
iScience

Article

ll
OPEN ACCESS
A ground reaction force model of speed skating
based on non-contact measurement system
Qihang Zhu,

Chunxin Yang,

Peng Ke, Han

Yang, Ping Hong

p.ke@buaa.edu.cn

Highlights
Achieve the estimation of

GRF based on the non-

contact measurement

approach

Build a GRF model with

optimizing variables

estimating forces

intelligently

Propose a new simple

stroke identification

method for speed skating

Emphasize the double-

feet-supporting phase,

improving motion pattern

accuracy

Zhu et al., iScience 27, 108513
January 19, 2024 ª 2023 The
Author(s).

https://doi.org/10.1016/

j.isci.2023.108513

mailto:p.ke@buaa.edu.cn
https://doi.org/10.1016/j.isci.2023.108513
https://doi.org/10.1016/j.isci.2023.108513
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2023.108513&domain=pdf


OPEN ACCESS

iScience ll
Article

A ground reaction force model
of speed skating based on non-contact
measurement system

Qihang Zhu,1 Chunxin Yang,2 Peng Ke,3,6,* Han Yang,4 and Ping Hong5
SUMMARY

Accurate collection and analysis of ground reaction force (GRF) data are crucial for optimizing the tech-
nical movements of speed skaters; however, it has been a challenge for the limitations of experimental
equipment and application scenarios. Therefore, we proposed a novel approach for estimatingGRF based
on kinematics obtained from markerless video tracking systems and achieved low errors compared with
the experimental data. Our method allows for further biomechanical analysis, including muscle force and
power, during speed skating competitions.

INTRODUCTION

Biomechanical simulation is a powerful tool for identifying factors that affect athletic performance and providing recommendations for sports

training (Koning et al.1; Van Ingen Schenau et al.2). Developing accurate musculoskeletal models requires precise kinematic and kinetic anal-

ysis of motion capture data and ground reaction force (GRF) data obtained from various sensors.

Motion capture data can be obtained using vision-based systems or inertial sensors. Inertial sensors, such as IMUs containing accelerom-

eters, gyroscopes, and magnetometers, allow for the orientation of the subject to be solved by double integration of the measured acceler-

ation (Bonnet et al.3; Seel T et al.4). Vision-based systems, such as optoelectronicmotion capture systems, usemultiple high-speed cameras to

capture the movements of the entire body. Active and passive markers can be used in vision-based systems, with the former having its own

light source (Richards et al.5) and the latter reflecting light from the camera back to the sensors. Whereas active markers require additional

cables and power, passive markers can be used in larger environments. In addition, indoor global positioning systems (IGPSs), which are

based on receivers attached to the object, can be used for markerless tracking (van der Kruk et al.6).

Image processing systems (IPSs) based on optical cameras and computer vision algorithms are a significant advantage for sports research,

as they allow for markerless tracking (Liu et al.7; Klous et al.8). This makes them a useful tool for experiments in sports research, particularly in

competition arenas where sensors attached to the object may be limiting.

GRF measurement is a crucial technique in sports science research, as researchers rely on it to assess the factors that affect athletes’ per-

formance. Previous studies have demonstrated that GRF features play a significant role in determining skating efficiency and speed (Yuki

et al.9; van der Kruk et al.10). However, it can be challenging to gather biomechanical data on speed skaters during competitions due to

the expense and complexity of force measurement systems.

To address this challenge, we propose a non-contact measurement technique that can be used to acquire data for speed-skating-related

biomechanical simulationmodels. Such models have been developed by researchers such as Fintelman et al.11 and van der Kruk et al.,12 who

sought to mimic the forces experienced by speed skaters. However, their studies assumed that the predicted force was the total combined

force and did not account for the double stance phase. This approach results in a combined force acting on both legs, rather than split forces

on each leg, which can obscure important information about shifts in the center of mass.

In this study, we present a novel method for constructing a three-dimensional optimization-algorithm speed skating model (OAM) to pre-

dict both the GRF and motion of speed skaters. Our approach is based on kinematic data obtained from non-contact experiments using IPS,

which allows for unobtrusivemeasurement of athletemovement during competitions and other high-stakes scenarios. Importantly, ourmodel

accounts for the splitting force between the left and right legs during the double stance phase, resulting in more accurate predictions of

skater.
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Figure 1. Experimental data

Schematic diagram of the locations of the 33 interest points.
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RESULTS AND DISCUSSION

The data input for theOAMmodel was obtained from video capture experiments via two cameras at an ice rink in Beijing, 2021, where the raw

data were the location of human body points identified by a video-based algorithm, with a total of 33 interest points, collected at a frequency

of 150 Hz, as shown in Figure 1 and Table 1. The data were collected for two participants for four experiments in total, as shown in Table 2, in

addition to the model verification results. In this section, the experimental data and estimation results of Participant A Trial 1 were presented

in details as a case study (See Figures 2, 3, 4, 5, 6, and 7; Table 3).
Table 1. Definition of the 33 interest points in experiments

