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Abstract

Background and Objectives: Vitamin D deficiency and endothelial dysfunction are non-traditional risk factors for
cardiovascular events in chronic kidney disease. Previous studies in chronic kidney disease have failed to demonstrate a
beneficial effect of vitamin D on arterial stiffness, left ventricular mass and inflammation but none have assessed the effect
of vitamin D on microcirculatory endothelial function.

Study Design: We conducted a randomised controlled trial of 38 patients with non diabetic chronic kidney disease stage 3–
4 and concomitant vitamin D deficiency (,16 ng/dl) who received oral ergocalciferol (50,000 IU weekly for one month
followed by 50,000 IU monthly) or placebo over 6 months. The primary outcome was change in microcirculatory function
measured by laser Doppler flowmetry after iontophoresis of acetylcholine. Secondary endpoints were tissue advanced
glycation end products, sublingual functional capillary density and flow index as well as macrovascular parameters. Parallel
in vitro experiments were conducted to determine the effect of ergocalciferol on cultured human endothelial cells.

Results: Twenty patients received ergocalciferol and 18 patients received placebo. After 6 months, there was a significant
improvement in the ergocalciferol group in both endothelium dependent microcirculatory vasodilatation after
iontophoresis of acetylcholine (p = 0.03) and a reduction in tissue advanced glycation end products (p = 0.03). There
were no changes in sublingual microcirculatory parameters. Pulse pressure (p = 0.01) but not aortic pulse wave velocity was
reduced. There were no significant changes in bone mineral parameters, blood pressure or left ventricular mass index
suggesting that ergocalciferol improved endothelial function independently of these parameters. In parallel experiments,
expression of endothelial nitric oxide synthase and activity were increased in human endothelial cells in a dose dependent
manner.

Conclusions: Ergocalciferol improved microcirculatory endothelial function in patients with chronic kidney disease and
concomitant vitamin D deficiency. This process may be mediated through enhanced expression and activity of endothelial
nitric oxide synthase.
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Introduction

Patients with chronic kidney disease (CKD) are far more likely

to die of cardiovascular disease (CVD) than progress to end stage

kidney disease (ESKD) [1]. Traditional risk factors including age,

hypertension, smoking and diabetes mellitus do not entirely

account for the excess of CVD mortality in patients with CKD.

Vitamin D deficiency, a non-traditional CVD risk factor in

patients with all stages of kidney disease [2,3,4], is highly prevalent

in patients with CKD [5,6] and is associated with elevated

cardiovascular (CV) morbidity and mortality [7,8,9].

Vitamin D deficiency in patients with CKD has been shown to

correlate with impairment in endothelial function [10,11]. In pre-

clinical [12] and clinical studies [13], endothelial dysfunction has
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been identified as a non-traditional risk factor for CVD in CKD

with improvements in endothelial function reflecting improved

global vascular health and a reduced risk of CVD [14].

Observational studies [15,16,17,18,19,20] have provided sup-

port for the protective role of vitamin D therapy in reducing the

risk of CVD in patients with CKD and ESKD. However, these

studies were heterogeneous in design, therapeutic intervention and

patient populations (CKD vs ESKD) and have not elucidated the

mechanism by which vitamin D reduces CV risk in this patient

group. Several in vitro, pre-clinical and clinical studies have

demonstrated that endothelial and therefore microcirculatory

function can be ameliorated after treatment with both activated

and nutritional forms of vitamin D [21,22,23,24,25]. However,

none of these studies have included patients with CKD. Two

previous studies in patients with non-dialysis and CKD and ESKD

evaluating the effect of nutritional vitamin D compounds on

endothelial biomarkers and conduit artery function have provided

conflicting results [26,27].

The microcirculation, defined as blood vessels ,150 mm in

diameter [28] located within tissue parenchyma, is intricately

linked to endothelial function and predicts the function of the

microcirculatory beds in renal and cardiac tissue [29,30,31,32,33].

A review of cardiovascular assessment in patients with CKD [34]

has highlighted the need for further assessments of microcircula-

tory dysfunction in patients with CKD as a method for predicting

adverse CV outcomes. To date, there have been no prospective,

randomized controlled studies investigating the effect of vitamin D

on microcirculatory endothelial function or CV endpoints in

patients with CKD [35].

We therefore conducted an exploratory, double blind, rando-

mised, controlled trial to determine if therapy with ergocalciferol

compared to placebo improves microcirculatory endothelial

function in patients with CKD and concomitant vitamin D

deficiency. We also conducted parallel in vitro experiments to

elucidate the mechanistic pathway of ergocalciferol in cultured

human endothelial cells.

Methods

Study design
The protocol for this trial and supporting CONSORT checklist

are available as supporting information; see Checklist S1 and

Protocol S1. This was a single centre, double blind, exploratory

randomised controlled trial comparing oral ergocalciferol to

placebo in patients with CKD stage 3–4 (estimated glomerular

filtration rate (eGFR) 60–15 ml/min/1.73 m2) and concomitant

vitamin D deficiency (defined as a serum 25 hydroxy vitamin D

(25 (OH) D) level of ,16 ng/ml). The study was conducted at the

Royal London Hospital, UK, between 1/5/2009 and 1/9/2010.

