was nearly consistent, suggesting that the GSE110811 dataset 
was well normalized. As shown in Fig. 2B, two outlier samples 
(GSM3017126 and GSM3017124) were removed.

Coexpression module construction. When the soft threshold 
power value β was equal to eight, the connectivity between 
genes conformed to a scale‑free network distribution 
(Fig. 3A‑D). Different coexpression modules of retinoblastoma 
were identified by hierarchical clustering and dynamic branch 
cutting, which are shown as different colors in Fig. 3E. After 
merging similar modules, eight coexpression modules were 
generated. The number of genes in the eight‑coexpression 
modules is listed in Table I. The gray module represents the set 
of genes that were not assigned to any module. Eigengenes were 
used as representative gene expression profiles, quantifying 
module similarity through eigengene correlation (Fig. 3F).

Module‑trait relationship construction. To explore mean-
ingful modules associated with clinical traits, correlations 
between MEs and the following clinical traits were analyzed: 
Age; HRPF; metastasis; mild; moderate; severe; unilateral; 
survival time (months); mutation germline (mutation G); muta-
tion not known or test not done (mutation ND); mutation none; 
and mutation nongermline (mutation NG; Fig.  4). Among 
them, HRPF has been confirmed to be associated with a poor 
prognosis in retinoblastoma. Moreover, anaplastic grades 
(mild, moderate and severe) are able to predict risk stratifica-
tion for retinoblastoma. As shown in Fig. 4, different colors 
represent different correlation coefficients; furthermore, the 
green suggests negative correlation and the red stands for posi-
tive correlation. It was found that the yellow module had the 
highest association with severe anaplasia and age (r=0.82 and 
P=3e‑07; r=0.72 and P=3e‑05) and that the turquoise module 

Figure 2. Gene expression data for 28 retinoblastoma samples. (A) Box plots of normalized gene expression data from the GSE110811 dataset. (B) Sample 
clustering was performed to detect outliers.
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had the highest association with months (r=‑0.63 and P=5e‑04). 
The eigengene dendrogram and heatmap showed that the 
MEyellow module was highly related to severe anaplasia 
and age, and the MEturquoise module was highly related to 
months (Fig. 5A‑J). Therefore, the two modules were selected 
as meaningful modules associated with clinical traits. The 
scatterplots of GS vs. MM in the MEyellow and MEturquoise 
modules are shown in Figs. 6A‑F and 7A‑G, respectively. The 
above results revealed that the yellow and turquoise modules 
were significantly associated with clinical traits.

Functional enrichment analysis of genes in the yellow and 
turquoise modules. KEGG and GO enrichment analyses 
were performed for the genes in the yellow and turquoise 
modules, and a significant difference in the biological 

processes enriched by the genes in the two‑coexpression 
modules was observed. For GO analysis, genes in the yellow 
module are mainly enriched in negative regulation of neuron 
differentiation, axon guidance, neuron projection guidance, 
negative regulation of neurogenesis and negative regula-
tion of nervous system development (Fig. 8A). However, no 
KEGG pathways enriched with genes in the yellow module 
were found. For GO analysis, genes in the turquoise module 
are mainly enriched in chromosome segregation, organelle 
fission, chromosomal region, centrosome, tubulin binding, 
ATPase activity and coupling (Fig. 8B). In KEGG enrich-
ment analysis, genes in the turquoise module are enriched in 
protein processing in the endoplasmic reticulum, cell cycle, 
proteasome, DNA replication, mismatch repair and protein 
export (Fig. 8C).

PPI network construction. Genes in the yellow modules were 
used to construct the PPI network (Fig. 9A); subnetworks were 
then constructed to explore more specific and detailed infor-
mation in the PPI network, as identified using the Cytoscape 
MCODE plugin. Two subnetworks (scores=4.6 and 3) were 
obtained for the yellow module (Fig. 9B and C). Genes in the 
turquoise modules were used to construct the PPI network 
(Fig. 10A). In total, three subnetworks (scores=4, 3.714 and 
3.111) were obtained for the turquoise module (Fig. 10B‑D). 
The Cytoscape CytoHubba plugin was employed to find the 
top ten hub genes with a high degree of connectivity between 
the nodes, according to the MCC. The top 10 hub genes identi-
fied from the PPI network of genes in the yellow and turquoise 
modules are shown in Fig. 11A and B, respectively, and the top 

Figure 3. Coexpression module construction. (A and B) Effect of different soft threshold power values on the scale independence and mean connectivity 
degree. (C and D) Histogram of connectivity distribution and the scale free topology when β=0.85. (E) Clustering dendrogram of genes with dissimilarity 
based on topological overlap, together with assigned module colors. (F) Network heatmap plot showing the topological overlap matrix among 400 randomly 
selected genes. Light color represents low overlap; dark color represents high overlap.