Number Body position Number Body position

0 r-shoulder 17 r-ear

1 r-elbow 18 l-ear

2 r-wrist 19 r-thumb

3 l-shoulder 20 r-little finger

4 l-elbow 21 l-thumb

5 l-wrist 22 l-little finger

6 r-hip 23 r-big toe

7 r-knee 24 r-little toe

8 r-ankle 25 r-heel

9 r-hip 26 l-big toe

10 l-knee 27 l-little toe

11 l-ankle 28 l-heel

12 head 29 r-blade front

13 neck 30 r-blade back

14 nose 31 l-blade front

15 r-eye 32 l-blade back

16 l-eye

The front texts ‘‘r’’ and ‘‘l’’ indicate the right and left side of the body, respectively.
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Table 2. Residuals and errors of the model—UO for unoptimized; O for optimized

Participant A B

m (kg) 80 78

l (m) 1.8 1.78

h (m) 0 0 0 0

m 0.000 0.000 0.000 0.000

Trial 1 1 2 3

Stroke 3 2 3 1

Method UO O UO O UO O UO O

Residuals Rx (m) 0.283 0.011 0.541 7.26e-03 0.608 0.118 0.284 3.78e-03

Ry (m) 0.436 1.20e-03 1.597 2.66e-03 1.761 8.77e-03 0.597 4.88e-04

Rz (m) 0.418 0.33 1.673 1.628 0.206 7.13e-02 0.193 5.29e-02

Rdx (m/s) 0.671 0.054 0.670 4.23e-02 0.619 0.422 0.768 4.72e-02

Rdy (m/s) 1.171 0.014 0.769 2.28e-02 0.858 7.31e-02 0.581 9.86e-03

Rdz (m/s) 0.655 0.475 2.753 2.723 0.486 0.249 0.518 0.139

Errors Ex % 0.133 0.0004 38.579 0.016 31.036 3.881 159.670 0.005

Ey % 0.120 0.0003 20.598 0.020 19.923 1.366 23.215 0.008

Ez % 0.001 0.0003 1.276 1.214 0.013 0.001 0.029 0.002

Edx % 0.221 0.002 85.736 0.202 19.437 15.890 37.087 0.669

Edy % 0.209 0.003 35.155 0.309 28.013 2.778 32.665 0.177

Edz % 0.003 0.001 6.844 6.753 0.200 0.049 0.119 0.010

J % 11.48 0.121 31.37 1.42 16.37 3.99 42.13 0.145

ðJNO � JOÞ=
JNO

% 98.9 95.5 75.6 99.7
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The specific experimental methods, the established model, and the associated schematics and tables (Figures 8, 9, 10, 11, 12, 13, 14, and

15; Tables 4, 5, and 6) are described in the STAR Methods.

Measured data

Position and pose

As illustrated in Figure 2, the lateral and vertical motion patterns of the body’s center of mass (COM) follow a sine/cosine signal, with the COM

moving toward the swing leg. Although the range of variation in the vertical COM position amplitude is small, being about 0.1 m in three

strokes, the magnitude of the air drag area tends to remain stable. Notably, the z-direction motion follows a nearly linear pattern.

The results of the skate pose are presented in Figure 3. As illustrated in Figure 3A for Participant A Trial 1, the steer angle of the landing leg

remained between 0 and 10�. When the angle noticeably increased (indicated by the dark area in the figure), it signaled that the landing leg
Figure 2. Experimental data measurement of the COM position—raw versus filtered

(A) Lateral position, (B) normal position, (C) longitudinal position. Data were calculated based on 15-segment rigid body assumption—Participant A Trial 1.

iScience 27, 108513, January 19, 2024 3



Figure 3. Experimental data measurement of two pose angles

(A) Steer angle; (B) lean angle. The solid line indicates the left foot, and the dotted line indicates the right foot—Participant A Trial 1.

Figure 4. Input data for stroke detection

(A) Knee angle, denoted by the angle between thigh and calf.

(B) Distance between front points of two skates. Solid and dashed lines indicate left and right foot, respectively. The vertical dashed and solid lines indicate the

time points of foot-on and foot-off, respectively. The dark area between them indicates the double stance phase, and the text indicates which skate is active (on

the ice). Same below—Participant A Trial 1.

Figure 5. Unoptimized forces

The statistical results of GRFs obtained from reference (van der Kruk et al.10)—Participant A Trial1. For lateral forces, the direction is negative toward the medial

direction. In the figure legend, lowercase letters ‘‘n’’ and ‘‘l’’ denote normal and lateral directions, respectively, and capital letters ‘‘L’’ and ‘‘R’’ denote left and right

legs, respectively. For example, the abbreviation ‘‘Fn_R’’ stands for the normal forces in the right leg.
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Figure 6. Results of COM position with two methods versus experimental data—Participant A Trial 1

