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Abstract

Equine bioenergetics have predominantly been studied focusing on glycogen and fatty

acids. Combining omics with conventional techniques allows for an integrative approach to

broadly explore and identify important biomolecules. Friesian horses were aquatrained (n =

5) or dry treadmill trained (n = 7) (8 weeks) and monitored for: evolution of muscle diameter

in response to aquatraining and dry treadmill training, fiber type composition and fiber cross-

sectional area of the M. pectoralis, M. vastus lateralis and M. semitendinosus and untar-

geted metabolomics of the M. pectoralis and M. vastus lateralis in response to dry treadmill

training. Aquatraining was superior to dry treadmill training to increase muscle diameter in

the hindquarters, with maximum effect after 4 weeks. After dry treadmill training, the M. pec-

toralis showed increased muscle diameter, more type I fibers, decreased fiber mean cross

sectional area, and an upregulated oxidative metabolic profile: increased β-oxidation (key

metabolites: decreased long chain fatty acids and increased long chain acylcarnitines), TCA

activity (intermediates including succinyl-carnitine and 2-methylcitrate), amino acid metabo-

lism (glutamine, aromatic amino acids, serine, urea cycle metabolites such as proline, argi-

nine and ornithine) and xenobiotic metabolism (especially p-cresol glucuronide). The M.

vastus lateralis expanded its fast twitch profile, with decreased muscle diameter, type I

fibers and an upregulation of glycolytic and pentose phosphate pathway activity, and

increased branched-chain and aromatic amino acid metabolism (cis-urocanate, carnosine,

homocarnosine, tyrosine, tryptophan, p-cresol-glucuronide, serine, methionine, cysteine,

proline and ornithine). Trained Friesians showed increased collagen and elastin turn-over.

Results show that branched-chain amino acids, aromatic amino acids and microbiome-
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derived xenobiotics need further study in horses. They feed the TCA cycle at steps further

downstream from acetyl CoA and most likely, they are oxidized in type IIA fibers, the pre-

dominant fiber type of the horse. These study results underline the importance of reviewing

existing paradigms on equine bioenergetics.

Introduction

Equestrian sports competition takes place with an ever-increasing frequency and intensity,

even at the recreational and semi-professional level. To prevent the occurrence of sports inju-

ries, the application of a thorough and well-considered training protocol is of utmost impor-

tance. The purpose of a well-considered training protocol is threefold: 1) creating stamina or

aerobic capacity, which is the basis for any form of performance capacity; 2) practicing of spe-

cific skills such as racing, show jumping, dressage etc.; and 3) ensuring that different parts of

the athlete’s body adapt to the competition type and level at which it needs to perform [1–3].

The latter adaptation is seen for example in the bony skeleton, strengthening itself in response

to training load and also in specific muscle groups that show plasticity and thus physiologically

adapt in response to specific types of training [4–7]. This adaptation manifests itself mainly at

three different levels within the muscle. First of all, it is well known that shifts in muscle fiber

type composition occur as a consequence of certain types of training [7–15]. Associated with

that, muscle groups can either increase or decrease in muscle mass. Ideally, these adaptations

are ultimately seen in the main muscle groups responsible for force and locomotion necessary

for a certain sports discipline. Since each of these muscle fiber types uses its own specific set of

main metabolic pathways, shifts also take place in the metabolic fingerprint of muscle groups

in response to training [16–23]. On top of that, not all muscles show the same adaptation in

response to a certain type of training. Muscle groups that are predominantly involved in pos-

ture will show a different adaptation pattern when compared to muscle groups that are primar-

ily involved in locomotion. However, up until now, no equine studies are available that apply a

standardized multimodal approach looking into the effect of different types of training on

changes in muscle diameter, muscle fiber type composition and muscle bioenergetics of a mul-

titude of muscles and also providing a view on when the maximal training effect is to be

expected. The strategic combination of novel “omics” techniques with more conventional

analysis techniques allows for exploring the possible existence of previously unknown path-

ways and candidate fuels and to evaluate their importance. Many equine energy metabolism

studies have been focusing on knowledge extrapolated from human and ruminant studies [24,

25]. However, horses are hind-gut fermenters, so, differences from both human and ruminant

energy metabolism are to be expected. By monitoring the evolution of the muscle diameter in

a set of 15 strategically chosen muscles by morphometric assessment, it becomes possible to

obtain a detailed view of the core set of muscles on which each training technique has its focus

effect.

Muscle fibers are classified as either slow twitch (type I) fibers or fast twitch (type IIA, type

IIX and hybrid type IIAX) fibers. Type I fibers have a small fiber cross-sectional area (CSA),

which is associated with a decreased diffusion distance for oxygen transport. These fibers have

a high capillary number and rely on rapid supply of fuels through the circulatory system.

Moreover, they are fatigue resistant and rely on mainly aerobic metabolism and thus, the elec-

tron transfer system as final step for ATP production.
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In contrast, type II fibers have a large fiber CSA and thus a high storage capacity for fuels.

