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The CRISPR-Cas9 nuclease system holds enormous potential for
therapeutic genome editing of a wide spectrum of diseases. Large
efforts have been made to further understanding of on- and off-
target activity to assist the design of CRISPR-based therapies with
optimized efficacy and safety. However, current efforts have
largely focused on the reference genome or the genome of cell
lines to evaluate guide RNA (gRNA) efficiency, safety, and toxicity.
Here, we examine the effect of human genetic variation on both on-
and off-target specificity. Specifically, we utilize 7,444 whole-genome
sequences to examine the effect of variants on the targeting
specificity of ∼3,000 gRNAs across 30 therapeutically implicated
loci. We demonstrate that human genetic variation can alter the
off-target landscape genome-wide including creating and destroying
protospacer adjacent motifs (PAMs). Furthermore, single-nucleotide
polymorphisms (SNPs) and insertions/deletions (indels) can result
in altered on-target sites and novel potent off-target sites, which can
predispose patients to treatment failure and adverse effects, re-
spectively; however, these events are rare. Taken together, these data
highlight the importance of considering individual genomes for
therapeutic genome-editing applications for the design and eval-
uation of CRISPR-based therapies to minimize risk of treatment
failure and/or adverse outcomes.
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The clustered regularly interspaced short palindromic repeats
(CRISPR)/Cas9 nuclease system holds enormous potential for

therapeutic genome editing to treat a wide spectrum of genetic
diseases (1–8). Human CRISPR-Cas9 clinical trials have already
been initiated (9, 10) and are likely to increase in number in the
future. The development of successful therapies not only requires
treatment efficacy but also requires that patient safety remain par-
amount. This requires assessing for toxicity related to reagent de-
livery, to the genome-editing reagents themselves, and to off-target
effects. Significant progress has been made to aid in off-target
prediction (11, 12) and for unbiased genome-wide off-target de-
tection (13–19). From a therapeutic genome-editing perspective,
these methods for unbiased genome-wide off-target detection are
often limited by their reliance on the reference genome or the
genome of the cells used for study to evaluate guide RNA (gRNA)
efficiency, safety, and toxicity; however, newer methods circum-
vent limitations imposed by use of the reference genome through
direct sequencing of target site regions to screen each individual
patient (17).
Numerous efforts have been made to document human ge-

netic variation. For example, the 1000 Genomes Project (1000G)
database consists of 2,504 whole-genome sequences (WGSs)
from 26 populations spanning Africa (AFR), East Asia (EAS),

Europe (EUR), South Asia (SAS), and the Americas (AMR)
(20). On average, individual genomes within the database de-
viated from the reference genome at 4.1–5.0 million sites. The ma-
jority of variants in an individual genome were common with
only 1–4% of variants having a frequency <0.5%. Notably, these
deviations included 2,100–2,500 structural variants per genome.
The median number of variants varied across populations;
however, the order of magnitude re-mained unchanged (Dataset
S1). In total, across all individuals/populations studied, ∼64 mil-
lion autosomal variants were identified with a frequency <0.5%,
∼12 million with a frequency between 0.5% and 5%, and ∼8 million
with a frequency >5% (20).
Recent work has demonstrated the utility of considering vari-

ants when designing CRISPR genome-editing experiments (21).
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nome editing. Effective therapy requires treatment to be
efficient and safe with minimal toxicity. The sequence-based
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cated loci; however, these occurrences are relatively rare. We
further identify that differential allele frequencies among pop-
ulations may result in population-specific alterations in CRISPR
targeting specificity. Our findings suggest that human genetic
variation should be considered in the design and evaluation of
CRISPR-based therapy to minimize risk of treatment failure and/
or adverse outcomes.
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This included analysis evaluating the effect of variants on gRNA
te or destroy protospacer adjacent motif (PAM) sequences (21).
Therapeutic genome-editing reagents will encounter a unique
genome for each patient seeking treatment. Therefore, we sought
to evaluate whether variants should be considered for clinical
translation of CRISPR-based therapies. We hypothesized that
human genetic variation may alter CRISPR-Cas9 targeting on-
and off-target specificity at therapeutically implicated loci.
We further hypothesized that personalized off-target events
could exist that would predispose patients to treatment failure and/
or adverse outcomes. Finally, we investigated whether population-
specific variants would also predispose patients to treatment
failure and/or adverse outcomes.

Results
Therapeutic Loci and Off-Target Score Calculation. To evaluate these
hypotheses, we identified a comprehensive list of 23 human-genome
and 7 viral-genome therapeutic targets based on literature mining
for loci previously targeted by CRISPR-Cas9 for therapy (Table 1).
These loci have been demonstrated to be amenable therapeutic
targets for CRISPR-based strategies to elicit nonhomologous end
joining (NHEJ) repair or homology-directed repair (HDR). A list
of gRNAs was generated by designing all gRNAs targeting the in-
dicated regions or using the gRNAs from previous studies (Dataset
S2). gRNAs for both NHEJ and HDR applications were designed
to include all gRNAs within the relevant exon(s) for coding region
targets and ±100 bp for noncoding targets. It is important to note

Table 1. Summary of therapeutically implicated loci

Gene/virus Target Coordinates (hg19) Disease Repair Refs.