(A)Lateral position; (B) lateral velocity; (C) vertical position; (D) vertical velocity; (E) longitudinal position; (F) longitudinal velocity. The red solid line indicates the

result of the optimized algorithm, the black solid line indicates the result of the unoptimized method, and the black dashed line indicates the result of the

experimental measurement data.
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was about to leave the ground, and the other leg would initiate the landing. Similarly, Figure 3B shows that the lean angle tended to increase

while the landing legwas in the swingphase, and the overall level increasedgradually from�20� to 50�, which was consistent with the statistics
reported by van der Kruk et al.10

Stroke detection

Four extreme values of the knee angle were found for Participant A Trial as shown in Figure 3A. The presence of these values indicates that

there were three strokes in total during the observed time duration. Similarly, as depicted in Figure 3B, the distance between the two blade

front points at the end of each stroke was almost zero (less than 0.01 m), and the distance between points was closest to zero during the dou-

ble stance phase (highlighted in dark in the figure), which was in sharp contrast to the inter-stroke distance.
iScience 27, 108513, January 19, 2024 5



Figure 7. Ground reaction forces predicted by the optimization algorithm model—Participant A Trial 1

Table 3. Optimized parameters in genetic algorithm—Participant A Trial 1

Skate Force t1ð%TÞ F1ð%BWÞ t2ð%TÞ F2ð%BWÞ Scale

Stroke 1 Left FN 23.9 95.69 79.2 114.28 1.06

FL 5.8 1.11 85.4 60.51 0.88

Stroke 2 Right FN 19.9 87.15 95.0 110.17 0.98

FL 16.9 �13.17 95.0 55.48 0.93

Stroke 3 Left FN 13.6 92.43 79.1 120.41 0.75

FL 5.0 1.07 80.4 52.15 1.09

The units of t1 and t2 denote the percent time points in a stroke. The expressions of these two variables are the same, but independent for forces in different

directions, and the units of F1 and F2 denote the percent forces of the body weight gravity.
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Weutilized the stroke detectionmethod to obtain a set of unoptimized real-timeGRF data, based on the statistical data of GRF. The forces

during the three strokes were found to follow the same pattern, as illustrated in Figure 5. The vertical coordinate of the graph represents

forces normalized according to body weight. The values are determined based on the foot-on and foot-off time points and scaled according

to the duration of the stroke. Notably, the normal and lateral forces were set to zero when the foot was off the ground.
Model data

According to Figure 6, the results obtained using the simple approach exhibited some similarity in the predictedmotion trend along the x and

z axes, although their accuracy was deemed insufficient when compared with the measured data. In addition, there were notable calculation

errors with respect to the displacement velocity along the y axis, particularly concerning the speed of deviation during the double stance

phase. This was primarily attributed to an excessive normal force in this phase, and taking into account that displacement and velocity are

integral equations of acceleration, they are susceptible to cumulative effects from the initial time point, which increases the magnitude of
Figure 8. The placements of cameras in the ice rink
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Figure 9. The calibration for frontal viewing screens

Figure 10. Flowchart of the OAM model
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calculation deviations. The primary limitation of this method was the fixed force characteristics that could not accommodate individual var-

iations among athletes and stroke patterns. To address this issue, we introduced characteristic variables t，F，Scale to capture the diversity

of force characteristics of different athletes during a stroke. We optimized these variables using a genetic algorithm and provided the results

in Table 3. Although good optimization results were realized, optimization along the z axis was not significant. This was due to the initial ve-

locity of the skater being relatively high and calculated acceleration being of smaller magnitude as a result of the skate angle, which reduced

the component of the GRF in the Z-direction, leading to slight differences between results obtained from different methods with fixed initial

velocity.
Figure 11. The location of variables in the original force curve with fixed patterns

(A) Normal force; (B) lateral force.

iScience 27, 108513, January 19, 2024 7



Figure 12. Speed skating model

(A) Top view of the skater; (B) rear view of the skater. The skater is considered as one single mass with three freedoms. The position of this mass is located at the

COM of 15 segments (Hanavan et al.14), which is indicated in the torso.
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According to Figure 7, there are three complete strokes in total, and combining the results shown in Figure 3, it is easily observed that the

signs of the lateral force are almost consistent with the lean angle. In the second stroke, the curve of the lateral force was themost satisfactory;

however, the results in the third one had an obvious discontinuity, due to the sign changing of the lean angle. Although the lean angle at this

transformation time was positive, we rechecked the experimental data and found that shank lean angle at the same time was still negative, so

the left leg did not start to push off the ice, and the real time point to push off was around 1.35 s when the lateral force and the lean angle were

both almost zero. In general, this phenomenon was caused by the sign inconsistency between the shank and the foot lean angle in the exper-

iment measurement results.

According toTable 2, theGRFestimationmodel proposed in this paper had certain generality for analyzing the speed skatingmotion in the

straight, although the number of strokes analyzed here was nomore than three. Because the skating process in the track could be divided into

three phases—start, straights and curves—skating athletes would apply different techniques in different phases, and especially for the high-

level ones, the coordination in each stroke keeps highly consistent in a certain phase, showing their technical stability. Besides, this paper

focusedon the start phase in the straight,which is themost important phase for short-distance races; generally it consistsof a few strikes. There-

fore, the proposed estimationmodel has enough generality for analyzing available experimental data captured by current experiment equip-

ment. And analyses with more strokes could be carried out if capturing range could be extended or the amount of experiment was added.