Type IIA fibers are fast aerobic glycolytic. They realize fast contractions using primarily oxida-

tive pathways. Type IIX and type IIAX muscle fibers represent a transitional form [10, 11, 26–

28].

Distribution of fast twitch versus slow twitch fibers in human skeletal muscles on a whole

equals approximately a 50% ratio [29, 30]. In horses, fast twitch muscle fibers of type IIA, are

the predominant type [31, 32].

Although Friesian horses’ performance capacity has recently been evaluated with Standard-

ized Exercise Tests (SET) [33], studies focusing on muscle fiber type composition of this breed

are lacking. Friesian horses are genetically related to cold-blooded draught breeds, such as

Haflinger, Dutch draft and Belgian draft, which are heavily muscled breeds that are able to

generate high-power output [34, 35].

In essence, the metabolic fingerprint of a certain muscle group needs to be viewed as the

compilation of the metabolic fingerprint of all of the individual muscle fibers harbored within

that muscle group. Shifts in muscle fiber type composition that occur in response to certain

types of training coincide with shifts in the metabolic profile of a certain muscle group [7, 9,

11, 36, 37].

In human sports and training science, a lot of information is available about the effect of

different types of training approaches on muscle plasticity and shifts in muscle fiber type com-

position [7, 9, 11, 14, 15, 26, 36]. In equine sports medicine, the number of studies, comparing

plasticity and muscle fiber type composition shifts in response to different types of training is

growing rapidly [38–52]. Still, equine studies focusing on shifts in the muscle metabolic finger-

print in response to training are very scarce [23, 53–55]. A few human [56–58], equine [23,

59–62] and rodent [20, 63, 64] studies have looked into shifts in blood metabolomic profiles in

response to training. However, the circulation as body compartment connects to all organ sys-

tems, such as the liver, gastro intestinal tract, etc., which makes it nearly impossible to link

these study results one on one to shifts in muscle metabolism, as has been shown by Zhang

et al. [17].

Most energy cycles were discovered a long time ago, such as the tricarboxylic acid cycle

(TCA), which was discovered by Hans Krebs in 1935 (Fig 1). All these energy pathways have

been intensively described. Apart from fat and glucose, also proteins can be catabolized to pro-

duce precursors of glycolysis and the TCA cycle. Amino acids can feed the TCA cycle at differ-

ent levels (jagged arrows in Fig 1). Figs 1 and 2 provide an overview of the different energy

cycles.

Up until now, especially glycogen and short chain fatty acids (SCFA) have received a lot of

attention in equine metabolic studies. However, evidence is accumulating that other important

substances might have been overlooked in the past [23, 53, 62]. With that respect, untargeted

metabolomics provide a view on previously unexplored substrates.

Obviously, the type of training and training load play a crucial role in the shift that occurs

at the level of the muscle fiber type composition and metabolic fingerprint of a specific muscle

group and the core set of muscles that is modulated [65–69]. For the current study it was

decided to focus on dry treadmill training and aquatraining.

Dry treadmill exercise (DT) is often added to training and rehabilitation protocols in

horses, although its effects on different muscle groups and their metabolism is not completely

clear [70]. This type of training is often applied in exercise studies since it allows for control-

ling many parameters such as speed, inclination, duration, environmental conditions, etc.

[70]. Once the horse is habituated to this type of training, high constancy in stride variables

has been described [71]. It has been shown that DT increases aerobic capacity and improves

the cardiovascular function of horses [72, 73].
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Water treadmill exercise or aquatraining (AT) is increasingly incorporated into equine

training and rehabilitation programs because it combines moderate intensity exercise with

minimal burden on tendons and articulations [74, 75]. However, little is known about the

physiological adaptive training responses occurring in horses subjected to AT. A few studies

have been performed on the effect of AT on aerobic capacity, including the effect of different

Fig 1. Metabolism in the cytosol and mitochondria of the skeletal muscle. The metabolites are grouped in different

pathways: the glycogen metabolism pathway, glycolysis, pentose phosphate pathway (PPP) and amino acid

metabolism: BCAA: branched-chain amino acid; AAA: aromatic amino acid; PEP: phosphoenol pyruvic acid; MPC:

mitochondrial pyruvate carrier; CPT: carnitine palmitoyl transferase; OXPHOS: oxidative phosphorylation. The TCA

cycle is the final and universal step before the vast amount of ATP is created at the level of the electron transport

system (OXPHOS). Apart from fat and glucose, also proteins can be catabolized to produce precursors of glycolysis

and the TCA cycle. Amino acids can feed into the TCA cycle at acetyl CoA, as well as at steps further downstream from

acetyl CoA (jagged arrows).