Gene
ALCAM All exons chr3:105085753–105295744 HIV-1 infection NHEJ 63
BCL11A Enhancer chr2:60722309–60722472 β-Hemoglobinopathies NHEJ 64
B2M All exons chr15:45003686–45010357 Hypoimmunogenic cells

for transplantation
NHEJ 65

CCR5 Exon 1 chr3:46414395–46415452 HIV infection NHEJ 65
CEP290 Intron 26 chr12:88494861–88495060 Leber’s congenital amaurosis

type 10
NHEJ 2, 66

CXCR4 Exon 2 chr2:136872440–136873482 HIV-1 infection NHEJ 67
HLA-A Exon 3 chr6:29911046–29911320 Hypoimmunogenic cells for

transplantation
NHEJ 68

PCSK9 Exons 1–2 chr1:55505512–55509707 Cardiovascular disease NHEJ 69
PDCD1 Exon 1 chr2:242800916–242800990 Tumor immunotherapy NHEJ/HDR 70, 71
PSIP1 Exons 2, 12, 14 chr9:15468629–15510186 HIV-1 infection NHEJ 72
TPST2 All exons chr22:26921712–26992681 HIV-1 infection NHEJ 63
TRAC,TRBC1, TRBC2 Exon 1 chr14:23016448–23016719;

chr7:142498738–142499111;
chr7:142498726–142499111

T cell immunotherapy NHEJ 73–75

SLC35B2 All exons chr6:44221838–44225308 HIV-1 infection NHEJ 63
ADA Intron 6/exon 7 chr20:43251649–43251819 Adenosine deaminase severe

combined immunodeficiency
(ADA-SCID)

HDR 76

ALB Intron 1 chr4:74270125–74270832 Lysosomal storage disease,
hemophilia A, B

HDR 77

CFTR Exon 10 chr7:117199519–117199709 Cystic fibrosis HDR 78
COL7A1 Exons 2, 3, 14, 15, 54, 117 chr3:48602217–48631981 Epidermolysis bullosa HDR 79
CYBB Exon 7 chrX:37658207–37658337 X-linked chronic granulomatous

disease
HDR 80

DMD Exons/intron 45–55 chrX:31533884–32250573 Duchenne’s muscular dystrophy HDR 81, 82
FANCC Intron 4 chr9:97934216–97934415 Fanconi anemia HDR 83
F9 Intron 1 chrX:138613012–138619169 Hemophilia B HDR 84
FAH Exon 8/intron 8 chr15:80464492–80464690 Hereditary tyrosinemia type I HDR 85
HBB Exon 1 chr11:5248162–5248251 Sickle cell disease HDR 86, 87
IL2RG Exon 5 chrX:70329079–70329240 X-linked severe combined

immunodeficiency (X-SCID)
HDR 88

SERPINA1 Intron 4/exon 5 chr14:94844848–94845047 α-1-Antitrypsin deficiency HDR 89
Virus

Cytomegalovirus Viral genome — Congenital defects, disease in
immuno-compromised
individuals

NHEJ 49

Epstein bar virus Viral genome — Infectious mononucleosis,
malignancies

NHEJ 49

Hepatitis B virus Viral genome — Hepatitis B NHEJ 51, 90–92
Herpes simplex

virus type 1
Viral genome — Cold sores, keratitis NHEJ 49

HIV-1 Viral genome (LTR) — HIV-1 infection NHEJ 50
Human papilloma virus E6–E7 oncogenes — Cervical carcinoma NHEJ 93
JC virus T antigen — Progressive multifocal

leukoencephalopathy
NHEJ 52
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that HDR efficiency decreases as a function of the distance between
the variant and the double-strand break site (22). We also identified
gRNAs targeting viral genomes using the same approach (Table 1).
This analysis resulted in a list of 2,481 gRNAs targeting human
genomic regions and 484 gRNAs targeting viral genomic regions. In
addition, 128 nontargeting gRNAs were included as negative con-
trols. Using a previously published aggregate off-target score (23,
24), we calculated aggregate off-target scores using the reference
genome for all gRNAs (Fig. 1A). For a given gRNA, a “local” off-
target score is calculated for each genomic match (from 0 to four
mismatches). The summation of all local off-target scores for a
given gRNA results in a genome-wide off-target score, termed
“aggregate off-target score” (see Materials and Methods for addi-
tional details). For this off-target scoring method (range, 0–100),
higher scores indicate lower off-target cleavage potential and lower
scores indicate higher off-target cleavage potential. Importantly, the
probability of cleavage decreases with increased number of mis-
matches (25). Therefore, sites with higher numbers of mismatches,
such as three or four mismatch sites, may not actually result in off-
target cleavage despite prediction. To reflect this, sites with more
mismatches (i.e., three or more) penalize the aggregate off-target
score much less than sites with fewer (i.e., one, two) mismatches.
Nontargeting gRNAs were designed without any perfect genomic
matches and were also chosen based on having an aggregate off-
target score >90%, suggesting that genomic cleavage is unlikely.
While cleavage mediated by a nontargeting gRNA is still possible
at sites with genomic mismatches, it is expected that these occur-
rences are rare.

Single-Nucleotide Polymorphisms Can Create Novel Off-Target Sites.
We first investigated whether single-nucleotide polymorphisms
(SNPs) altered the number of off-target sites in the genome
using 7,444 WGSs from three different datasets: 1000 Genomes
Project phase 3 (1000G) (n = 2,504) (20), a subset of the gnomAD
database [an updated and expanded version of the ExAC dataset
(26)] (n = 2,938), and a French Canadian (FC) dataset (n = 2,002)
(27) (see Materials and Methods for additional details). Notably,
the FC dataset is a founder population with increased genetic
homogeneity. Fewer variants suggested a decreased probability
to create or alter off-target sites a priori.
SNPs can alter off-target sites by increasing or decreasing the

number of mismatches between a genomic region and the gRNA
sequence. In addition, SNPs can create (alter NHG or NGH from
reference genome to become an NGG motif) or destroy (alter
reference genome NGG motif to NHG or NGH sequence) PAM
sequences (H = A, C, or T). Creation of PAM sequences may
generate new loci for off-target cleavage while destruction of PAM
sequences potentially removes loci for off-target cleavage. SNPs
present within the 1000G database led to the creation of
11,585,879 new NGG PAM sequences (4.1% of total PAMs in
the reference genome, 11,585,879/281,005,914) and led to the
destruction of 22,182,468 PAM sequences (7.9% of total PAMs
in the reference genome, 22,182,468/281,005,914). To determine
the number of PAMs per haploid genome within the 1000G
dataset, the number of created PAMs was added and the number
of destroyed PAMs was subtracted from the total number of NGG
motifs in the reference autosomal genome (n = 281,005,914). In-
terestingly, the number of NGG motifs per haploid genome was