Conclusion

In this paper, a novel approach is presented for estimating and optimizing the ground reaction force (GRF) in speed skating using stroke

identification and genetic algorithm optimization methods, all relying on non-contact vision-based systems. The optimization model was
Figure 13. Skate angle diagram

(A) Lean angle, rear view of the left skate, positive in the medial position.

(B) Steer angle, top view of the left skate, positive in the opposite of themedial position. FN is positive in the vertical direction, and FL is positive when lean angle is

positive.
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Figure 14. Flowchart of the stoke detection method
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successfully applied to different athletes and various numbers of strokes, with a minimum total error of 0.12% and a maximum error of 4%

compared with experimental data. The optimized model also achieved a 99.7% maximum error reduction compared with the unoptimized

results.

Unlike previous research in speed skating biomechanics, this model considers the double stance phase, incorporates variables to be opti-

mized in the GRF model, and utilizes stroke identification to predict the GRF. Furthermore, the model provides motion simulation analysis

based on non-contact measurement data. This non-contact approach allows for biomechanical analysis under race conditions without inter-

fering with the athletes and can provide valuable insights for technical and tactical improvements and physical strength training. Additionally,

the model can optimize force characteristic parameters and offer technical advice to athletes for maximizing their forward speed.

Limitations of the study

In this study, measuring ground reaction forces (GRF) accurately during a real speed skating race can be challenging due to several factors,

like dynamic nature, equipment limitations, environmental conditions, athlete variability, etc. It makes the problemworse if we need to obtain

the data via the equipment that do not affect athletes’ performance or impede their movements.

Additionally, themodel simplifies the skater’s body to amass pointmodel, overlooking the rotational energyof each joint and the energy loss

resulting fromforce transmissionbetweenbodysegments.Consequently, theestimatedGRF fromthemodelmayslightlyexceed theactualGRF.

To enhance the accuracy of the model in the future, it is suggested to incorporatemore degrees of freedom, such as masses for the upper

body, swing leg, or standing leg. This would provide a more comprehensive representation of the skater’s biomechanics and likely improve

the estimation of the GRF. The model still needs to be further validated by experimental force measurements using unobtrusive high-quality

sensors, even though the simulated motion matches the experimental data well now.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE
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Figure 15. Flowchart of genetic algorithm optimization
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le 4. Force parameter settings

ce

t1
ð%TÞ

F1

ð%BWÞ
t2
ð%TÞ

F2

ð%BWÞ Scale

Rmin

ð%BWÞ
Rmax

ð%BWÞ
rmal Forces [5,25] [80,120] [75,95] [107,147] [0.7,1.3] �20 20

eral Forces [5,25] [�38,0) [75,95] [50,90] [0.7,1.3] �20 40

units of t1 and t2 denote the percent time points in a stroke. The expressions of these two variables are the same, but independent for forces in different

ctions, and the units of F1 and F2 denote the percent forces of the body weight gravity.

1; t2; F2; Scale are the parameters to be optimized in the genetic algorithm; Rmin and Rmax are the constraint settings in the LSE approach.
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Table 5. The number, mass, and expression for calculating COM of the 15 body segments

Number Segment

Mass (kg)

-A

Mass (kg)

-B COM position

1 Head 6.014 5.850 P14

2 Torso 11.991 11.347 0:5 � ðP13 + 0:5�ð P6 +P9ÞÞ P6 +P9ÞÞP13 + 0:5�
3 Pelvis 18.882 17.798 0:5 � ðP6 +P9Þ � ð0; 0:1477; 0Þ
4 Thigh-right 10.131 9.539 P6 + 0:42�ðP7 � P6Þ
5 Thigh-left 10.131 9.539 P9 + 0:42�ðP10 � P9Þ
6 Shank-right 3.198 2.962 P7 + 0:45�ðP8 � P7Þ
7 Shank-left 3.198 2.962 P10 + 0:45�ðP11 � P10Þ
8 Foot-right 0.977 0.925 1 =3�ðP23 +P24 +P25)

9 Foot-left 0.977 0.925 1 =3�ðP26 +P27 +P28)

10 Upper arm-right 2.017 1.893 0:5 � ðP0 +P1Þ
11 Upper arm-left 2.017 1.893 0:5 � ðP3 +P4Þ
12 Forearm-right 1.105 0.987 0:5 � ðP1 +P2Þ
13 Forearm-left 1.105 0.987 0:5 � ðP4 +P5Þ
14 Hand-right 0.512 0.484 P2

15 Hand-left 0.512 0.484 P5

Pi represents the 3-D position of the i-th number in Table 1. A for participant A; B for participant B. Regarding the calculation of COMposition, part of them (No.3–