https://doi.org/10.1371/journal.pone.0249922.g001
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belt speeds, water heights and water temperatures on physiological parameters such as heart

rate, skin temperature and blood lactic acid levels [74–79]. Both human and equine studies

have pointed out that AT is an aerobic form of exercise, although it does not seem to increase

aerobic capacity in a training protocol [75]. Human, equine and canine studies have shown

that water height has a significant effect on kinematic responses [76, 77, 80–84]. However, little

effect on heart rate and blood lactic acid levels could be seen during AT in horses (water height

from baseline to 80% of the wither height) [76]. Scott et al. (2010) [77] did not see a difference

in heart rate when comparing DT to AT. Reported plateaus for lactic acid values and heart rate

seen during AT correspond with exercise performed within the aerobic window [74–77]. A

recent study tested 3 different speeds (1.11; 1.25; 1.39 m/sec) and water heights (mid-canon,

carpus, stifle) on respiratory and cardiovascular parameters in Quarter horses, a breed well

known for its richness in type IIX muscle fibers. They concluded that the heart rate was

Fig 2. Branched-chain amino acid metabolism (BCAA) in muscle mitochondria. Intermediates derived from alternative pathways can feed into the TCA

cycle. BCAT: branched-chain amino acid aminotransferase; BCKDH: branched-chain keto-acid dehydrogenase complex; CrAT: carnitine acetyltransferase.

https://doi.org/10.1371/journal.pone.0249922.g002
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significantly higher in AT horses when compared to DT horses and that this difference became

more pronounced with increasing water heights (from mid-canon to stifle) [80].

Up until now, no standardized equine studies are available applying longitudinal follow up

of muscle diameter, muscle fiber type composition and untargeted metabolomic fingerprint

assessment on specific muscle groups in response to training. Even in human sports medicine

such studies are lacking. A targeted metabolic study was performed by Borgia et al. (2010) [55]

who found no changes in resting concentrations of gluteal or superficial digital flexor muscle

glycogen, lactic acid, ATP or glucose-6-phosphate, or activities of citrate synthase, 3-hydroxya-

cyl-CoA dehydrogenase and lactate dehydrogenase after 4 weeks of AT when compared to

starting conditions in 5 horses of mixed breeds. This was in accordance with a study of Firsh-

man et al. (2015) [40] in which 6 Quarter horses were trained in a cross-over design on a con-

ventional treadmill and then on a deep water treadmill (water up to olecranon; belt speed 1.5

m/sec) for 8 weeks, with 60 days detraining in between. In this study, no training effect could

be seen on muscle fiber type composition, nor heart rate, muscle metabolites or blood lactic

acid [40]. Recently, an untargeted metabolomics study of the M. gluteus medius of 8 Standard-

bred horses was performed, looking into the effect of 12 weeks of DT and the effect of acute

fatiguing intense exercise on a treadmill [23]. In that study, muscle biopsies and plasma sam-

ples were taken before and respectively 3 and 24h after training, at start (unconditioned state)

and finish (conditioned state) of the training trial. Klein et al. (2020) [23] reported that DT had

significant effects on nucleotide- and xenobiotic related markers and increased almost all long

chain fatty acids as well as long chain acylcarnitines and branched-chain amino acid derived

acylcarnitines (C3 and C5). Plasma samples showed similar profiles as muscle biopsies when

comparing conditioned with unconditioned state, but did not show significant differences

when comparing samples before and after acute exercise [23].

Aims of the study

The aims of the current study were (1) to identify the skeletal muscles that show significant

changes in muscle diameter in response to respectively 8 weeks of aquatraining (AT) and 8

weeks of dry treadmill training (DT); and (2) to provide an overview of changes in the muscu-

lar bioenergetics, muscular fiber type composition and fiber CSA induced by 8 weeks of DT.

Material and methods

Study design

A first group of seven healthy untrained client owned Friesian horses (age range 2.5–3.5 years;

4 ♀ and 3 intact ♂) completed a dry treadmill training program (DT) of 8 weeks duration (20

min per session, 5 days/week, belt speed 1.25 m/sec). A second group of five healthy untrained

client owned Friesian horses (age range 2.5–3.5 years; 2 ♀ and 3 intact ♂) completed an 8

weeks aquatraining (AT) program in the same device (20 min per session, 5 days/week, water

height: mid-metacarpus, water temperature 7˚C, belt speed 1.25 m/sec). Horses were not

trained in any way before this study. Both training periods were preceded by 2 weeks of accli-

matization and the time, speed and intensity of both training regimens remained constant

throughout the study. The same concentrate feed and source of roughage was used throughout

both studies in all horses. Horses were fed concentrate feed twice a day, at 8 AM and 8 PM.

Horses were housed in individual boxes and did not have access to pasture during the entire

trial nor during the acclimatization period. Vital signs were recorded twice a day: rectal tem-

perature, respiratory rate, heart rate, capillary refill time and color of mucous membranes,

appetite and fecal consistency. Right before, immediately after and 10 minutes after cessation

of each training session the heart rate of each horse was registered by auscultation by the same
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person. Ethical approval for this study was granted by the Centrale Commissie Dierproeven,

The Hague, The Netherlands, file AVD262002015144 and all efforts were made to maximize

animal welfare throughout the study.