Fig. 1. Off-target scores using the ambiguous genome approach. (A) Distribution of aggregate off-target scores in the reference and ambiguous genomes
for human-genome–targeting, viral-genome–targeting, and nontargeting gRNAs. (B) Change in aggregate off-target score between ambiguous and ref-
erence genomes. (C) Distribution of off-target sites by number of mismatches. (D) Ratio of the number of off-target sites in ambiguous genomes compared
with the reference genome stratified by the number of off-target sites in the reference genome. The y axis shows the ratios for each gRNA, whereas the x axis
shows the number of off-target sites in the reference genome.
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similar to the reference genome, with a mean increase of 34 NGG
motifs (median,−42 NGGmotifs). However, the number of NGGmo-
tifs varied across individual haploid genomes (SD, ±1,559 NGG
motifs). The number of NGGmotifs also varied across populations,
with individuals of European descent showing the largest reduction
(−1,327 ± 922, mean ± SD) and individuals of African ancestry
displaying the largest increase as compared to the reference ge-
nome (1,429 ± 1,142, mean ± SD, Fig. S1).
To further investigate the effect of SNPs within the 1000G,

gnomAD, and FC datasets, we created an “ambiguous genome”
by replacing each SNP position by an International Union of
Pure and Applied Chemistry (IUPAC) ambiguity code to ac-
count for all possible SNP alleles. For example, an A > C SNP
would be replaced by the ambiguity code “M” (M = A or C).
With this replacement strategy, both alleles can map to the SNP
locus without penalty. Therefore, all possible matches upstream
of an NGG motif were identified in the reference and ambiguous
genomes (up to four mismatches), which were used to calculate
off-target scores. Interestingly, we observed a reduction in ag-
gregate off-target scores for all three datasets when comparing
the reference and ambiguous genomes, which suggested in-
creased off-target cleavage potential (Fig. 1 A and B). The
largest decrease in aggregate off-target scores was associated
with the 1000G dataset (Fig. 1A and Dataset S3). For human
genome-targeting gRNAs, the mean reductions in aggregate
off-target scores were 9.3%, 7.8%, and 3.1% for the 1000G,
gnomAD, and FC datasets, respectively (Fig. 1 A and B). For
viral-genome–targeted gRNAs, the mean reductions of aggregate
off-target scores were 9.1%, 7.5%, and 3.0%, respectively (Fig. 1 A
and B). These data were consistent with the reduced genetic di-
versity within the FC founder population. The decreased mean
aggregate off-target scores predominantly resulted from an in-
creased number of low-scoring off-target sites, which are those
with two to four mismatches from the reference gRNA sequence
(Fig. 1C).
Notably, the ratio of the number of ambiguous genome to

reference genome off-target sites suggested that gRNAs with
fewer off-target sites in the reference genome displayed higher
ratios (i.e., increased number of off-target sites in the ambiguous
genome compared with the reference genome); however, this
may reflect increased noise in the ratio because new off-target
sites contribute more to the ratio for gRNAs with fewer off-
target sites in the reference genome (Fig. 1D). As expected,
nontargeting gRNAs showed the smallest decrease in aggregate
off-target score (Fig. 1 A and B). Of the 2,327 (2,327/2,481,
93.8%) human-genome–targeted gRNAs with only one pre-
dicted perfect genomic match (single on-target site with zero
mismatches) in the reference genome, 14 gRNAs (0.6%) were
predicted to have new perfect off-target matches in the ambig-
uous genome. Of note, HLA-A_gRNA_0422 had an off-target
score of 80.7% in the reference genome, but only 27.5% when
considering gnomAD SNPs with the number of off-target sites
being increased by 75 including three off-target sites with 0 or
one mismatch. HLA-A_gRNA_0422 showed the largest score
reduction when considering gnomAD and 1000G SNPs followed
by consideration of the FC dataset. The total number of human-
genome–targeted gRNAs with a reduction in aggregate off-target
score of >30% was 23 (23/2,327, 1.0%), 17 (17/2,327, 0.7%), and 5
(5/2,237, 0.3%), respectively, for the 1000G, gnomAD, and FC
datasets. For viral-genome–targeted gRNAs, these reductions were
3 (3/484, 0.6%), 5 (5/484, 1.0%), and 2 (2/484, 0.4%), respectively,
for the same datasets. Overall, these results suggest that SNPs can
create novel off-target sites and reduce the number of mismatches
in existing off-target sites, thus increasing the potency of the asso-
ciated off-target site. Notably, reduced alteration of off-target po-
tential among the FC dataset suggested that the effect of genetic
variation is likely dependent on the extent of the individual genetic
diversity. Taken together, these data suggest that SNPs can increase

the off-target cleavage potential for gRNAs and further suggest that
an increased number of SNPs is likely to increase the off-target
cleavage potential.

Variants Alter gRNA On-Target Specificity for Human-Genome–
Targeting gRNAs. The ambiguous genome approach offered an
initial assessment of the effect of variants on targeting specificity;
however, the ambiguous genome analysis approach is limited
because it does not consider haplotypes present in the population,
it does not discriminate allele frequencies, and it does not include
insertion/deletions (indels). To address these limitations, we selected
the subset of gRNAs with an aggregate off-target score of ≥80% in
the reference genome and tested these against every possible
haplotype in the 1000G dataset including both SNP and indel
variants. This analysis was restricted to gRNAs with ≥80% ag-
gregate off-target scores because gRNAs with low aggregate off-
target scores are unlikely to be considered for therapeutic applica-
tions. Therefore, this subset included 481 human-genome–targeting,
150 viral-genome–targeting, and 128 nontargeting gRNAs.
Using this approach, we first investigated on-target sites for