All patients provided written informed consent and ethical

approval was obtained from the East London Research Ethics

Committee. The trial was registered at clinicaltrials.gov (Clinical

trials number- NCT00882401, http://clinicaltrials.gov/ct2/

show/NCT00882401) and conducted in accordance with the

Declaration of Helsinki.

Inclusion/exclusion criteria
The principle inclusion criteria were an eGFR between 15 and

60 ml/min/1.73 m2 with evidence of 2 consecutive measures of

eGFR ,60 ml/min/1.73 m2 by the 4 variable MDRD equation

[36] at least 3 months apart, serum 25 (OH) D levels ,16 ng/ml,

age .18 and ,80 years, no evidence of diabetes mellitus (fasting

blood sugar ,128 mg/dl, not taking any diabetic medication), not

receiving nor having had renal replacement therapy in the

preceding three months

The principle exclusion criteria were current vitamin
D therapy of any type, serum calcium above 10.4 mg/dl
(based on the upper limit of the laboratory reference
range [37]), pregnant or lactating women, presence of
conditions which predispose to hypercalcaemia, renal
calculi and presence of a disease other than CKD
associated with microcirculatory dysfunction.

Intervention and randomization
Patients were randomised to either ergocalciferol (Sanofi

Aventis, New Jersey, USA) or a matching placebo. The dose of

ergocalciferol was 50,000 IU weekly for one month followed by

50,000 IU monthly for 5 months resulting in a total dose of

450,000 IU over 6 months. This was in line with existing K/

DOQI guidelines for the replacement of vitamin D in patients

with CKD at the time the study was designed [37]. The dose of

ergocalciferol was standardized for all patients to ensure equal

dosing of ergocalciferol over the duration of the study to avoid the

potentially confounding effect of varying doses of ergocalciferol

based on initial serum concentrations of 25 (OH) D. The control

arm received a matching placebo given at the same dose schedule

as ergocalciferol. All patients received dietary advice appropriate

to their stage of CKD from specialist renal dietitians which

included advice on dietary intake of calcium, phosphate, sodium,

potassium and protein. Patients were reviewed monthly for 6

months. A 2 week washout period for any vitamin D containing

drugs or over the counter supplements was included before

randomization, however no subjects required vitamin D washout.

The randomization schedule was developed by an independent

accountant. Sequentially numbered, sealed envelopes were used to

achieve allocation concealment. Envelopes were stored and

sequentially dispensed to study patients by the hospital clinical

trial pharmacy who were blinded to the intervention and

allocation as were the remainder of the study team.

Study endpoints
The primary outcome measure was microcirculatory endothe-

lial function assessed by laser Doppler flowmetry (LDF) over

forearm skin after iontophoresis of acetylcholine (ACh). Secondary

outcome measures were microvascular parameters including skin

autofluorescence (AF) and side stream dark field imaging (SDF) of

the sub lingual microcirculation as well as macrovascular

parameters including blood pressure, pulse pressure, aortic pulse

wave velocity (aPWV), left ventricular mass index (LVMI) and

bone mineral parameters (see File S1 for details of all techniques).

Clinical assessments
All patients were reviewed at the Royal London Hospital kidney

unit. Patients were instructed to wear loose clothing, avoid caffeine

and nicotine for 12 hours prior to assessments and rested for 15

minutes in a temperature and humidity controlled room before

microcirculatory assessments.

Iontophoresis and laser Doppler flowmetry
Iontophoresis involves the delivery of charged particles to the

local microcirculation, through the skin, using electrically repulsive

forces. Laser Doppler flowmetry is a non-invasive technique which

uses the Doppler principle to measure flux of erythrocytes in sub

dermal capillaries. Increasing red cell flux after iontophoresis

reflects microcirculatory vasodilatation as a consequence of

improved endothelial function. The combination of these tech-
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niques is a validated method for studying endothelial function in

the microcirculation in various pathologies including CKD.

[38,39,40] A 1% solution of both ACh and sodium nitroprusside

(SNP) were iontophoresed on the volar aspect of the non-

dominant forearm using a low current protocol to reduce galvanic

effect [41] with a maximum achieved dose of 75 mA after 7.5

minutes. To eliminate baseline variability, relative percentage

change from baseline flux after the maximum iontophoretic dose is

the primary outcome measure (see Figure S1 and Table S1 in File

S1) [38].

Skin autofluorescence
Tissue advanced glycation end (AGE) product levels are an

independent risk predictor of microcirculatory complications and

are predictors of CVD in renal failure [42]. The technique utilises

the AGE reader (Diagnoptics, Netherlands) which provides a non-

invasive measure of AGE in the skin. AGE products correlate with

measures of skin AF provided by the output from the AGE reader

device [42].