Table I. Number of genes in the eight‑coexpression modules.

Module colors	 Frequency

Black	 44
Blue	 836
Brown	 146
Green	 91
Grey	 697
Red	 49
Turquoise	 3,039
Yellow	 98
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ten hub genes in the yellow and turquoise modules are listed in 
Tables II and III, respectively.

Discussion

The present study systematically analyzed gene expression 
for retinoblastoma using WGCNA and PPI networks. These 
findings identified gene coexpression modules and hub genes 
associated with clinical traits of retinoblastoma, providing 
novel insight into retinoblastoma progression.

In the present study, 8 coexpression modules were identified 
based on WGCNA. Among them, the yellow module exhibited 
the highest association with histopathologic grading and age. 
Histopathologic grading included mild, moderate and severe. 
Histopathologic grading was determined based on tumor size, 
growth pattern, level of differentiation, degree of apoptosis, 
grade of anaplasia, tumor seeding, extent of tissue invasion and 
the presence of retinocytoma. High parental age is associated 
with increased risk of sporadic hereditary retinoblastoma (21). 
Therefore, early detection is important in curing the disease 
using surgical treatment (22). It has been recorded that a delay 
of more than 6 months from the first clinical sign to diagnosis 
is associated with 70% mortality in developing countries (23). 
The turquoise module had the highest association with survival 
time (months), indicating that the module could become a 
potential prognostic factor. Therefore, the two modules were 
considered important in retinoblastoma. GO analysis revealed 

that the genes in the yellow module were mainly enriched in the 
negative regulation of neuron differentiation, axon guidance, 
neuron projection guidance, neurogenesis and development of 
the nervous system. Increasing evidence suggests that neuronal 
differentiation of neuroblastoma cell lines is induced by a 
number of factors, such as p73, Tropomyosin receptor kinase A 
and Ubiquitin C‑Terminal Hydrolase L1 (24‑26). According to 
GO enrichment analysis, the genes in the turquoise module 
are mainly enriched in chromosome segregation, organelle 
fission, chromosomal region, centrosome, tubulin binding, and 
ATPase activity and coupling. In KEGG enrichment analysis, 
it was shown that genes in the turquoise module were enriched 
in protein processing in the endoplasmic reticulum, cell cycle, 
proteasome, DNA replication, mismatch repair and protein 
export. Hub genes in the turquoise module were involved in 
these pathways. For example, among these pathways, hub 
gene CCNH was enriched in the cell cycle pathway. Overall, 
the genes in the two modules may play important roles in the 
development of retinoblastoma.

In this study, the top ten hub genes with a high degree of 
connectivity according to MCC in the yellow and turquoise 
modules were identified. The degree of a particular protein 
is related to the necessity of the gene, and proteins with 
higher numbers are more likely to be essential  (27). As 
biological networks are heterogeneous, it is necessary to 
capture essential proteins using a variety of methods. The top 
10 hub genes in the yellow module included: BAF chromatin 

Figure 4. Module‑trait relationship construction. Each row corresponds to an ME, and each column corresponds to a trait. Each cell contains the corresponding 
correlation and P‑value. The table is color‑coded by correlation based on the color legend. Anaplastic grades include mild, moderate and severe. Mutation_G, 
RB1 mutation germline; mutation_ND, not known or test not done; mutation_NG, RB1 mutation nongermline; mutation_None, no RB1 mutation identified; 
months, survival time in months; HRPF, high‑risk histopathologic feature; ME, module eigengene.
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Figure 5. Eigengene dendrogram and heatmap of the identified eight modules. (A) Eigengene dendrogram and heatmap of eight modules and age. (B) Eigengene 
dendrogram and heatmap of eight modules and HRPF. (C) Eigengene dendrogram and heatmap of eight modules and metastasis. (D) Eigengene dendrogram 
and heatmap of eight modules and mild.
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Figure 5. Continued. Eigengene dendrogram and heatmap of the identified eight modules. (E) Eigengene dendrogram and heatmap of eight modules and 
moderate. (F) Eigengene dendrogram and heatmap of eight modules and months. (G) Eigengene dendrogram and heatmap of eight modules and mutation_ND. 
(H) Eigengene dendrogram and heatmap of eight modules and mutation_NG.
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remodeling complex subunit BCL11A (BCL11A); SSBP3 
antisense RNA 1 (SSBP3‑AS1); EBF transcription factor 3, 

KCNQ5 intronic transcript 1 (KCNQ5‑IT1); uncharacterized 
LOC101929633 (LOC101929633); carbonic anhydrase  2 

Figure 6. Scatterplot of module membership vs. gene significance in the yellow module (A) Correlation between module membership in yellow module and 
gene significance for age. (B) Correlation between module membership in yellow module and gene significance for severe. (C) Correlation between module 
membership in yellow module and gene significance for mild. (D) Correlation between module membership in yellow module and gene significance for 
moderate. (E) Correlation between module membership in yellow module and gene significance for months. (F) Correlation between module membership in 
yellow module and gene significance for mutation_NG. mutation_NG, RB1 mutation nongermline.