Muscle morphometrics

Throughout both training studies, morphometric assessment of 15 strategically chosen muscle

groups was performed on 3 different occasions: at start, after 4 weeks and at finish of the train-

ing protocol (8 weeks) at both sides of the body, using transcutaneous B-mode ultrasound

(Esaote, macroconvex probe, 2.5–4.3 MHz). When needed, horses were sedated using detomi-

dine (10 μg/kg bwt) (Detogesic1, Vetcare, Finland) and butorphanol (20 μg/kg bwt) (Butomi-

dor1, Richter Pharma AG, Wels, Austria).

The areas of interest were clipped, scrubbed with chlorhexidine digluconate (Hibiscrub1,

Regent Medical Ltd., Oldham, Lancashire, United Kingdom) and subsequently shaved and

covered with ultrasound coupling gel. Shaving was performed on a regular basis throughout

the study to assure that ultrasound was always performed on the same anatomical locations.

Muscle diameters were compared between left and right body side and throughout the training

period, in order to identify muscle groups showing either an increase, a decrease or no change

in muscle diameter. The transsectional diameter of each muscle was measured at three differ-

ent locations for spindle shaped muscles: in the middle, at the origin and the insertion site (Fig

3A) and on 6 different locations for the triangular shaped muscles (M. semimembranosus and

M. semitendinosus) (Fig 3B). Each measure was executed twice and the mean was taken. In

both studies all ultrasounds were performed by the same certified veterinarian.

Muscle biopsies

In the DT group, fine needle muscle biopsies were harvested. For the DT group this was per-

formed at start and finish of the study, at rest, on a non-training day, from the M. pectoralis,

M. vastus lateralis of the quadriceps femoris and the M. semitendinosus. Briefly, the horses

were sedated with detomidine (10 μg/kg bwt) (Detogesic1, Vetcare, Finland) and butorphanol

(20 μg/kg bwt) (Butomidor1, Richter Pharma AG, Wels, Austria). The area was clipped,

shaved and subsequently surgically disinfected. Local anesthetic ointment was applied (Emla1

5%, Astra-Zeneca, Rueil-Malmaison, France). After 10 minutes, local anesthetic solution

(Lidocaine Hydrochloride1, Braun, Germany) was injected subcutaneously and a small stab

incision was made with a surgical blade number 11. Subsequently, a 14G Bergström needle

was inserted into the muscle, until a depth of 4 cm was reached on each occasion. Two samples

Fig 3. Ultrasonographic assessment of muscle morphometrics. (A) in spindle shaped muscles; (B): in triangular

shaped muscles.

https://doi.org/10.1371/journal.pone.0249922.g003
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were taken under suction pressure, to obtain a total of approximatively 120 mg muscle tissue,

which was then divided into three portions: one sample was embedded in Tissue-Tek1OCT

compound (Sakura Finetek, Torrance, CA) and was immediately snap-frozen in isopentane in

liquid nitrogen and stored at -80˚C until processed for muscle fiber typing and fiber CSA

assessment. The remaining portions were immediately snap frozen in liquid nitrogen and

stored at -80˚C until processed for untargeted metabolomics.

Muscle fiber typing

Cryosections of 8 μm were created from the Tissue-Tek1 embedded samples from the M. pec-

toralis, the M. vastus lateralis and the M. semitendinosus and were collected onto Thermo Sci-

entific™ SuperFrost Plus™ Adhesion slides and stored at -20˚C until further processing. In

brief, the sections were air-dried and then blocked for 120 minutes in 1% BSA in PBS solution.

Thereafter, the slides were incubated overnight with the primary antibodies for the different

myosin heavy chains, which were validated by Latham & White (2017), for type I, type IIA,

type IIX and sarcolemma (respectively BA-D5, DSHB, RRID:AB_2235587; SC-71, DSHB,

RRID:AB_2147165; 6H1, DSHB, RRID:AB_1157897 and laminin, Thermo Fisher Scientific

Cat: PA1-36119, RRID:AB_2133620) [85]. After rinsing the slides 5 consecutive times during 5

minutes in PBS, they were incubated with the secondary antibodies for 1h at room tempera-

ture for type I, IIA, IIX and sarcolemma (respectively: Alexa fluor 488 goat anti mouse IgG2b,

Thermo Fisher Scientific Cat: A-21141, RRID:AB_2535778; Alexa fluor 350 goat anti mouse

IgG1, Thermo Fisher Scientific Cat: A21120, RRID:AB_2535763; Alexa fluor 594 goat anti

mouse IgM, Thermo Fisher Scientific Cat: A-21044, RRID:AB_2535713; Alexa fluor 568 goat

anti-rabbit IgG, Thermo Fisher Scientific Cat: A-11011, RRID:AB_143157). Fluorescent

mounting medium (Dako, Agilent, S3023) was then applied on the slides. The sections were

visualized with a Zeiss Palm Micro Beam fluorescence microscope and pictures were taken

with the Zen Blue Pro1 Software (Zeiss). On average, 690 fibers were analyzed on each section,

with a minimum of 250 fibers and they were classified as type I (green), type IIA (blue), type

IIX (red) or as hybrid type when staining for more than one myosin heavy chain was present

(Fig 4). In the current study only hybrid type IIA/IIX (IIAX) fibers were included, since the

hybrid type I/IIA was only sporadically found (less than 1%). Total fiber count, fiber type per-

centages, mean fiber cross-sectional area (CSA), as well as fiber CSA of the different fiber types

were determined with an automated software analysis program (Image Pro1 analyzer soft-

ware, Media Cybernetics Inc., Rockville, USA).