Side stream dark field imaging of the sublingual
microcirculation
This is a non-invasive, real time, imaging tool to assess intra-

vital capillary blood flow. An analysis of the moving cells in the

recorded video images permits the quantitative measurement of

red blood cell flow in the capillaries. SDF images were scored and

interpreted according to standard guidelines [43].

Macrocirculatory parameters
Aortic pulse wave velocity (Vicorder device, Skidmore Medical,

UK) was measured to determine if changes in microcirculatory

function occurred independently of changes in large conduit

vessels. LVMI was measured by cardiac magnetic resonance

imaging (cMRI) to determine if the hypothesized improved

microcirculatory function resulted in reduced peripheral resistance

leading to reduced cardiac workload and subsequent reductions in

LVMI.

Biochemical analysis
All biochemical tests were performed in our hospital laboratory

by a Roche modular unit analyser (F. Hoffmann-La Roche Ltd,

Switzerland). Serum vitamin D levels were assessed by UPLC-

MS/MS, which is a quantitative ultra-performance liquid

chromatography tandem mass spectrometry assay. Parathyroid

hormone (PTH) levels were assessed by the Roche E170 intact

PTH assay (Roche Diagnostics, Mannheim)

Experimental work
Human aortic endothelial cells (HAEC, Promocell, UK) were

cultured and incubated for 24 h using either low (12 ng/dl) or

high (120 ng/dl) concentrations of ergocalciferol. Real time

polymerase chain reaction (RT-PCR) was used to evaluate the

effect of ergocalciferol on the expression of endothelial nitric oxide

synthase (eNOS). Nitrite levels in cell supernatant, to evaluate the

downstream effect of changes in eNOS expression in cells, were

measured by a chemiluminescent technique [44] (see File S1 and

figures S1-5 for full description of all techniques).

Statistical analysis
At the time of designing the study, there was insufficient

available evidence of the effect of ergocalciferol therapy on

microcirculatory parameters to undertake a standard power

calculation. Our hypothesis was that ergocalciferol would signif-

icantly improve the function of the endothelium in patients with

CKD and concomitant vitamin D deficiency. Given the

profoundly low levels of 25 (OH) D in this patient group, the

expected rise in serum 25 (OH) D levels with ergocalciferol and

predicted lack of change of 25 (OH) D levels in the placebo group,

we estimated that 30% of patients in the placebo group and 80%

of the patients in the ergocalciferol group would have an

improvement in peripheral LDF measured by relative change

from baseline flux after 6 months of therapy. At 80% power and

with a significance level of 0.05, this required 19 patients per arm.

An intention to treat analysis was performed.

Clinical trial subjects
The two groups were compared for similarity at baseline and

after 6 months of therapy using the Student’s t test for normally

distributed variables, Mann Whitney tests for non-parametric data

and Chi squared tests or Fisher’s exact test for proportions.

Differences in 25 (OH) D levels and change from baseline flux

measured by LDF after iontophoresis were analysed using a two

way repeated measures ANOVA test followed by Bonferroni post

tests for comparisons at pre determined time points (1, 3 and 6

months). We confirmed our findings using a mixed effects model.

Forearm laser Doppler flowmetry is expressed as the percentage

increase in flux from baseline after iontophoresis of ACh [38].

Four patients in the ergocalciferol group and 1 in the placebo

group completed an initial 3 months on therapy before the end of

the predetermined study period and this data was included in the

analysis. The analysis of data at 6 months includes data from all

remaining patients who completed the full follow up period. SDF

imaging of the sublingual microcirculation was expressed as

functional capillary density (mm21) and microvascular flow index

as described previously [43]. LVMI, SDF imaging, skin AF and

bone mineral parameters were analysed using t tests and Mann

Whitney tests based on the distribution of the data. A p value of ,
0.05 was considered statistically significant. Analysis was conduct-

ed on Stata version 10 (www.stata.com) and GraphPad Prism

software version 5 (see File S1 and figures S2–S5 for sub-group

analysis).

Cell experiments
RT-PCR data were analyzed with ABI 7900HT Prism

sequence detector software (SDS Version 2.3, Applied Biosystems)

to determine differential gene expression for eNOS compared to b
actin. Differences in nitrite levels were assessed using the Student t-

test. Ethanol is included since this was used to dilute the

ergocalciferol. Statistical analysis was performed using GraphPad

Prism software (version 5).

Results

Patient screening, enrolment and randomization are shown in

figure 1. The treatment and placebo groups were similar with

respect to demographic, clinical (table 1) and laboratory param-

eters (table 2). Two patients were lost to follow up in the

ergocalciferol arm and 1 in the placebo arm. All patients self

reported complete compliance and this was confirmed by manual

inspection of study medication bottles at each visit. No patients

were taking nitrate containing medications that may have acted as

vasodilators through the donation of nitric oxide. After 6 months

of treatment with ergocalciferol, 25 hydroxy vitamin D (25 (OH)

D) levels increased significantly in the treatment group (p,0.0001)
(figure 2) but there were no significant changes in other

biochemical parameters (table 3).