Figure 5. Continued. Eigengene dendrogram and heatmap of the identified eight modules. (I) Eigengene dendrogram and heatmap of eight modules and severe. 
(J) Eigengene dendrogram and heatmap of eight modules and unilateral. The color changes from blue to red, and the correlation gradually increases. HRPF, 
high‑risk histopathologic feature; mutation_ND, not known or test not done; mutation_NG, RB1 mutation nongermline.
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(CA2); ArfGAP with SH3 domain, ankyrin repeat and PH 
domain 2; roundabout guidance receptor 1 (ROBO1); INSM 
transcriptional repressor 2; and leucine rich repeat LGI family 
member 2 (LGI2). Those in the turquoise module included: 
NIPBL cohesion loading factor (NIPBL); leucine rich pentatri-
copeptide repeat containing (LRPPRC); GC‑rich promoter 
binding protein 1; ubiquitin protein ligase E3A; HECT and 
RLD domain containing E3 ubiquitin protein ligase family 
member 1; ring finger protein 214; cyclin H (CCNH); dual 
specificity tyrosine phosphorylation regulated kinase 1Al 
(DYRK1A); signal transducing adaptor molecule; and chaper-
onin containing TCP1 subunit 2 (CCT2). However, the function 
of these genes in retinoblastoma remains unclear. A previous 
study found that BCL11A plays a critical role in several 
diseases as an oncogene  (28). Consistent with the present 
study, it has been confirmed that in epigenetic complexes, 
the transcription factor BCL11A competes with histone H3 
for binding to Retinoblastoma‑binding proteins 4 and 7 (29). 
Therefore, BCL11A has a widespread role in the development 

of retinoblastoma (30). It has been reported that ROBO1 is 
localized to the cell membrane; in primary and metastatic 
prostate cancer its expression is lower (31). However, the role 
of ROBO1 in retinoblastoma has not yet been studied. The 
present results showed that ROBO1 in the yellow module may 
be associated with retinoblastoma, but this requires further 
validation. LGI2 is secreted by neurons and acts on members 
of the metalloproteinase‑deficient ADAM neuronal receptor 
family, with roles in synaptic remodeling (32). Similarly, GO 
analysis in the present study indicated enrichment of the genes 
in the yellow module in synaptic guidance. Among the genes 
in the turquoise module, NIPBL plays a critical and regulatory 
role in cohesion loading on chromatin, as well as having roles 
in gene expression and transcriptional signaling (33,34). Zinc 
finger protein 609 may participate in the regulation of cortical 
neuron migration (35). Upregulated LRPPRC may promote 
tumourigenesis in various tumors, such as lung adenocarci-
noma, esophageal squamous cell carcinoma, stomach, colon, 
mammary and endometrial adenocarcinoma, as  well  as 

Figure 7. Scatterplot of module membership vs. gene significance in the turquoise module. (A) Correlation between module membership in turquoise module 
and gene significance for moderate. (B) Correlation between module membership in turquoise module and gene significance for months. (C) Correlation 
between module membership in turquoise module and gene significance for mutation_ND. (D) Correlation between module membership in turquoise module 
and gene significance for mutation_NG. (E) Correlation between module membership in turquoise module and gene significance for age. (F) Correlation 
between module membership in turquoise module and gene significance for severe. (G) Correlation between module membership in turquoise module and gene 
significance for unilateral. mutation_ND, not known or test not done; mutation_NG, RB1 mutation nongermline.
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Figure 8. Functional enrichment analysis of genes in the yellow and turquoise modules. (A) GO analysis of genes in the yellow module; (B) GO analysis of 
genes in the turquoise module; (C) KEGG enrichment analysis of genes in the turquoise module. The color changes from red to green, and the P‑value gradu-
ally increases. The sizes of the circles represent the count of enriched genes.

Figure 9. PPI networks and subnetworks of genes in the yellow module. (A) PPI network of genes in the yellow module; (B and C) subnetworks identified from 
the PPI network of genes in the yellow module (scores=4.6 and 3, respectively).
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lymphoma (36,37). Regardless, the present study is the first to 
report that LRPPRC may affect the development of retinoblas-
toma. Furthermore, CCNH, DYRK1A and CCT2 are involved 
in the regulation of the cell cycle, which is consistent with the 
present functional enrichment analysis results (38‑42). Due 
to the unclear molecular mechanisms of retinoblastoma, the 
ability to treat the disease remains limited (43‑45). Moreover, 
patients with hereditary retinoblastoma have an increased 
risk of subsequent malignant neoplasms after radiotherapy or 
chemotherapy (46,47). The present study revealed that these 
hub genes may be involved in the molecular mechanisms 

underlying the development and progression of retinoblas-
toma, though further validation is required.