7) take a reference from the muscle skeleton model in Opensim, and rest of them are in the centroid of lines, triangles, or squares.
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Table 6. The values and definition of the basic parameters of the genetic algorithm

Name Value Meaning of name

NVAR 10*S Number of variables

GGAP 0.9 Gap

XOVR 1 Crossover ratio

MUTR = 1/NVAR 1/NVAR Mutation ratio

MAXGEN 300 Max number of generations

INSR 0.9 Insertion ratio

SUBPOP 20 Number of subpopulations

MIGR 0.2 Migration ratio

MIGGEN 20 Migration generation

NIND 300 Number of individuals

MAXTOR 1e-4 The min tolerance of iterations
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

statistical data of Ground Reaction Forces during speed skating van der Kruk et al.10 https://doi.org/10.1007/s12283-016-0208-8
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Peng Ke (p.ke@

buaa.edu.cn).

Materials availability

This study did not generate new unique reagents.

Data and code availability

� The deposited data in key resources table and other data reported in this paper will be shared by the lead contact upon request.
� This paper does not report original codes.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

This study conducted video capture experiments via two cameras at an ice rink in Beijing, 2021. The placement of the camera adopts the

popular scheme at present, guided by the professional experts. As shown in Figure 8, there are two cameras in total, the side one is located

on the central axis of the straight, and the front one is located directly in front of the track.

We used two high-performance ZCam cameras, which has beenmodified by us to support simultaneous high-frame rate high-quality film-

ing. And in this experiment, we adopted 150Hz non-zoom filming.

In addition, in order to ensure the accuracy of the camera measurement results, we performed the calibration of the camera parameters

before the test (shown in Figure 9), which is a commonly used method in AI pose recognition, which can ensure the accuracy of the model

calculation results in this paper.

The data was collected for two male participants from Chinese National Speed Skating Team for four experiments in total, as shown in

Table 2.

METHOD DETAILS

The research concept of this paper is visually depicted in Figure 10. First, we establish a Ground Reaction Force (GRF) model by considering

the force characteristics and referencing statistical outcomes from the literature, utilizing piezoelectric force sensors to improve the accuracy.

Next, we develop amechanics model for speed skating that incorporates the steer angle (q, �) and lean angle (a, �) based on the analysis of

experiment data. These angles are used as inputs in the model.

The experimental data undergoes preprocessing to obtain the necessary input data. Then, employing a stroke detection approach using

the knee angle and blade position as input, virtual periodic GRF data is transformed into real-time data and integrated into the kinetic model.

Lastly, the genetic algorithm model is utilized for optimization of the GRF parameters. This optimization process ensures that the esti-

mated GRF aligns with the observed experimental data.

Overall, this methodology enables us to accurately estimate the GRF by integrating various models and experimental data. This approach

has the potential to enhance the understanding of speed skating mechanics and contribute to sports training and performance optimization.

Ground reaction force model

During the skating stroke, theGRF on the athlete undergoes distinct changes. Initially, there is a sharp increase in GRF at themoment of initial

touchdown due to the impulse generated. Subsequently, the normal force component continues to increase as the athlete’s muscle force is

exerted, while the lateral force component increases in response to the athlete’s lean angle. Finally, as the leg begins to lift off the ice, the

force rapidly diminishes.

In a study conducted by Van der Kruk et al.10, experiments were conducted on a group of skaters to measure both normal and lateral

forces. The researchers found that the pattern of the normalized force closely resembles the shape observed in the same pattern. Building
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upon these findings, this study develops a parametric GRF model that incorporates the characteristics of the GRF and experimental data. To

optimize the model parameters, an intelligent algorithm is employed to estimate the GRF accurately.

By integrating the identified GRF characteristics and the experimental data, this study aims to advance our understanding of the forces

exerted during the skating stroke. The parametric model, optimized through the intelligent algorithm, provides a valuable tool for predicting

and analyzing GRF in speed skating.

Unoptimized forces

The unoptimized forces were utilized as input in the approach after stroke detection (details below), using the statistical data of normal and

lateral forces from van der Kruk et al.’s literature10 as the benchmark or starting point for optimization.

Forces with variables

The functional expression for GRF with variables can be expressed as

F = f ðgðScale;mg; t1;F1; t2;F2Þ; fRmin;Rmaxg; fton1; toff1;/ton i; toff i;/gÞ (Equation 1)

Equation 1 can be divided into three parts. The left part in f function represents the expression of virtual periodic forces, which variables are

to be optimized in Genetic AlgorithmModel. Themiddle part describes the boundary conditions of the constraints. Meanwhile, the right part

represents a set of parameters (i indicate the i-th stroke), determined by the motion’s characteristics using the method discussed in stroke

detection, to convert the virtual ground reaction forces into real-time.