Chronic Kidney Disease Vitamin D Microcirculation
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Figure 1. Recruitment schedule for study patients.
doi:10.1371/journal.pone.0099461.g001

Figure 2. 25 (OH) D levels in patients treated with ergocalciferol and placebo. Bonferroni post tests following two way repeated measures
ANOVA at 1,3 and 6 months p,0.0001. (* = statistically significant).
doi:10.1371/journal.pone.0099461.g002
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The effect of ergocalciferol on microcirculatory
parameters
Treatment with ergocalciferol compared to placebo was

associated with a significant increase in change from baseline flux

measured by LDF after iontophoresis of ACh (repeated measures

2 way ANOVA p=0.03) with a significant difference between

treatment groups observed at 6 months (Bonferroni post test

p = 0.012) (figure 3). There were no significant differences in

change from baseline flux after the iontophoresis of SNP between

treatment groups at 6 months (repeated measures 2 way ANOVA

p=0.18) (figure 4). The use of a mixed effects model did not

change the significance of these findings (change from baseline

after iontophoresis at 6 months follow up: ACh p= 0.03, SNP

p= 0.36).

Skin AF was significantly lower in patients treated with

ergocalciferol after 6 months, reflecting reduced levels of tissue

oxidative stress (p = 0.03). At the end of the follow up period, there

were no differences in parameters of functional capillary density

(FCD) or microvascular flow index (MFI) assessed by SDF imaging

of the sublingual microcirculation (table 4).

The effect of ergocalciferol on macrocirculatory
parameters
Pulse pressure was significantly lower in patients treated with

ergocalciferol after 6 months (p = 0.01) but systolic, diastolic and

Table 1. Baseline demographic and clinical data for patients.

Ergocalciferol (n =20) Placebo (n=18) p value

Age years 45.8 (10.0) 48.8 (12.2) 0.39

Sex (% male) 14 (60.9%) 14 (73.7%) 0.22

Body mass index 30.4 (7.1) 29.2 (3.4) 0.51

Ethnicity 0.57

Caucasian 5 (21.8%) 6 (31.6%)

Non-Caucasian 15 (78.2%) 12 (68.4%)

Cause of CKD 0.74

Hypertension 5 (25%) 7 (38.9%)

Glomerulonephritis 8 (40%) 5 (27.8%)

ADPKD 2 (10%) 1 (5.6%)

Other, 5 (25%) 5 (27.7%)

Smoking status 0.59

Current smoker 1 (5%) 2 (11.1%)

Never/Ex-smoker 19 (95%) 16 (88.9%)

Presence of endovascular stent devices 0 (0%) 1 (5.6%) 0.47

ACE-I/ARB 16 (80%) 12 (66.7%) 0.33

b Blocker 7 (35%) 6 (33.3%) 0.57

Statin use 9 (45%) 7 (38.9%) 0.84

Anti platelet therapy 2 (10%) 3 (16.7%) 0.48

Folic acid 1 (5.0%) 1 (5.6%) 1.00

Nitrate containing medications# 0 (0%) 0 (0%) 1.00

Medications containing Vitamin D 0 (0%) 0 (0%) 1.00

BP in past history 15 (65.2%) 11 (57.9%) 0.63

Systolic BP (mmHg) 114 (10) 119 (10) 0.11

Diastolic BP (mmHg) 70 (8) 71 (7) 0.57

MAP (mmHg) 84 (8) 87 (8) 0.29

Pulse pressure (mmHg) 45 (7) 48 (6) 0.08

aPWV (m/s) 8.5 (1.1) 8.5 (1.5) 0.66

LVMI (g/m2) 96.1 (36.3) 87.5 (174) 0.55

Skin AF (AU) 2.8 (0.9) 3.1 (0.9) 0.26

FCD (mm-1) 5.2 (0.5) 5.0 (0.5) 0.78

MFI (AU) 2.5 (0.1) 2.4 (0.1) 0.54

Figures in brackets are standard deviation of the mean or % of total in treatment group. ADPKD – autosomal dominant polycystic kidney disease. BP = blood pressure,
ACE-I angiotensin converting enzyme inhibitor, ARB – angiotensin receptor blocker, MAP = mean arterial pressure, aPWV = aortic pulse wave velocity, LVMI – left
ventricular mass index, AF – auto fluorescence, FCD – functional capillary density, MFI – microvascular flow index. AU – arbitrary units
#- any form of glyceryl trinitrate, isosorbide mononitrate, isosorbide dinitrate or other esters of nitric acid
,- Additional causes of CKD in ergocalciferol group: tubulo-interstitial nephritis (n = 1), reflux nephropathy (n = 2), unknown (n = 2). Placebo group: reflux nephropathy
(n = 2), ischaemic nephropathy presumed due to reno-vascular disease (n = 1), unknown (n = 2).
doi:10.1371/journal.pone.0099461.t001
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mean arterial pressures were similar between treatment groups.