each human-genome–targeting gRNA, which identified 263 gRNAs
(263/481, 54.7%) with on-target sites harboring variants from the
1000G dataset (Fig. 2 A–F and Dataset S4). These gRNAs targeted
83 different regions after aggregating SNPs based on proximity into
local haplotypes (Fig. 2G offers an example of a single region with
multiple SNPs in close proximity). These regions were composed of
310 unique haplotypes from the 1000G dataset with a mean of
3.7 different haplotypes per region. In total, 58.6% (n = 793/
1,353) of gRNA–target haplotype pairs were predicted to yield
a perfect match (perfect local targeting score) and perfect cutting
frequency determination (CFD) score, which is another score for
the assessment of gRNA activity and off-target cleavage potential
(25). On the other hand, 27.8% (n = 376/1,353) of gRNA–haplotype
pairs yielded a local on-target score below 50%, and 20.9% (n =
283/1,353) of gRNA–haplotype pairs resulted in a CFD below 50%
(Fig. 2 A and D). These affected sites (i.e., sites with SNPs at
their target site resulting in local on-target score <50% or
CFD <50%) belonged to 176 (176/263, 66.9%) and 139 (139/
263, 52.9%) of human-genome–targeting gRNAs, respectively.
In total, 16.3% (n = 43/263) of gRNAs had at least one target
haplotype yielding a null local on-target score or null CFD, where
null signifies a local on-target score or CFD of zero. The frequency
of null on-target haplotypes in the 1000G ranged from 0.02% (n =
1/5,008) to 39.4% (n = 1,973/5,008) with a mean of 2.0% (median,
0.06%). Similarly, the frequency of imperfect haplotypes [mis-
match(es) at on-target site] was highly biased toward singletons
(Fig. 2 B and E). Nonetheless, 15.6% (n = 41/263) of gRNAs with
SNPs at their on-target sites were predicted to have a local on-target
score or local CFD <100% in 50 samples/individuals or more. For
instance, TPST2_gRNA_2070 (chr22:26,937,299–26,937,349; hg19)
had a local on-target score of 38.7% (CFD, 13.6%) in 4,439
(88.6%) haploid genomes (Fig. 2 C and F). Six gRNAs targeted
the HLA-A region (chr6:29,910,958–29,911,176; hg19; Fig. 2G).
This region included nine SNPs implicated in 20 unique haplotypes
(excluding the reference). Of note, a haplotype (haplotype #10,
Fig. 2G) present in 39.4% (n = 1,973/5,008) of samples abrogated
the target site for all six gRNAs. In 71 of 92 (77%) null haplotypes,
the null score was due to an altered PAM site.
We repeated this type of haplotype-based analysis using

human-genome–targeted gRNAs in samples/individuals from
the FC dataset and identified 155 human-genome–targeting
gRNAs targeting 243 different haplotypes in 26 unique genomic
regions (Fig. S2 and Dataset S5). Here, we found 430 (430/2,844,
15.1%) and 317 (317/2,844, 11.1%) gRNA–haplotype pairs that
reduced the local on-target score or local CFD below 50%, re-
spectively. In total, 9.7% (n = 15/243) of gRNAs had null local on-
target scores in at least one haplotype. These haplotypes had a
mean frequency of 1.5% (n = 59.4/4,004; median = 2.5%). In total,
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2.9% (n = 7/243) of gRNAs targeted at least one null haplotype
seen in more than 40 samples (∼1% frequency) clustered in five
unique regions. The most common null haplotype was present in
22.6% of haploid genomes (n = 906/4,004; chr22:26936744–
26936919; hg19; TPST2_gRNA_2144). In total, 69% (n = 87/126)
of null haplotypes were due to an altered PAM sequence. Overall,
these results suggest that genetic variants in the on-target site can
dramatically affect gRNA targeting specificity and efficiency, par-
ticularly if the variants are located within PAM sequences.

Characteristics of Off-Target Sites. We then assessed the global
characteristics of off-target sites for all human-genome–targeting,
viral-genome–targeting, and nontargeting gRNAs with an aggre-
gate off-target score ≥80% in the reference genome. The 1000G
and FC dataset variants altered 21,981 and 10,348 off-target sites,
respectively, targeted by gRNAs from Dataset S2 in the reference
genome (Datasets S6 and S7). 1000G- and FC-derived variants
created an additional 23,316 and 8,773 unique off-target sites, re-
spectively. In both cases, ∼8% (n = 1,767/23,316 and 699/8,773)
were solely due to novel PAM sites created by variants. On the
other hand, variants overlapping PAMs destroyed matches at
13.8% (n = 3,039/21,981) and 10.5% (n = 1,084/10,348) of reference

sites. When variants altered the underlying off-target site se-
quence, the median change in local off-target score due to variants
was ±0.03% in the 1000G and FC datasets and the mean differ-
ence in local CFD was ±2.0% in both datasets. These small
changes in local off-target and CFD scores were predominantly
due to the large number of off-target sites with four mismatches,
which accounted for >92% of off-target sites in both the 1000G
and FC datasets. In the 1000G dataset, 73.2% (n = 556/759) of
the gRNAs with an aggregate off-target score ≥80% in the ref-
erence genome had new off-target sites with less than four
mismatches, 10.1% (n = 77/759) with less than three mismatches,
and 0.5% (n = 4/759) with less than two mismatches. The new
mismatches were at 1,531, 84, and 5 unique sites, respectively
(Dataset S8). In the FC dataset, 49.3% (n = 374/759) of the
gRNAs with an aggregate off-target score ≥80% in the reference
genome had new off-target sites with less than four mismatches,
4.9% (n = 37/759) with less than three mismatches, and 0.7%
(n = 5/759) with less than two mismatches. The new mismatches
were at 599, 45, and 5 unique sites, respectively (Dataset S8).
Indels can theoretically have a higher impact on reference

sequence than SNPs, potentially resulting in the creation of novel/
altered off-target sites. To investigate the effect of indels, we examined