The g function is determined based on the periodic GRF supported by at least two variables. Figure 11 demonstrates that the two local

maxima force points (t1, F1) and (t2, F2) are the characteristic variables for normal force, while the minimum (t1, F1) and maximum (t2, F2) force

points are the characteristic variables for lateral force. These variables divide the curve into three segments, and the force curve is scaled

based on the movement of these variables. Finally, a global variable Scale is added to scale the whole force curve. So periodic GRF can

be expressed by:

Fp = gðScale;mg; t1;F1; t2;F2Þ = Scale �mg � hðt1;F1; t2;F2Þ (Equation 2)

Based on Equation 2, upper and lower bounds are defined for the constraints in the least squares error (LSE) approach:

Scale � hðt1;F1; t2;F2Þ+Rmin %Fp

�
mg%Scale � hðt1; F1; t2;F2Þ+Rmax (Equation 3)

In this paper, the conditions of normal and lateral force are set as shown in Table 4.

In this part, we built the GRF model with variables. Some of them are known parameters (e.g.mg, Rmin;Rmax) or can be determined by the

stroke detection method and the rest of them are to be optimized by the genetic algorithm.

Kinetic model

Model description

A simplified speed skating model is presented in Figure 12, which is based on the following assumptions

(1) The skater is represented as a single mass with three degrees of freedom

(2) the rotational motion between the joints of the body, such as that of the legs and upper arms, is not considered.

(3) The air resistance in the X and Y directions is neglected since the velocity of the air relative to the skater in these two directions is low.

(4) The moment of body rotation caused by the force arm is ignored, and all forces act directly on the center of mass (COM) of the whole

body.

(5) Since theGRFmeasurement is basically done under foot local coordinate system, inequality between the foot rotation angle and shank

rotation angle would not influence on the determination of GRF.

To execute themodel, themotion of the center of mass of the body and the steer angle q (subscripts indicate the left and right legs respec-

tively, same below) as well as the lean angle a of the skates are utilized as inputs.

The equations of motion in terms of generalized coordinates according to Newton’s law are then described by

M$

2
66664

€x

€y

€z

3
77775 = Tblade$F�F ice�FAir � G (Equation 4)

whereM represents the mass-inertia matrix (kg), Tblade the coefficient matrix of GRF , F the external force(N)of the GRF on the object, F ice the

frictional force(N) on the ice surface, FAir the air drag(N),G the gravity(N) of the skater, and x, y, z the lateral, normal, and longitudinal posi-

tions(m) of the center of mass, respectively.

M is found by
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M =

2
66664

m 0 0

0 m 0

0 0 m

3
77775 (Equation 5)

where m represents the mass (kg) of the skater.

Indeed, it is important to acknowledge that the simplification of the model used in this study may introduce errors in the calculations.

For instance, the model does not account for the velocity oscillation during the stroke, which arises from the momentum exchange be-

tween the swinging leg and the upper body. This exchange of momentum can influence the forces experienced by the athlete during the

stroke. By not considering this effect, the model may not fully capture the complexity of the actual forces involved.

Additionally, the model overlooks the contribution of arm movement and joint rotation during the skating stroke. Although these factors

may have some impact on the forces experienced by the athlete, the study suggests that their influence is not as significant as themomentum

exchange between the swing leg and upper body. (van der Kruk et al.12).

While these simplifications may introduce some degree of error, it is important to weigh these limitations against the benefits of having a

parametric GRFmodel that can still provide valuable insights and predictions. Further research can exploremore comprehensivemodels that

take into account these neglected factors in order to improve the accuracy of the calculations.

Ground reaction force

As shown in Figure 12, the four components of the GRF in the local skate coordinate are expressed as

F = ½ FNL
FLL FNR

FLR �T (Equation 6)

Tblade is found by

Tblade =

2
66664

� cos qL$sin aL cos qL$cos aL � cos qR$sin aR cos qR$cosaR

cos aL sin aL cos aR sin aR

sin qL$sin aL � sin qL$cos aL � sin qR$sin aR sin qR$cos aR

3
77775 (Equation 7)

The definition of the angle is shown in Figure 13.

Ice friction

The expression for the friction on the ice surface is

F ice = � m

2
4 sin qL

0
cos qL

3
5$½1 0 �$

�
FNL

FLL

�
�m

2
4� sin qR

0
cos qR

3
5$½1 0 �$

�
FNR

FLR

�

= � m

2
66664

sin qL 0 � sin qR 0

0 0 0 0

cos qL 0 cos qR 0

3
77775$

2
666666664

FNL

FLL

FNR

FLR

3
777777775

(Equation 8)

which is simplified as F ice = T ice$F, where m is the coefficient of ice surface friction.

Air drag

The air drag is obtained according to the empirical equation in the literature (van Ingen Schenau et al.15), which is simplified to the following

functional representation

FAir = Fðv; q1; q0;m; l; hÞ (Equation 9)

where v represents the velocity(m/s) of the air with respect to the skater, q1 the trunk angle (�), q0 the knee angle (�), m、 l the mass(kg) and

height(m) of the skater, respectively, and h is the altitude (m) at which it is located.
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Kinematic analysis and stroke detection

The experimental data are the 3-D positions identified by the video-based algorithm, with a total of 33 interest points of location information,

as shown in Figure 1 and Table 1.