Untargeted metabolic profiling

The nitrogen frozen muscle samples from the M. vastus lateralis and the M. pectoralis were

shipped on dry-ice to Metabolon Inc. (Durham, NC) for untargeted metabolomic profiling

using Ultra High Performance Liquid chromatography/Mass Spectrometry/Mass Spectrome-

try (UHPLC/MS/MS) and Gas chromatography/ Mass Spectrometry (GC/MS) as previously

described [86, 87]. The two columns that were used were a C18 column (Waters UPLC BEH

C18-2.1x100 mm, 1.7 μm) and a hydrophilic interaction liquid chromatography (HILIC) col-

umn (Waters UPLC BEH Amide 2.1x150 mm, 1.7 μm). The extracts were divided into five

fractions: two for analysis by two separate reverse phase (RP)/UPLC-MS/MS methods with

positive ion mode electrospray ionization (ESI), one for analysis by RP/UPLC-MS/MS with

negative ion mode ESI, one for analysis by Hydrophilic Interaction Ultra Performance Liquid

Chromatography/Mass Spectrometry/Mass Spectrometry (HILIC/UPLC-MS/MS) with nega-

tive ion mode ESI and one sample was reserved as a backup. All methods utilized a Waters

ACQUITY ultra-performance liquid chromatography (UPLC) and a Thermo Scientific
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Q-Exactive high resolution/accurate mass spectrometer interfaced with a heated electrospray

ionization (HESI-II) source and Orbitrap mass analyzer operated at 35,000 mass resolution. In

total, 36 samples were analyzed and were run in the same batch. Raw data was then extracted,

peaks were identified and quality controls (QC) were processed using Metabolon’s hardware

and software. Compounds were identified by comparison to Metabolon’s library entries that

contain >3300 purified standard compounds. A detailed overview of the analytic procedures

is provided in S1 File.

Statistical analysis

Heart rate follow-up. Data were analyzed using Statistical Analysis System (SAS) version

9.4 for Windows (SAS Institute Inc., Cary, NC). To study the difference in effect of AT versus

DT on heart rate parameters a two-sample t-test was used. The effect of 8 weeks of DT and AT

on heart rate before and after a training session were analyzed using a paired t-test. Signifi-

cance was set at p<0.05.

Fig 4. Muscle fiber typing with myosin heavy chain staining method. (A) type I fibers in green; (B) type IIA fibers in blue; (C) type IIX fibers and sarcolemma in red;

(D) merged image.

https://doi.org/10.1371/journal.pone.0249922.g004
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Muscle morphometrics. Data were analyzed using the Statistical Analysis System (SAS) ver-

sion 9.4 for Windows (SAS Institute Inc., Cary, NC). The effect of either DT or AT on muscle

morphometrics was analyzed using a mixed effects model with horse as a random effect and mus-

cle, body side, location, period and their interactions as fixed effects. Since the interaction between

muscle and period was significant, separate mixed effects models with horse as random effect and

body side, location, period and their interactions as fixed effects were fitted for each muscle. Non-

significant interactions were removed from the model. Significance was set at p<0.05.

Muscle fiber typing. Different fiber types were counted and classified per type and rela-

tive percentages of each type were calculated. Mean CSA was calculated dividing 1 mm2 by

number of fibers (in μm2). Furthermore, fiber CSA of all types of fibers separately was deter-

mined (in μm2).

Statistical analysis was performed in R (R Core Team, 2019). The results are given as

median (minimum-maximum). Significance was set at p<0.05. To compare mean CSA, per-

centages of fiber types and CSA of each fiber type between muscles, a Kruskal-Wallis test was

performed. If this effect was significant, pairwise comparisons between muscle types were

tested using a Wilcoxon test on significance level 0.017 (Bonferroni correction for multiple

comparisons). For each fiber type of the M. pectoralis, M. vastus lateralis and M. semitendino-

sus, to test the effect of training on the percentage and the fiber CSA, a Wilcoxon signed rank

test was performed.

Metabolomics analysis. Data were analyzed using R (version 2.14: www.r-project.org). The

present dataset comprises a total of 493 compounds of known identity. Following log transforma-

tion and imputation of missing values by the minimum observed value for each compound,

ANOVA contrasts, a paired t-test and Welch’s two-sample t-tests were performed to identify bio-

chemicals that differed significantly before (untrained horses) and after training (after dry tread-

mill training DT) in the M. pectoralis and M. vastus lateralis of Friesian horses. Significance was

set at p<0.05. The false discovery rate (q-value) was used to address the multiple comparisons.