Fig. 2. Variants can reduce gRNA targeting efficiency. (A) Distribution of on-target scores for human-genome–targeting gRNAs for each possible target
haplotype. (B) Distribution of samples/individuals carrying haplotypes predicted to be targeted with a local on-target score of <100%. (C) Distribution of local
on-target scores for the gRNA TPST2_gRNA_2070. (D) Distribution of on-target CFDs for human-genome–targeting gRNAs for each possible target haplotype.
(E) Distribution of samples/individuals carrying haplotypes predicted to be targeted with a CFD of <100%. (F) Distribution of CFDs for the gRNA
TPST2_gRNA_2070. (G) Example of haplotypes at the HLA-A locus. Inset plots with a restricted y-axis range are shown for A, B, D, and E for easier visualization
of data.
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regions with off-target sites consisting of indel-only haplotypes in
the 1000G dataset to consider indels independently from SNPs.
This analysis identified 184 sites with 69.6% (128/184) of them with
novel off-target sites. This was a modest enrichment compared
with haplotypes consisting of SNPs-only (n = 21,169/34,636; 61.1%;
Fisher exact test, P = 0.019), although this was not significant in the
FC dataset (indels-only: 357/522, 68.4%; SNPs-only: 7,777/11,897,
65.4%; P = 0.16). However, 7.6% (n = 27/357) of indel-mediated
off-target site alteration in the FC dataset had less than four
mismatches, whereas that ratio was 0.8% for SNPs (n = 66/
7,777; Fisher exact test, P = 1.1 × 10−15), suggesting that indels
are more likely to create more potent novel off-target sites.
Similarly, sites in the reference genome with less than four
mismatches were more likely to be completely destroyed by
indels than by SNPs (1000G odds ratio = 10.5, P = 9.5 × 10−4; FC
odds ratio = 20.6, P = 4.1 × 10−12).
Notably, of the 45,297 (21,981 + 23,316) different off-target

sites, 5,633 (12.4%) were covered by structural variants anno-
tated in the 1000G dataset, suggesting that these could also modify
the probability of off-target effects. For instance, an HLA-B gene
haplotype (chr6:31,238,852–31,238,965; hg19) was a strong off-
target site for HLA-A_gRNA_0422 in 29.1% (n = 1,459/5,008)
of haplotypes (local off-target score, 60.5–68.3%; local CFD, 100).
In total, 6.9% (n = 344/5,008) haploid genomes had a deletion of
this region, completely removing this target site in the 1000G
dataset. On the other hand, three samples (3/5,008, 0.06%) had a
duplication covering this site (chr6:31,131,451–31,272,307; hg19),
thus increasing the number of off-target sites.

Assessing Off-Target Effects Using Personal Genomes.We calculated
aggregate off-target scores for all gRNAs (human-genome–targeting,
viral-genome–targeting, and nontargeting) in the 1000G and FC
datasets (Fig. 3). In the vast majority of cases (n = 3,753,205/
3,796,064 gRNA–haploid genome pairs, 98.9%), the individual
gRNA aggregate off-target score was ≥80%. Nonetheless, this
accounted for 42,859 haploid genome–gRNA pairs with a score
<80%, implicating 62 gRNAs and virtually all samples (Fig. 3A).
The FC dataset showed similar statistics, with 99.3% (n = 2,823,851/
2,842,840) of haploid genome–gRNA having a score ≥80% (Fig. 3B).
Again, all samples had an aggregate off-target score of <80% for
any one of 23 gRNAs. Consistently, the mean reduction in aggre-
gate off-target score was −0.03% and −0.01% for the 1000G and
FC datasets, respectively, when examining 758 and 710 gRNAs with
at least one overlapping variant at an off-target site, respectively (Fig.
3 C and D). Only seven gRNAs for the 1000G dataset and one
gRNA for the FC dataset had a reduction in aggregate off-target
score of more than 5% in at least one individual. Four gRNAs
showed a very strong reduction in score (>15% reduction in
aggregate off-target score) in at least one haplotype in the 1000G
dataset (Table 2). ALB_gRNA_0837 had an aggregate off-target
score between 82.4% and 84.2% in 83% of haplotypes (4,153/
5,008). However, the aggregate off-target score was reduced
below 46% in the remaining 17% samples (855/5,008). This was
primarily due to a single off-target site on chromosome 11
(chr11:100,402,414–100,402,433; hg19) (Table 2). In the refer-
ence genome, this region on chromosome 11 contains two mis-
matches (local off-target score, 2.4%), one of which is rescued
by rs11560892 (C > G) matching to position 18 of the gRNA se-
quence. The remaining mismatch is not predicted to alter tar-
geting (local off-target score, 100%), thus creating a potent off-
target site.
Similarly, HLA-A_gRNA_0451 had an aggregate off-target

score of >88.6% in the majority of haplotypes (n = 5,004/5,008,
99.8%) (Table 2). However, four haplotypes showed an aggregate
off-target score of 48%, which was mainly due to a rescued off-
target site on chromosome 13 (chr13:33,591,178–33,591,197; hg19;
Table 2). Notably, this region falls in the coding region (exon 1) of

the KL gene, a gene associated with hyperphosphatemic familial
tumoral calcinosis (28); these haplotypes belonged to four unique
haplotypes. Although all of the four samples/individuals had one
copy of the on-target site that had a perfect match, they also carried
a copy whereby the on-target site was predicted to have very low
(n = 3/4; local on-target score, 0.4%) or reduced (n = 1/4; local
on-target score, 55.5%) activity, making these individuals at
potentially increased risk of both treatment failure and adverse
effects due to off-target cleavage (Fig. 2G).
One individual was a carrier of the G allele of rs552139758

(A > G), which created a novel PAM sequence on chromosome
14 (chr14:52,120,745–52,120,765; hg19) and a novel off-target site
for HIV-1_gRNA_0196 (Table 2). This PAM-creation site on
chromosome 14 falls within intron 1 of the FRDM6 gene and results
in reduction of the aggregate off-target score for HIV-1_gRNA_0196
from >80.8 to 61.9%. In addition, HLA-A_gRNA_0422 had an
off-target site in the coding sequence of HLA-C (Table 2) whereby
two haplotypes showed local off-target scores >60% in 1,459