There were no differences between the study groups in aPWV or

LVMI after 6 months of therapy (table 4).

Safety data
There were no serious adverse events reported. Three patients

in each group experienced episodes of gout that resolved with

analgesia. The highest 25 (OH) D level recorded was 68.5 ng/ml.

There were no recorded episodes of hypercalcaemia (defined as a

serum calcium .10.4 mg/dl).

The effect of ergocalciferol on eNOS expression and
nitrite levels in cultured human aortic endothelial cells
RT-PCR analysis for the fold-increase of eNOS compared to b-

actin as a control gene demonstrated a dose dependent increase in

expression with a 2.4-fold increase in eNOS expression after 24 h

of incubation with high concentration ergocalciferol (120 ng/dl)

compared to a 1.6 fold increase with low dose ergocalciferol

(12 ng/dl) (p = 0.002). Only high concentration ergocalciferol

resulted in a statistically significant increase in fold expression of

eNOS compared to the control experiment (p,0.001) (figure 5).

There was no significant difference in nitrite levels between control

and low dose ergocalciferol treated cells at 24 h. However, high

dose ergocalciferol treatment produced a significant rise in nitrite

compared to both low dose (p = 0.007) and vehicle control

(p = 0.003) (figure 6).

Discussion

In this study, ergocalciferol therapy over 6 months in patients

with CKD and concomitant vitamin D deficiency was associated

with improved endothelium dependent microcirculatory function

and a reduction in measures of tissue oxidative stress. The increase

Table 2. Baseline laboratory data for CKD patients randomised to either ergocalciferol or placebo.

Ergocalciferol (n=20) Placebo (n=18) p value

Creatinine (mg/dl) 2.3 (0.8) 2.0 (1.0) 0.60

eGFR (ml/min/1.73 m2) 33.0 (13.5) 38.7 (15) 0.39

Stage of CKD 0.33

Stage 3 9 (45%) 13 (72.2%)

Stage 4 11 (55%) 5 (27.8%)

Hb (g/dl) 12.8 (1.8) 12.6 (1.4) 0.63

Calcium (mg/dl) 8.8 (0.8) 8.8 (0.8) 0.74

Phosphate (mg/dl) 3.8 (0.6) 3.5 (0.6) 0.16

Calcium phosphate product (mg2/dl2) 33.0 (4.2) 31.2 (5.1) 0.25

PTH (pg/L) 102.8 (76.4) 118.9 (103.8) 0.60

CRP (mg/L) 7.6 (17.2) 5.9 (9.8) 0.71

Urine P:CR 190.8 (276.4) 102.7 (147.0) 0.32

Total cholesterol (mg/dl) 201 (53) 185 (39) 0.36

High density lipoprotein cholesterol (mg/dl) 57.5 (24.0) 46.7 (15.9) 0.20

Figures in brackets are standard deviation of the mean. eGFR = estimated glomerular filtration rate, 25 (OH) D = 25 hydroxy vitamin D, Hb = haemaglobin, PTH =
parathyroid hormone, CRP = C reactive protein, P:CR = protein:creatinine ratio.
doi:10.1371/journal.pone.0099461.t002

Table 3. Laboratory results in both groups after 6 months of therapy.

Ergocalciferol (n=14) Placebo (n=15) p value

Creatinine (mg/dl) 2.4 (0.9) 2.3 (1.1) 0.80

eGFR (ml/min/1.73 m2) 31.4 (10.6) 35.0 (14.5) 0.44

Hb (g/dl) 12.6 (2.1) 12.4 (1.3) 0.73

Calcium (mg/dl) 9.1 (0.7) 8.9 (0.6) 0.43

Phosphate (mg/dl) 3.7 (0.74) 3.7 (1.2) 0.98

Calcium phosphate product (mg2/dl2) 33.6 (8.2) 32.6 (3.5) 0.66

PTH (pg/L) 97.2 (74.5) 135.8 (96.2) 0.26

CRP (mg/L) 7.5 (15.0) 9.7 (19.8) 0.76

Urine P:CR 154.0 (210.3) 117.5 (126.3) 0.62

Total cholesterol (mg/dl) 193 (38) 174 (35) 0.21

High density lipoprotein cholesterol (mg/dl) 54.2 (25.2) 50.8 (15.3) 0.67

Figures in brackets are standard deviation of the mean. eGFR = estimated glomerular filtration rate, 25 (OH) D = 25 hydroxy vitamin D, Hb = haemaglobin, PTH =
parathyroid hormone, CRP = C reactive protein, P:CR = protein:creatinine ratio.
doi:10.1371/journal.pone.0099461.t003
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in relative change of flux from baseline after iontophoresis with

ACh but not SNP in subjects treated with ergocalciferol indicates

improved microcirculatory function occurred through an endo-

thelium dependent mechanism. Reduction in measures of skin AF

in the ergocalciferol group correlates with reduced oxidative stress

in these patients which will contribute to improved endothelial

function and a reduced risk of future CV events [42]. This is in line

with previous experimental work that demonstrated the protective

effect of calcitriol in human endothelial cells cultured with AGE

products [21].