Results

Heart rate follow up

Daily routine check-ups for vital signs were uneventful in both trials. The resting heart rate

was significantly higher in the AT group versus DT group before the training period of 8

weeks (37.2 ± 1.30 versus 30.6 ± 1.95; p<0.0001) and after the training period of 8 weeks

(36.2 ± 3.74 versus 31.4 ± 2.76; p = 0.0121). In addition, when looking at the heart rate mea-

sured after a training session, AT sessions significantly increased heart rate more than DT ses-

sions, and this applied to the measurements both before and after the 8 weeks training period

(week 0: 41.8 ± 3.19 versus 32 ± 0; p<0.0001; week 8: 37 ± 3.74 versus 30.9 ± 1.95; p = 0.0019).

A significant increase in heart rate was found directly after AT when compared to the rest-

ing heart rate in the unconditioned horses (37.2 ± 1.30 before the AT session versus

41.8 ± 3.19 after the AT session; p = 0.0095). After 10 minutes, heart rate went back to resting

values again. However, after 8 weeks of training, the increase in heart rate directly after exer-

cise was not significant anymore (36.2 ± 3.49 before the AT session versus 37.0 ± 3.74 after the

AT session).

DT did not significantly change the resting heart rate, nor the heart rate after a training ses-

sion and this applied to the start (week 0) and finish (week 8) of the training trial.

Longitudinal follow-up of muscle morphometrics

Dry treadmill training. Predominantly muscles of the forehand increased in muscle

diameter. Muscle groups of the hindquarters showed a decrease in muscle diameter. For a
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clear overview, see Fig 5 and Table 1. The maximal effect of training, which is expressed by

either increase or decrease in muscle diameter, was already reached after 4 weeks of training in

7 of the monitored muscles.

Aquatraining. Predominantly muscles of the hindquarters increased in muscle diameter

and also several muscle groups of the forehand showed a significant increase in muscle diame-

ter. Also for this training type, the maximal effect was reached already after 4 weeks of training

in 6 of the monitored muscles. For a clear overview, see Fig 5 and Table 1. Interestingly, the tri-

angular shaped muscles semitendinosus and semimembranosus showed an asymmetric

increase of muscle diameter depending on the measured location (see Fig 3 for an overview of

the measured locations) and in both muscles, location 3 (depth at the most distal part of the

muscle, see Fig 3B) showed the smallest increase.

Muscle fiber type composition of different muscle groups and shifts in

response to 8 weeks of dry treadmill training

Differences in muscle fiber type composition, mean CSA and fiber CSA of different

muscle groups in untrained Friesian horses. Both M. pectoralis and M. vastus lateralis have

Fig 5. Overview of changes in muscle diameter after 8 weeks of dry treadmill training and 8 weeks of

aquatraining. Green: significant decrease in muscle diameter (p<0.05); Red: significant increase in muscle diameter

(p<0.05); Yellow: significant increase in muscle diameter right side> left side (p<0.05); Blue: significant increase in

muscle diameter left side> right side (p<0.05). (A) Dry treadmill training; (B) Aquatraining.

https://doi.org/10.1371/journal.pone.0249922.g005
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a similar composition, whereas the M. semitendinosus contained significantly less type I fibers

when compared to the M. pectoralis (p = 0.0111) and the M. vastus lateralis (p = 0.0174). Both

M. pectoralis and M. vastus lateralis contained almost 75% fast twitch fibers (Fig 6).

Mean CSA of M. pectoralis was significantly larger than that of the M. vastus lateralis

(respectively 6024 μm2 (range: 4524–7894 μm2) and 3644 μm2 (range: 3225–4528 μm2)

p = 0.0011), but was not significantly different from the M. semitendinosus. The mean CSA of

M. semitendinosus was also significantly larger than that of the M. vastus lateralis (respectively

4909 μm2 (range: 3644–5907 μm2) and 3644 μm2 (range: 3225–4528 μm2), p = 0.0262).

When looking at fiber CSA of the different fiber types, these were quite similar for M. pec-

toralis and M. semitendinosus (Fig 7), however fiber CSA of type I fibers was significantly

larger in the M. pectoralis than in the M. vastus lateralis (respectively 4670 μm2 (range: 2737–

5920 μm2) versus 2465 μm2 (range: 1883–3236 μm2); p = 0.0069).

Shifts in muscle fiber type composition, mean CSA and fiber CSA in M. pectoralis, M.

vastus lateralis and M. semitendinosus in response to 8 weeks of DT. After 8 weeks of DT,

there were significant shifts in muscle fiber type composition in the M. pectoralis and M. vas-

tus lateralis, but not in the M. semitendinosus.

Table 1. Results of the muscle morphometric study. Evolution of muscle diameter after dry treadmill training and aquatraining.