Fig. 3. Variants can increase the risk of off-target effects. (A) Distribution of
aggregate off-target scores for each 1000G haplotype. (B) Distribution of ag-
gregate off-target scores for each FC haplotype. (C) Difference in aggregate off-
target scores for each 1000G haploid genome and the reference genome. The x
axis corresponds to different gRNAs, and each dot represents the difference in
score of each haploid genome in the 1000G dataset. The figure includes
758 gRNAs with at least one match with overlapping variants. (D) Difference in
aggregate off-target score for each FC haploid genome and the reference ge-
nome. The x axis corresponds to different gRNAs and each dot represents the
difference in score of each haploid genome in the FC dataset. The figure in-
cludes 710 gRNAs with at least one match with overlapping variants.
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haploid genomes. This is also an example where the CFD score
(66.7) was a better predictor of off-target potential than the local
off-target score (1.25%), in that the former was less affected by
the presence of SNPs (Table 2).
Additionally, instances were identified with an improved mean

aggregate off-target score due to variants within the 1000G dataset
(mean Δ aggregate off-target score of >0; Fig. 3C). The distribu-
tion of gRNAs with a Δ aggregate off-target score of >0 was
shifted toward 0, suggesting that variants were more likely to
decrease the aggregate off-target score within each haploid genome
(Fig. S3). Notably, F9_gRNA_1349 had a 4.8% increase in aggre-
gate off-target score albeit only in one haploid genome. In total,
727 (14.5%, 727/5,008) haploid genomes displayed a Δ aggregate
off-target score of >0 for HSV-1_gRNA_0057, with 38 (0.8%,
38/5,008) displaying a Δ aggregate off-target score of >4%.
HSV-1_gRNA_0079 had a Δ aggregate off-target score of >0 in
all haploid genomes, although the gain was limited due to the gRNA
already having an aggregate off-target score of 98.9 in the reference
genome (0.89 mean Δ aggregate off-target score). Overall, the
magnitude of off-target score increase was likely blunted in this
analysis since we selected for gRNAs with high aggregate off-
target scores (≥80%). Finally, we investigated whether some
populations were more at risk for off-target effects than other
populations in the 1000G dataset. We calculated the difference in
scores between each sample and the reference for each gRNA. In
total, 721 of 758 (95.1%) of gRNAs showed significant differences
in scores between populations after adjusting for multiple com-
parisons (Kruskal–Wallis, P < 6.6 × 10−5). Overall, African-
ancestry populations showed the largest reduction in scores
compared with the reference population (Δ aggregate off-target
score, −0.0346; SD, 1.0745), while Europeans populations dis-
played the smallest changes (Δ aggregate off-target score, −0.0216;
SD, 0.9882) (Dataset S9). This is consistent with increased

genetic diversity observed in populations of African ancestry.
Taken together, variants may predispose a subset of individuals
to adverse events for CRISPR-mediated therapeutic genome
editing.

Discussion
CRISPR technology holds enormous potential for clinical trans-
lation as therapy for a wide array of genetic disorders. Histori-
cally, gene therapy clinical trials have demonstrated that a small
subset of patients may experience adverse events (29). Our data
suggest that variants may contribute to both treatment failure of
CRISPR-based therapies as well as predispose individuals to
adverse outcomes due to personalized off-target effects; however,
the effect of variants on on- and off-target specificity is not unique
to CRISPR genome editing, but also extends to other genome-
editing platforms including zinc finger nucleases and TAL effector
nucleases. Notably, we identified variant-induced off-target sites
in coding sequence. This type of situation potentially offers an
adverse clinical outcome if such sites are located within genes
with important roles for cellular function (e.g., tumor suppressor
genes). It may be advisable for safety considerations to exclude
gRNAs with predicted off-target sites within or near important
genes such as tumor suppressors even if they have three or four
mismatches. As such, these data may suggest the utility of WGS
for patients before therapeutic genome-editing treatments. WGS
data would allow for in silico on- and off-target analysis, which
may identify patients predisposed to treatment failure and/or
adverse outcomes before therapy initiation. Notably, given the
creation/alteration of off-target sites in noncoding sequence,
WGS would likely be required for this analysis as opposed to
whole-exome sequencing. Minimally, our results suggest that on-target
sites should be investigated by conventional Sanger sequencing to
assure maximal gRNA efficiency. Alternatively, in vitro unbiased

Table 2. Representative example of off-target sites created by variants present in the 1000 Genomes database

Variants included in the chr11:100402414–100402433 (hg19) haplotype are rs566289682, rs555981507, rs181027193, and rs11560892. Variants included in the chr13:33591178–33591197 (hg19)
haplotype are rs200611452 and rs116289670. Variants present in the chr14:52120745–52120765 (hg19) haplotype are rs532153306 and rs552139758. Sites displaying mismatches with the gRNA sequence
are shown in red, whereas sites where variants rescue the gRNA sequence are highlighted in blue. CFD, cutting frequency determination; Freq., frequency; Hap., haplotype; PAM, protospacer adjacent
motif; Seq. pos., sequence position.
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genome-wide off-target detection methods can be employed (13–19).
It is also possible to overcome adverse events by using enhanced-
specificity/high-fidelity versions of SpCas9 (30–32), by using other
methodologies to enhance targeting specificity (25, 33–36), and/or
by furthering the understanding of cleavage kinetics to help mini-
mize nuclease exposure to reduce off-target potential (37). How-
ever, variants that create potent off-target sites (e.g., novel zero or
one mismatch sites) are likely to be problematic even in the setting
of improved specificity techniques. Furthermore, enhanced-specificity/
high-fidelity nucleases are only available for SpCas9 at present.
It is important to note that our study only considered NGG-

restricted gRNAs compatible with SpCas9 (or enhanced-specificity
versions such as SpCas9-HF1/eSpCas9/HypaCas9) (30–32); how-
ever, the effect of variants altering on- and off-targeting specificity
is unlikely to be restricted to SpCas9 and will likely affect all
CRISPR nucleases considered for therapeutic genome-editing ap-
plications (38). In addition, given the wide array of genetic or viral
diseases that could be targeted by genome-editing approaches, we
have evaluated only a small subset of the possible therapeutic loci;
however, we have identified gRNAs with variant-induced reduction
in predicted gRNA efficacy at on-target sites and variant-induced
creation of potent off-target sites. This finding appears unlikely to
be specific to the chosen loci and more likely to be a generalized
phenomenon. However, it is important to note that our data sug-
gest that these findings are rare, which is consistent with previous
work (38).
The FC dataset was included to evaluate for population-specific