In our study, bone mineral parameters, kidney function, C

reactive protein, blood pressure and aPWV were similar at 6

Figure 3. Percentage rise from baseline flux in arbitrary units (AU) after iontophoresis of ACh. Absolute values of percentage change in
flux (AU): baseline - ergocalciferol 964.8, placebo 785.9 (p =NS). 1 month - ergocalciferol 979.5, placebo 690.9 (p =NS). 3 months – ergocalciferol
543.7, placebo 613.5 (p =NS). 6 months – ergocalciferol 1130.0, placebo 540.6 (p = 0.012). p values are Bonferroni post test following two way
repeated measures ANOVA. (* = statistically significant).
doi:10.1371/journal.pone.0099461.g003

Figure 4. Percentage rise from baseline flux in arbitrary units (AU) after iontophoresis of SNP. Absolute values of percentage change in
flux (AU): baseline - ergocalciferol 455.8, placebo 670.1 (p =NS). 1 month - ergocalciferol 395.5, placebo 601.3 (p =NS). 3 months – ergocalciferol
530.2, placebo 511.2 (p =NS). 6 months – ergocalciferol 445.7, placebo 585.9 (p =NS). p values are Bonferroni post test following two way repeated
measures ANOVA.
doi:10.1371/journal.pone.0099461.g004

Chronic Kidney Disease Vitamin D Microcirculation

PLOS ONE | www.plosone.org 7 July 2014 | Volume 9 | Issue 7 | e99461



month follow up suggesting that functional changes to the

microcirculation occurred independently of these parameters,

adding strength to the argument that ergocalciferol may have a

specific mechanism of action within the microcirculation. In

contrast to other studies [45,46], proteinuria was unaffected in the

ergocalciferol group although the differences in vitamin D

compounds, dose schedule, study duration and populations

between those studies and ours may explain this difference.

aPWV did not decrease in line with the reduction in pulse pressure

and this finding may reflect the short duration of the study. Studies

with a longer follow up duration are more likely to demonstrate a

fall in pulse wave velocity which may occur after a reduction in

pulse pressure

After 6 months of therapy with ergocalciferol, there was no

increase in the functional capillary density or flow within the

microcirculation. This implies that the observed improvements in

endothelium dependent microcirculatory function did not involve

the recruitment of extra functionally relevant capillaries or

changes in blood flow but rather that the endothelium dependent

function of the existing microcirculatory network was improved by

the direct effect of ergocalciferol.

This hypothesis is supported by the results of parallel in vitro

experiments in which ergocalciferol, in a dose dependent manner,

upregulated eNOS expression measured by RT-PCR. Nitric oxide

generation compared to vehicle was numerically but not

statistically significantly increased with low dose ergocalciferol

but was significantly increased with high dose ergocalciferol. This

suggests that higher doses of ergocalciferol are required to increase

the functional effect of ergocalciferol on the endothelium and

therefore that there may be a threshold 25 (OH) D concentration

Table 4. Measures of macrovascular parameters in both groups after 6 months of therapy.

Ergocalciferol (n =14) Placebo (n=15) p value

Systolic BP (mmHg) 118 (10) 123 (15) 0.26

Diastolic BP (mmHg) 74 (6) 70 (9) 0.15

MAP (mmHg) 89 (7) 88 (10) 0.77

Pulse pressure (mmHg) 44 (8) 53 (12) 0.01

aPWV (m/s) 8.4 (1.3) 8.5 (1.2) 0.78

LVMI (g/m2) 94.7 (28.4) 110 (54.3) 0.44

Skin AF (AU) 2.8 (0.6) 3.5 (0.9) 0.03

FCD (mm21) 5.3 (0.7) 5.4 (0.8) 0.90

MFI (AU) 2.4 (0.2) 2.4 (0.2) 0.81

Figures in brackets are standard deviation of the mean. BP = blood pressure, MAP = mean arterial pressure, aPWV = aortic pulse wave velocity, LVMI – left ventricular
mass index, AF – auto fluorescence, FCD – functional capillary density, MFI – microvascular flow index. AU – arbitrary units.
doi:10.1371/journal.pone.0099461.t004

Figure 5. Fold increase in eNOS expression by RT-PCR in cultured HAEC.
doi:10.1371/journal.pone.0099461.g005
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above which the maximum effects of ergocalciferol on the

microcirculation are achieved.

The present study is the first of its kind to explore the effect of

vitamin D on microcirculatory function in patients with CKD and

concomitant vitamin D deficiency. The exclusion of patients with

diabetes mellitus allowed us to evaluate the effect of ergocalciferol

on the microcirculation in CKD without the potentially con-

founding effect of diabetes on endothelial function.