Dry treadmill training Aquatraining

Muscle diameter

(cm)

Evolution of muscle diameter

between time points (p value)

Muscle diameter

(cm)

Evolution of muscle diameter

between time points (p value)

Muscle start week4 week8 start to

week 4

start to

week 8

week 4 to

week 8

start week4 week8 start to

week 4

start to

week 8

week 4 to

week 8

muscles of the

forehand

trapezius cervical

part

1.71 2.23 2.15 p<0.0001 p<0.0001 p = 0.4957 1.61 2.11 2.41 p<0.0001 p<0.0001 p = 0.004

brachiocephalicus 1.99 2.37 2.19 p<0.0001 p = 0.005 p = 0.0077 1.71 2.22 2.61 p<0.0001 p<0.0001 p = 0.002

biceps brachii 4.81 4.76 4.79 p = 0.8412 p = 0.9714 p = 0.9413 4.45 4.88 5.01 p = 0.0013 p<0.0001 p = 0.5678

trapezius thoracic

part

1.71 2.25 2.07 p<0.0001 p<0.0001 p = 0.0761 1.46 1.61 2.00 p = 0.1933 p = 0.0024 p = 0.1644

triceps brachii

caput longum

6.04 6.23 6.29 p = 0.406 p = 0.2186 p = 0.9195 5.78 6.46 6.54 p = 0.0002 p<0.0001 p = 0.8666

pectoralis

profundus

1.61 1.90 2.06 p = 0.0043 p<0.0001 p = 0.1693 1.58 1.65 1.65 p = 0.725 p = 0.6439 p = 0.931

erector spinae

thoracic part

5.58 5.71 5.78 p = 0.5286 p = 0.2109 p = 0.8114 4.95 6.00 6.18 p<0.0001 p<0.0001 p = 0.50

muscles of the

hindquarters

erector spinae

lumbal part

6.39 5.83 5.67 p = 0.0159 p = 0.0013 p = 0.701 5.14 5.23 5.53 p = 0.925 p = 0.0847 p = 0.9673

rectus femoris 6.73 6.94 6.70 p = 0.5549 p = 0.9783 p = 0.4346 5.10 5.44 5.57 p = 0.0268 p = 0.0014 p = 0.476

vastus laterlalis 6.68 5.96 5.27 p = 0.0079 p<0.0001 p = 0.0119 5.91 6.48 7.63 p = 0.0805 p<0.0001 p = 0.0001

gluteofemoralis 4.42 4.82 4.25 p = 0.0505 p = 0.5534 p = 0.0026 4.81 4.01 4.57 p = 0.0007 p = 0.4934 p = 0.0234

biceps femoris 10.30 10.19 10.42 p = 0.9091 p = 0.8915 p = 0.6586 8.38 9.55 9.98 p<0.0001 p<0.0001 p = 0.2059

semitendinosus 7.19 6.66 6.60 p = 0.0035 p = 0.0008 p = 0.9134 6.81 7.90 9.67 p = 0.0607 p<0.0001 p = 0.0012

semimembranosus 7.61 7.79 7.84 p = 0.4441 p = 0.2598 p = 0.9331 8.23 9.42 10.73 p = 0.1639 p<0.0001 p = 0.0038

gluteus medius 5.26 4.66 4.99 p = 0.0007 p = 0.1967 p = 0.1036 4.24 4.76 5.24 p = 0.375 p = 0.0024 p = 0.176

The muscle diameters are given in cm and were measured at start of the study and after 4 and 8 weeks of dry treadmill training (n = 7) and at start and after 4 and 8

weeks of aquatraining (n = 5). The evolution of muscle diameter between timepoints was compared (from the start of the study to 4 and 8 weeks of training and from

week 4 to week 8 of training) and p values for each period are given and marked in red, for the muscles that significantly increased in muscle diameter in that specific

period; in green, for the muscles that significantly decreased.

https://doi.org/10.1371/journal.pone.0249922.t001
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The M. pectoralis showed a significant increase in expression of type I muscle fibers

(p = 0.0156) whereas M. vastus lateralis showed a decreased proportion of type I fibers in

response to 8 weeks of DT (p = 0.0153) (Fig 8).

When looking at fiber CSA of each individual fiber type, there was no effect of training on

the CSA of the different fiber types (Fig 8).

A significant decrease in mean CSA of the M. pectoralis, which increased in muscle diame-

ter, was seen after 8 weeks of DT (from 6024 μm2 (range: 4524–7895 μm2) to 3692 μm2 (range:

3349–4761 μm2); p = 0.0312) (Fig 9).