effects due to novel variants present and/or variants present at
differential allele frequencies within a specific population. Dele-
terious population-specific effects were not overtly observed in this
dataset; however, stratification of the 1000G dataset by population
demonstrated population-specific effects for on- and off-target
specificity. The minimal population-specific effects observed in the
FC dataset are consistent with its increased genetic homogeneity as
a founder population and thus fewer differences with the reference
genome. Notably, founder populations are associated with fewer
variants; however, the variants are often more frequent. The in-
creased frequency of particular variants may become problematic
for therapeutic genome editing if certain high-frequency variants
alter on-target sites and/or create high-potency off-target sites.
Taken together, differential variant frequencies within populations
are likely to contribute to population-specific effects for CRISPR-
based therapeutic targeting.
As the understanding of Cas9 binding continues to unfold and

aid in determination of off-target loci (39) and factors affecting
accessibility of these sequences [e.g., nucleosomes (40)], it may
be possible to refine in silico off-target analysis beyond sequence-
only to further predict if off-target sites and/or variant-induced
off-target sites are likely to result in off-target cleavages. In particular,
future analysis would benefit from differentiating between the
requirements for Cas9 binding vs. Cas9 cleavage (32, 41); incor-
poration of this type of information would likely increase the
reliability of identifying off-target sites with a high probability
of cleavage.
To minimize the possibility of variants affecting gRNAs in

development for clinical translation, it may be useful to consider
variants at the gDNA design stage. For example, publicly avail-
able variant databases [e.g., dbSNP, dbVAR, ExAC (26), 1000G
(20)] may be examined during gRNA design to create variant-
aware gRNAs (21). In silico analysis, such as presented in this
manuscript, can also be used to aid gRNA selection for clinical
translation. In addition, gRNAs derived from the reference ge-
nome or variant-aware gRNAs can be tested in diverse cell lines
or primary cells to evaluate for toxicity. One might also evaluate
a therapy-optimized CRISPR gRNA using patient-derived induced
pluripotent stem cells differentiated to the relevant lineage, which
could represent a viable paradigm for empiric evaluation of variant-
induced effects on CRISPR targeting; however, this approach could

be compromised by somatic mosaicism, which has been detected in
many individuals across numerous tissue types (42). The somatic
mutation rate has been estimated to be ∼10−9/nucleotide/cell
division (43, 44). Further estimates suggested 3,500–8,900 cell
divisions for cells such as lymphocytes, lymphoblastoid cell lines, or
colonic mucosae in ∼65-y-old individuals (44). Therefore, it is
conceivable that somatic variants may limit the ability to evaluate
on- and off-target sites using any of the suggested methods,
particularly for individuals with advanced age. Of note, estimates
of the germline mutation rate have varied widely with estimates
above and below the somatic mutation rate (43, 45, 46). Inter-
estingly, somatic mosaicism could also be exploited for CRISPR-
based therapy, such as for cancers with genomic amplifications,
through induction of apoptosis due to numerous double-strand
breaks (47, 48).
Taken together, our analysis suggests the necessity for pre-

clinical studies to consider variants at the gDNA design stage
and/or to validate more than one gRNA for clinical translation to
increase the likelihood of providing safe, effective, and person-
alized therapeutic options for all patients regardless of genotype.
In summary, our data suggest that human genetic variation alters
on- and off-target specificity for CRISPR-based therapeutic ge-
nome editing. Therefore, it will be prudent to account for patient-
specific genomes in on- and off-target analyses as CRISPR-based
therapies approach the clinic.

Materials and Methods
gRNA Design. gRNAs were designed using publicly available tools (11) and/or
identified in previously published studies (Table 1 and Dataset S2). gRNAs for
both NHEJ and HDR applications were designed to include all gRNAs within
the relevant exon(s) for coding region targets and ±100 bp for noncoding
targets. Human genome (hg19) was used to obtain gene-based sequences.
Viral sequences utilized were as follows: EBV (49): KC207813.1 human her-
pesvirus 4 strain Akata, complete genome;

CMV (49): KF297339.1 human herpesvirus 5 strain TB40-E clone Lisa,
complete genome;

HSV1 (49): JN555585.1 human herpesvirus 1 strain 17, complete genome;
HPV E6E7: LC193821.1 human papillomavirus type 16 DNA, complete

genome, isolate: FT001;
HIV1 (50): AF105229.1 cloning vector pHR′-CMVLacZ, complete sequence;
HBV (51): AF305422.1 synthetic construct hepatitis B virus 1.28-mer

overlength sequence; EU570069.1 hepatitis B virus isolate 1-B24, complete
genome; FJ899793.1 hepatitis B virus isolate C122-2, complete genome;
V01460.1 hepatitis B virus (strain ayw) genome;

JCV (52): NC_001699.1 JC polyomavirus, complete genome.
CRISPOR (11) was used to obtain gRNA efficiency scores from Fusi et al. (53),

Chari et al. (54), Xu et al. (55), Doench et al. (25, 56), Wang et al. (57), Moreno-
Mateos et al. (58), Housden et al. (59), Prox. GC (60), -GG (61), and Out-of-
Frame (62).

Calculation of Off-Target and CFD Scores. Off-target scores were calculated as
previously described (11, 23, 24). Briefly, the number and position of mis-
matches between gRNA–DNA were calculated with scores ranging from
0 (nontargeting) to 1 (perfect match), which was termed the “local off-target
score.” Based on this analysis, sequences with a score >0 were considered po-
tential off-targets. For sequences with more than four mismatches, a score of
0 was assigned. An aggregate off-target score from all possible local off-targets
was calculated according to Sanjana et al. (23):

Sguide =
100

100+
Pn

i=0ShitðhiÞ
.

In this equation, n signifies the number of potential off-target “hits” and
Shit(hi) is the targeting score of the possible off-target sequence hi. There-
fore, a “local” off-target score was calculated for each genomic match (from
0 to four mismatches) for a given gRNA. The summation of all local off-target
scores for a given gRNA resulted in a genome-wide off-target score, termed
“aggregate off-target score.” For this off-target scoring method (score range,
0–100), higher scores indicate lower off-target cleavage potential and lower
scores indicate higher off-target cleavage potential.