Prospective studies of the effect of vitamin D therapy in patients

with CKD have so far failed to show a beneficial effect of vitamin

D on endpoints including LVMI, aPWV, blood pressure and

inflammatory biomarkers. [27,47] The effect of nutritional vitamin

D compounds on endothelial biomarkers and conduit artery

endothelial function in kidney disease has been evaluated in two

studies which have produced conflicting results. Marckmann et al.
[27] compared the effect of 8 weeks of 40,000 IU of weekly

cholecalciferol compared to a placebo in patients with both CKD

and ESKD treated with haemodialysis. Patients in the control and

intervention group were similar at baseline including cause of

kidney disease, dialysis status and serum 25 (OH) D, 1,25 (OH)2
D3 and bone mineral parameters (PTH, Ca, PO4) levels. There

was a significant increase in 25 (OH) D levels in the treatment

compared to control group (154.7 nmol/L vs 23.5 nmol/L) and a

significant increase in 1,25 (OH)2 D3 levels although the increase

in 1,25 (OH)2 D3 levels was higher in non-dialysis compared to

dialysis requiring CKD (median increase in the CKD group

49 pmol/L (p,0.01) compared to 14 pmol/L in the dialysis group

(p.0.05)). After 8 weeks of treatment, PTH fell significantly in

non-dialysis CKD patients but not in dialysis requiring CKD

patients. Despite the significant increase in vitamin D levels in the

cholecalciferol group, there was no reduction in markers of

endothelial dysfunction including D-dimer, von Willebrand factor,

fibrinogen and interleukin (IL) 8 or C reactive protein. Addition-

ally, blood pressure, aPWV and aortic augmentation index did not

change between the two groups. Specifically, there were no

significant differential effects on these parameters when comparing

cholecalciferol treated and untreated patients in the dialysis and

non-dialysis groups.

Assimon et al. [26] have evaluated the effect of ergocalciferol

(n = 20 on ergocalciferol for a mean of 39.2 weeks and n= 20 not

receiving ergocalciferol) on markers of vascular endothelial

adhesion in a case control study of 40 patients undergoing

maintenance haemodialysis. There were no significant differences

in baseline parameters including dialysis vintage and both groups

were receiving an equivalent dose of doxercalciferol. Serum 25

(OH) D levels were higher in the ergocalciferol group (90.8 nmol/

L compared to 60.2 nmol/L, p= 0.03). In the ergocalciferol

group, there was reduction in levels of vascular adhesion molecules

sVCAM-1, sICAM-1, P-selectin and in all patients there was a

significant negative correlation between serum 25 (OH) D levels

and P-selectin and E-selectin. There was no difference in

inflammatory biomarkers including IL-6 and TNF-a. However,

the functional response of the endothelium was not evaluated and

the case control design of this study means that the causal

relationship between endothelial adhesion molecules and ergocal-

ciferol cannot be established.

Despite the prompt and sustained rise in 25 (OH) D levels in our

patients, significant differences in key microcirculatory end points

were only observed after 6 months of therapy with ergocalciferol

even though 25 (OH) D levels were similar at 1,3 and 6 months.

Previous clinical studies using high dose ergocalciferol or

cholecalciferol in healthy and diabetic patients without significant

kidney disease demonstrated improved microcirculatory function

between 8–12 weeks [24,25,48]. The delay in attainment of

significantly improved microvascular function in the current study

and lack of improvement over 8 weeks in Marckmann et al. study

[27] may be a consequence of the uraemic milieu reducing the

response of the microcirculation both to the upregulation of eNOS

[49] and its downstream effects [50] in increasing availability of

vasodilator moieties.

The findings from our study suggest that treatment with high

dose ergocalciferol over an extended period of time is required

before there is an improvement in microcirculatory endothelial

function. This concept will have important implications for

determining both the optimum duration of therapy of ergocalcif-

erol and the optimum serum 25 (OH) D level to ensure a

maximally beneficial effect on the microcirculation.

The strengths of our study are its double blind randomised

placebo control design, replacement of vitamin D in line with

international guidelines [37] that was standardised for all patients

and commensurate with baseline serum concentrations of 25 (OH)

D as well as the use of techniques that specifically assessed both

conduit artery and microcirculatory endothelial function. At the

time of designing this study, microcirculatory endothelial function

had not previously been evaluated in patients with CKD and

concomitant VDD in a clinical trial setting. Iontophoresis has been

used in the setting of clinical trials to evaluate endothelial function.

[51,52,53,54] The experimental conditions and iontophoretic

protocol in the present study were standardised and changes in

endothelial function were compared with baseline prior to

treatment with ergocalciferol. The use of a low current iontopho-

resis protocol will have reduced the direct galvanic effect from the

iontophoretic process on the endothelium seen when a higher

current is used. [41] Therefore, any change seen in LDF after

iontophoresis must be due to the direct effect of ergocalciferol itself

on microvascular endothelial function.