Currently, WGCNA is widely used to analyze large‑scale 
data sets and find modules for highly related genes. To our 
knowledge, the present study is the first to analyze the 
correlation between coexpression modules and clinical traits 
of retinoblastoma via WGCNA. In a previous study using 
WGCNA analysis four hub genes were identified as prog-
nostic markers in another eye tumor, uveal melanoma (15) 
and another study identified four hub genes associated with 
the progression of uveal melanoma (48). However, identical 

Figure 10. PPI networks and subnetworks of genes in the turquoise module. (A) PPI network of genes in the turquoise module; (B‑D) subnetworks identified 
from the PPI network of genes in the turquoise module (scores=4, 3.714 and 3.111, respectively).

Figure 11. Top ten hub genes identified from the PPI networks of genes in the yellow module and turquoise module. (A) Yellow and (B) turquoise modules.
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genes associated with the two eye tumors, uveal melanoma 
and retinoblastoma, have not been found. The genes identified 
using WGCNA in uveal melanoma have been not used in a 
clinical setting; however, functional enrichment studies have 
not revealed the role of these genes. Since WGCNA has been 
widely used to construct coexpression modules, it is a useful 
method to study retinoblastoma.

However, the present study has several limitations that 
should be noted. First, this study was based on analysis of data 
extracted from a limited sample size; therefore, the genes iden-
tified cannot be generalized to the majority of patients with 
retinoblastoma. Second, the biological mechanisms of the hub 
genes, such as SSBP3‑AS1, KCNQ5‑IT1, LOC101929633 and 
CA2, are still unknown. Third, this study was limited by the 
absence of experimental evidence, so large‑scale studies are 
needed for validation.

In the present study, two meaningful gene coexpres-
sion modules for retinoblastoma were identified based on 
WGCNA. Among the genes of the two‑coexpression modules, 
hub genes were identified by PPI networks and subnetworks, 
and based on previous studies, these genes may play a critical 
role in retinoblastoma. Therefore, this research is helpful in 
understanding the molecular mechanisms of retinoblastoma.

In this study, 8 coexpression modules were constructed 
via WGCNA. The yellow module and turquoise module had 
highly significant associations with clinical traits. In addition, 
the genes in the two modules participate in multiple pathways 
in retinoblastoma. Ten hub genes in the two‑coexpression 
modules were identified according to the PPI network. This 
study identified meaningful gene coexpression modules and 
hub genes associated with a number of clinical traits of retino-
blastoma that may contribute to the development of the disease.
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Table II. Top 10 hub genes identified from the PPI network of 
genes in the yellow module.

Rank	 Gene name	 Score

1	 BCL11A	 3
2	 SSBP3‑AS1	 2
2	E BF3	 2
4	 KCNQ5‑IT1	 1
4	LOC 101929633	 1
4	CA 2	 1
4	A SAP2	 1
4	RO BO1	 1
4	IN SM2	 1
4	L GI2	 1

BCL11A, BAF chromatin remodeling complex subunit BCL11A; 
SSBP3‑AS1, SSBP3 antisense RNA 1; EBF3, EBF transcription 
factor 3; KCNQ5‑IT1, KCNQ5 intronic transcript 1; LOC101929633, 
uncharacterized LOC101929633; CA2, carbonic anhydrase 2; ASAP2, 
ArfGAP with SH3 domain, ankyrin repeat and PH domain 2; ROBO1, 
roundabout guidance receptor 1; INSM2, INSM transcriptional 
repressor 2; LGI2, leucine rich repeat LGI family member 2.

Table III. Top 10 hub genes identified from the PPI network of 
genes in the turquoise module.

Rank	 Gene name	 Score

1	NI PBL	 35
2	LR PPRC	 31
3	 GPBP1	 24
4	U BE3A	 21
5	 HERC1	 8
5	RN F214	 8
7	CCN H	 7
8	D YRK1A	 4
9	 STAM	 3
9	CC T2	 3

NIPBL, NIPBL cohesion loading factor; LRPPRC, leucine rich 
pentatricopeptide repeat containing; GPBP1, GC‑rich promoter 
binding protein 1; UBE3A, ubiquitin protein ligase E3A; HERC1, 
HECT and RLD domain containing E3 ubiquitin protein ligase 
family member 1; RNF214, ring finger protein 214; CCNH, 
cyclin  H; DYRK1A, dual specificity tyrosine phosphorylation 
regulated kinase 1Al; STAM, signal transducing adaptor molecule; 
CCT2, chaperonin containing TCP1 subunit 2.
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