Kinematic analysis-position and pose

By using the inertial mass parameters and the geometric parameters of the experimental subject (obtained in pre-experiments), the human

body is simplified to a 15-segment rigid body (Hanavan et al.14), and the COM positions of the body segments are calculated by:

COM =

P15
i = 1

mi � Di

P15
i = 1

mi

(Equation 10)

where i represents the number of the body segment,mi;Di represent the mass and COM position of the i-th body segment, respectively, as

shown in Table 5.

According to Equation 10 and Table 5, COM of the body for participant A was obtained (See Figure 2). The results are filtered appropri-

ately (Robust Loess Method).

Besides position, pose information is obtained by geometric calculations (See Figure 3). The steer angle can be calculated by P29 �P32.And

the skate plane is orientated according to P23 �P25 (left) and P26 �P28 (right), from which the lean angle is derived (See supplemental

information).

Stroke Detection

In speed skating, the athlete generates forward thrust by executing sideward strokes that follow a fixed cycle pattern, particularly for expe-

rienced athletes. The strokes comprise threemain phases: the glide phase, the push-off phase, and the re-position phase (Van Ingen Schenau

et al.16). During the double stance phase, when one leg is just beginning to skate while the other leg completes a stroke, both legs are on the

ice. Frequent stroking leads to greater forward propulsion, resulting in a shorter double stance phase (Tomita et al.17; Clark et al.18.). The

strong cyclical pattern in speed skating facilitates identifying and analyzing data in a cyclical manner (Tomita et al.17; Cabrera et al.13).

Previous studies on GRF estimation (Fintelman et al.11; Kruk et al.12) considered the time points of foot-on and foot-off together for

simplicity, disregarding the duration of the double stance phase. In this study, the foot-on/off time was identified using a stroke detection

method explained later. For speed skating stroke detection, the kinematic analysis obtained the skate’s knee angle. To determine the starting

time point (foot-on), Tomita et al.17 combined the filtered data of foot acceleration along with the extreme value of the knee angle to deter-

mine the ending time point (foot-off). In this paper, accelerometers were unavailable, so the stroke’s starting and ending points in Equation 1

were determined by the ice skate’s position.

In theory, both blade front points should lie on the same horizontal plane during the double stance phase, implying that the Y-directional

distance between P29 and P31 is zero. However, the unevenness of the ice surface and image processing errors make this value non-zero.

Therefore, the foot-on time point is considered as the closest Y-directional distance between the two blade front points during a specific

time frame. Finally, combining the knee angle and relative ice blade positions determined the foot-on and foot-off time points, as shown

in Figure 14. The maximum and minimum duration of the double stance phase are represented by TDSmax
and TDSmin

, respectively. Generally,

skating speed and stroke frequency are positively correlated. Therefore, this paper calculates TDSmin
= 1=15 s and TDSmax

= 1=5 s based on this

relationship considering that this range should be narrowed as the speed increases.
Genetic Algorithm Model

The focus of the genetic algorithm is to optimize the characteristic parameters of the GRFmodel by using the experimental kinematic data as

reference. In reality, while the skating process has a pattern and theGRF of each cycle follows a statistical rule, randomness and variability also

accompany the process. Hence, the force generated cannot be predicted or described using a fixed empirical force curve. Thus, the algorithm

should introduce and optimize suitable variables to improve the accuracy of the model prediction. Besides the genetic algorithm model

approach, this section introduces a simple approach without optimization and compares it with the former. Moreover, the calculation results

of this method are not dependent on the experimental results. Thus, even if the fit is not satisfactory, the accuracy of the speed skatingmodel

can be indirectly confirmed if the trend is approximated.

Simple approach without optimization

This approach takes the initial unoptimized forces as the input.

According to Equations 4, 5, 6, 7, 8, and 9, the motion equation can be expressed as

M$a = Tbladeðq;aÞ$F�T iceðm; q;aÞ$F � Fairðv; q1; q0;m; l;hÞ � G (Equation 11)
16 iScience 27, 108513, January 19, 2024
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where F represents the ground reaction force, m;m; l;h the basic parameters, q;a; q1; q0 the input parameters obtained from the kinematic

analysis of the experimental data, and v =
R
adt.Therefore, if there is a predicted GRF result F，the acceleration a can be solved so that

further integration can be done to predict the velocity and position of the body.

According to Equation 10, it is obtained by

a = M� 1$ððTbladeðq;aÞ�T iceðm; q;aÞÞ$F � Fairðv; q1; q0;m; l;hÞ � GÞ (Equation 12)

In this section, the initial unoptimized forces (as shown in Table 4) are already available, and by combining them with Equation 3, the ac-

celeration and body displacement can be obtained. Since the force’s magnitude relies on the stroke detection outcome, i.e., the knee angle

and the distance between two skates, it is independent of the body position and velocity acquired through experimental measurements.