Limitations of this study include the short follow up time and

small sample size. The study duration is insufficient to detect

significant differences between treatment groups in key outcome

measures including CV events. Excluding patients with diabetes

mellitus has limited the external validity but improved the internal

validity and precision of the present study. Human aortic

Figure 6. Nitrite levels in supernatants of HAEC. Cultured in low
dose (12 ng/dl) and high dose (120 ng/dl) ergocalciferol after 24 h
incubation.
doi:10.1371/journal.pone.0099461.g006
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endothelial cells were not cultured in media consistent with the

degree of CKD in the clinical trial subjects due to the complexity

of establishing a culture medium that accurately reflects the earlier

rather than more advanced stages of CKD. Consequently, the

results from the in vitro experiments cannot be directly generalised

to the uraemic milieu associated with CKD stage 3–4. The current

study did not assess the effect of ergocalciferol on endothelial

progenitor cells which are important mediators of endothelial

repair and function and are reduced in patients at high risk of

CVD [55]. Additional studies are required to address the effect of

ergocalciferol on endothelial cells cultured in a medium more

representative of the earlier stages of CKD as well as the effect of

ergocalciferol on EPC number and function in CKD stage 3–4.

Conclusions

High dose ergocalciferol therapy over 6 months improved

microcirculatory function and reduced tissue oxidative stress in

patients with CKD stage 3–4 and concomitant vitamin D

deficiency. In vitro studies suggest this effect is mediated through

increased expression of eNOS and greater generation of nitric

oxide. The primary endpoint of the study reflects global vascular

health [14] and it is therefore logical to consider that the observed

improvements in microcirculatory function will translate into

improved clinical outcomes including a reduction in CV events.

To test this hypothesis, studies in patients with CKD and

concomitant vitamin D deficiency with longer follow up and

adequately powered to detect CV end points are now required to

determine both if improved microcirculatory endothelial function

through ergocalciferol therapy subsequently reduces CV endpoints

and to determine the optimum serum level of 25 (OH) D to

maximize microvascular endothelial function.

Supporting Information

Figure S1 Examples of iontophoresis dose response curves after

6 months of treatment for 2 patients after delivery of ACh

demonstrating greater relative increase from baseline in flux in the

ergocalciferol compared to placebo treated patient. Flux measured

in arbitrary units (AU). Epoch reflects sequential dose increments

of the iontophoretic protocol.

(TIF)

Figure S2 Percentage rise in flux from baseline after iontopho-

resis of ACh in patients with hypertension. Absolute values of

percentage change in flux (AU): baseline - ergocalciferol 505.9,

placebo 889.2 (p=NS). 1 month - ergocalciferol 853.5, placebo

1051.0 (p =NS). 3 months – ergocalciferol 519.2, placebo 1103.0

(p =NS). 6 months – ergocalciferol 671.6, placebo 1024.0

(p =NS). p values are Bonferroni post test following two way

repeated measures ANOVA.

(TIF)

Figure S3 Percentage rise in flux from baseline after iontopho-

resis of SNP in patients with hypertension. Absolute values of

percentage change in flux (AU): baseline - ergocalciferol 339.7,

placebo 675.1 (p =NS). 1 month - ergocalciferol 866.9, placebo

724.0 (p=NS). 3 months – ergocalciferol 573.2, placebo 735.0

(p =NS). 6 months – ergocalciferol 682.2, placebo 579.0 (p=NS).

p values are Bonferroni post test following two way repeated

measures ANOVA.

(TIF)

Figure S4 Percentage rise in flux from baseline after iontopho-

resis of ACh in patients with glomerulonephritis. Absolute values

of percentage change in flux (AU): baseline - ergocalciferol 762.9,

placebo 1220.0 (p=NS). 1 month - ergocalciferol 1141.0, placebo

483.8 (p=NS). 3 months – ergocalciferol 647.7, placebo 1023.0

(p =NS). 6 months – ergocalciferol 1086, placebo 661.8 (p=NS).

p values are Bonferroni post test following two way repeated

measures ANOVA.

(TIF)

Figure S5 Percentage rise in flux from baseline after iontopho-

resis of SNP in patients with glomerulonephritis. Absolute values

of percentage change in flux (AU): baseline - ergocalciferol 794.2,

placebo 637.4 (p =NS). 1 month - ergocalciferol 690.6, placebo

708.8 (p=NS). 3 months – ergocalciferol 455.6, placebo 830.8

(p =NS). 6 months – ergocalciferol 387.3, placebo 504.1 (p=NS).

p values are Bonferroni post test following two way repeated

measures ANOVA.

(TIF)

Protocol S1 Full study protocol.

(DOCX)

Checklist S1 Study CONSORT check list.

(DOCX)

File S1 Full methodology. Contains Table S1, full iontophoresis

protocol.

(DOCX)
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