CFD scores were calculated as previously described (21, 25). Briefly, percent
activity values are provided in Doench et al. (25) for all possible gRNA–DNA
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mismatches. These percent activity values can be multiplied together in the
setting of multiple gRNA–DNA mismatches (25). When a local off-target
score or local CFD was calculated at the on-target site, it is referred to as an
“on-target score.”

Nontargeting gRNA Design. In total, 128 gRNAs were used as negative con-
trols. The 128 gRNAs were previously designed to lack perfect matches within
the genome and have an aggregate off-target score of >90% based on the
calculation described in Calculation of Off-Target and CFD Scores (21).

PAM Creation and Destruction Analysis. To determine the total number of
PAMs in the genome for SpCas9, all NGG motifs were identified on the sense
and antisense strands using the matchPattern function from the Biostrings
package for all 22 autosomes. Destroyed PAMs were defined as GG sites that
were overlapped by a SNP (this analysis was performed on both strands). In
these cases, the reference allele was G so alternative alleles destroyed the GG
motif (i.e., altered reference genome NGG motif to NHG or NGH sequence).
Created PAMs were defined by identification of all SNPs with an alternative
allele of a G and that were preceded or followed by a G nucleotide, thus
creating a GG motif (i.e., altered NHG or NGH sequence to become an NGG
motif; this analysis was performed on both strands). To determine the
number of PAMs per haploid genome, we generated all possible haploid
genomes from the 1000 Genomes dataset by inserting the alternative allele
of SNPs at each site carried by the samples.We then counted the total number
of NGG motifs for each haploid genome.

Genomic Coordinates. All genomic coordinates displayed are hg19. Coordi-
nates for viral genomes are not displayed.

WGS Data. In total, 7,444 WGSs were obtained for analysis. These data were
obtained from the 1000G database (n = 2,504) (20), a subset from the ge-
nome aggregation database [the gnomAD dataset, an updated and ex-
panded version of the ExAC dataset (26); n = 2,939], and Low-Kam et al. (27)
(n = 2,002). All three datasets were sequenced at low coverage (<15×).

Ambiguous Genome Analysis. Variants were downloaded from the 1000G phase
3 dataset (n = 2,504) (20). Data from two other whole-genome sequencing
datasets were also accessed: an FC (n = 2,002) dataset from the Montreal Heart
Institute biobank (27) and a subset of the GnomAD dataset (n = 2,938). An
ambiguous genomewas built using a custom R (version 3.2.0) script based on the
R package Biostrings (version 2.38.4). Human genome sequences were obtained
using the BSgenome (version 1.38.0) package BSgenome.Hsapiens.UCSC.hg19.
masked (version 1.3.99), applying the default masks (assembly gaps and intra-
contig ambiguities). Each nucleotide was replaced at the SNP positions by an
IUPAC ambiguity code to account for all possible SNP alleles. For example, an
A→C SNP would be replaced by the ambiguity code “M,” so that both alleles can
map to the SNP location without penalty.

For each gRNA, all possible matches were identified in the reference and
ambiguous genomes using the Biostring matchPDict function allowing up to
four mismatches. Only matches upstream of an NGG motif and that had less
than five ambiguities were considered. The restriction of less than five am-
biguities was imposed so that ambiguities did not overinflate the number of
matches. For each match, the targeting score was calculated as described in
Sanjana et al. (23) using mismatch penalties from Hsu et al. (24), as well as
the CFD score (25) (see Calculation of Off-Target and CFD Scores for more
detail). For each gRNA, we reported the number of matches for each mis-
match category, the aggregated score, and mean, median, SD, and 10th,
25th, 75th, and 90th percentiles of the CFD score.

On-Target Haplotype Analysis. To measure on-target effects in personal ge-
nomes, each SNP and indel in the 1000G and FC datasets overlapping the
predicted on-target sites (including the PAM) was considered. The sequences
22 bp on either side of each variant were identified and overlapping target
sites were merged to create local haplotypes. Genomic sequences were
created based on existing haplotypes in the datasets and tested whether they
were targeted by gRNAs using the Biostring matchPDict function (up to four
mismatches). In total, 481 human-genome–targeting, 150 viral-genome–
targeting, and 128 nontargeting gRNAs with aggregate off-target scores ≥80%
in the reference genome were investigated. Only matches upstream of an
NGG PAMwere considered valid matches. The number of mismatches, off-target
scores, and CFD scores were calculated as above for each match.

Δ Aggregate Off-Target Score. The “Δ aggregate off-target score” was cal-
culated as the difference between the reference aggregate off-target score
and each sample’s aggregate off-target score.

Off-Target Haplotype Analysis. To measure off-target effects in personal
genomes, each SNP and indel in the 1000G and FC datasets was considered.
Sequences 22 bp on either side of each variant were identified and over-
lapping sequences were merged to create local haplotypes. Genomic se-
quences were created based on existing haplotypes in the datasets and tested
whether they were targeted by gRNAs using the Biostring matchPDict
function (up to four mismatches). Only matches upstream of an NGG PAM
were considered valid matches. The number of mismatches, off-target scores,
and CFD scores were calculated as above for each match. Each sample (indi-
vidual) was then separated into haploid genomes and the aggregate off-
target score was calculated given the individual’s haplotypes:

sg,i =
Xn

j

sg,i,j + sg,nonvariable,

where sg,i,j is the off-target site score of the jth of n off-target sites of gRNA
g in haplotypes of the haploid genome i. sg,nonvariable represents the sum of

all local off-target scores in nonvariable regions of the genome (not over-
lapped by variants) for gRNA g. The aggregate off-target score of guide g
(Zg,i) in the haploid genome i is given by the following:

Zg,i = 100×
100

100+ sg,i
.

Off-Target Analysis Computational Tool. The computational tool (“CRISPR Off-
Target Tool,” version 2.0.1) used to perform the off-target analysis as well as
its source code are available for download at www.mhi-humangenetics.org/
en/resources.
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