Optimized approach with genetic algorithm

While the ground reaction force of athletes exhibits certain characteristics, as shown by van der Kruk et al.,10 subtle differences exist between

athletes and strokes for each athlete. These differences lead to significant variations in the curve characteristics between strokes and result in

errors between the results of the Simple Approach and the experimental outcomes. Consequently, we introduce characteristic variables for

the ground reaction force.

In this study, we introduce variables to represent the diversity of force patterns. However, determining the best combination of variable

values for the actual situation is unknown. Hence, we introduce five variables for both normal and lateral forces in each stroke (See Table 4) to

be optimized using the genetic algorithm.Optimization is based on errors between the OAMmodel and experimental results. Figure 15 pro-

vides a detailed demonstration of the process.

Number of variables is expressed as 5 � 2 � S, where S represents the number of strokes, the range of these 10 variables for each stroke is

shown in Table 4.

The basic parameters of the algorithm are shown in Table 6.

According to Equation 11, if the desired acceleration ad (calculated from experimental data) is known, the required GRF F can be found.

However, according to the experimental data, the acceleration in three directions, lateral, vertical and longitudinal, the desired acceler-

ation ad can be obtained, which means that there are three equations, but F has a total of four unknowns for the normal and lateral forces in

the left and right legs, respectively. Therefore, the boundary obtained from Equation 3 is introduced as a constraint and the force Xd is solved

by the LSE method.

Target.

min
1

2
kAX � bk2 (Equation 13)

where A = Tblade�Tice;X = F = ½ FNL
FLL FNR

FLR �T ;b = Fair +M$ad +G.

Constraint.
8<
:

Scale � hðt1;F1; t2;F2Þ+Rmin %Fp

�
mg%Scale � hðt1; F1; t2;F2Þ+Rmax

F = 0;when the foot is off the ice
(Equation 14)

where Scale、 t1、 F1、 t2、 F2 are the parameters to be optimized in the genetic algorithm, Rmin、 Rmax are the constraint settings in the LSE

method, and the normal and lateral forces are taken as zero-setting constraints when the foot is off the ice according to the results of stroke

detection.

The LSE solution is found as the GRF according to the expected acceleration ad , and then the COM position of the model is calculated,

which is used as the input for the next fitness calculating.

Substituting the solved force Xd into Equation 12 yields:

ac = M� 1$ððTbladeðq;aÞ�T iceðm; q;aÞÞ$Xd � Fairðv;q1; q0;m; l;hÞ�GÞ (Equation 15)

where ac represents the acceleration calculated from Xd , which is integrated to obtain the motion of the body COM position of the model：

8>><
>>:

VC =

Z
acdt +V 0

PC =

ZZ
acdt

2 +P0

(Equation 16)

where V0, P0 are the initial velocity and initial position of the body COM at the initial moment state obtained from the experiment.
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The error between the experimental data and the model results is calculated by (Cabrera et al.13):

E
�
yj
�
=

1

N

XN
i = 1

�
~yij � yij

�2

yj
2

(Equation 17)

where ~yij is the simulated value of a variable, yij themeasured value of a variable, yj the characteristic value of the variable, andN is the number

of samples.

Taking the sum of the errors of the positions in the three directions as the fitness valuation:

Fitness = EðxÞ+EðyÞ+EðzÞ (Equation 18)

where x; y; z denote the lateral, normal and longitudinal positions, respectively, the characteristic values of which are taken as the difference

between the maximum and minimum values of them. For the genetic algorithm in this study, the optimization objective is adaptation

minimization.
Model verification

The residuals and total errors between simulation results and experimental data are calculated as (Cabrera et al.13):

R
�
yj
�
=

1

N

XN
i = 1

���~yij � yij
��� (Equation 19)
J =
1

M

XM
i = 1

EðyiÞ (Equation 20)

where M denotes the number of variables.

The results pertaining to Participant A Trial 1, which exhibited the best fit (0.12% total error), are presented in Figures 2, 3, 4, 5, 6, and 7.

Model verification findings are reported in Table 2, indicating that the error had no significant relationship with the number of strokes or

experimental participant. After algorithmic optimization, errors in position and velocity residuals across all three axes were significantly

reduced, albeit more so along the X and Y axes, and not to the same extent in the Z direction. The maximum total error observed was

3.99% for Participant B Trial 2, and represented a maximum error reduction of 99.7% in comparison to unoptimized results, specifically

observed in Participant B Trial 3.
QUANTIFICATION AND STATISTICAL ANALYSIS

Detailed description of statistical methods is provided in experimental model and study participant details and themethod details. The simu-

lation of the model is conducted in MATLAB software environment. The optimization is to reduce the sum of the square percentage errors of

the positions in the three directions between the model results and experimental data.

The force parameter settings and the optimized parameters in the GRF model (for one trial) are shown in Tables 3 and 4, respectively.

Besides, Table 5 describes statistical analysis method of the COM of the body. And the genetic algorithm parameter settings are provided

in Table 6. Finally, the algorithm performance is valued by the total errors, shown in Table 2 along with the participant details.
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