Evolution of muscle metabolomics throughout 8 weeks of DT

The biochemical profile of 493 different metabolites could be identified. The principal compo-

nent analysis (PCA) for the detected peaks are shown in Fig 10. Before training, a distinction

Fig 6. Muscle fiber type composition of M. pectoralis, M. vastus lateralis and M. semitendinosus of untrained

Friesian horses. Results are percentages and are given as median (minimum-maximum).

https://doi.org/10.1371/journal.pone.0249922.g006

Fig 7. Cross sectional area of type I, IIA, IIAX and type IIX muscle fibers in different muscles. Results are given as

median (minimum-maximum) in μm2.

https://doi.org/10.1371/journal.pone.0249922.g007

PLOS ONE Flexibility of equine bioenergetics and muscle plasticity in answer to different types of training

PLOS ONE | https://doi.org/10.1371/journal.pone.0249922 April 13, 2021 13 / 46

https://doi.org/10.1371/journal.pone.0249922.g006
https://doi.org/10.1371/journal.pone.0249922.g007
https://doi.org/10.1371/journal.pone.0249922


between both muscle groups can be made. Eight weeks of DT induces a significant shift in

metabolic profile of both muscle groups in the same direction. Clustering is much more pro-

nounced after 8 weeks of DT. A significant fold change was detected in respectively 108 metab-

olites in the M. pectoralis and 114 metabolites in the M. vastus lateralis and 39 metabolites

were significantly changed in both muscles in response to exercise, which represents 18%

overlap.

The fatty acid oxidation pathway is significantly upregulated in predominantly the M.

pectoralis in response to 8 weeks of DT. A wide array of β-oxidation pathway intermediates

were significantly altered by DT (Table 2: Lipid metabolism, Fig 1). Especially in the M. pector-

alis, a significant decrease in long chain fatty acids (0.2- to 0.7-fold) and in polyunsaturated

fatty acids (PUFAs) (0.2- to 0.67-fold) could be seen after 8 weeks of DT. This was less pro-

nounced for the M. vastus lateralis. Levels of inflammatory mediators such as n-6 PUFAs (poly

unsaturated fats: arachidonate (0.51 fold), linoleate (0.38 fold) and dihomolinoleate (0.40

fold)) and lipid peroxidation (4-hydroxyl-nonenal-gluthatione (0.32-fold) and hydroxy-octa-

deca-dienoic acids 13-HODE+9-HODE (0.27-fold)) products were significantly decreased in

response to 8 weeks of DT in the M. pectoralis. No significant changes in the levels of these

inflammatory mediators were detected in the M. vastus lateralis (Table 2: Lipid metabolism).

No significant changes in short chain fatty acids such as butyrate and valerate could be

detected in both muscle groups. In both M. pectoralis and M. vastus lateralis, a significant

upregulated activity at the level of long chain acylcarnitine metabolism was seen after 8 weeks

of DT (1.35–1.21 fold), whereas a downregulation of short- and medium chain acylcarnitines

was found in both muscle groups.

The carbohydrate metabolism pathway is significantly upregulated in response to 8

weeks of DT in the M. vastus lateralis, not in the M. pectoralis. No significant fold changes

in carbohydrate metabolism activity could be detected in the M. pectoralis after training. On

the other hand, in the M. vastus lateralis a clear upregulation of carbohydrate metabolism

pathways could be seen (Table 2: Carbohydrate metabolism: Glycolysis, gluconeogenesis and

pyruvate metabolism; Glycogen metabolism pathway). A significant increase in glycogen

breakdown intermediates such as maltotriose (1.88 fold) and maltose (2.16 fold) in

Fig 8. Effect of dry treadmill training on muscle fiber type composition and cross sectional area (CSA). Effect of 8

weeks of DT on muscle fiber type composition and CSA of the different muscle fibers was measured in the M.

pectoralis, M. vastus lateralis and M. semitendinosus at rest in unconditioned state (untrained) and after 8 weeks of DT

(trained) in Friesian horses.

https://doi.org/10.1371/journal.pone.0249922.g008
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combination with an increase in early-stage glycolytic intermediates such as glucose (2.42

fold), glucose-6-phosphate (1.76 fold), fructose-6-phosphate (1.70 fold) and a decrease in

intermediate stage glycolytic intermediates such as (glycerate, 3-phosphoglycerate, PEP and

fructose 1,6-diphosphate, respectively 0.52 fold; 0.11 fold; 0.07 fold; 0.54 fold) indicate an upre-

gulation of glycogenolytic and glycolysis pathways (Fig 1). Likewise, lactate (2.73 fold) and

pyruvate (3.01 fold) were significantly increased after 8 weeks of DT.

TCA cycle was significantly upregulated in the M. pectoralis when compared to the M.

vastus lateralis in response to 8 weeks of DT. In the M. pectoralis, in conjunction with the

previously mentioned upregulation of fatty acid metabolism, there was a significant upregula-

tion of the TCA cycle, which oxidizes acetyl-CoA derived from the aerobic glycolysis and the

β-oxidation (Table 2: TCA cycle, DT/untrained; M. pectoralis/M. vastus lateralis; Fig 1). This

upregulation was visible across most TCA cycle metabolites.

Fig 9. Effect of dry treadmill training on mean cross sectional area (CSA). Effect of 8 weeks of DT on mean CSA

was measured in the M. pectoralis, M. vastus lateralis and M. semitendinosus at rest in unconditioned state (untrained)

and after 8 weeks of DT (trained) in seven Friesian horses.

https://doi.org/10.1371/journal.pone.0249922.g009
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The pentose phosphate pathway (PPP) was significantly upregulated in

response to 8 weeks of DT in the M. vastus lateralis

The PPP pathway, which is a metabolic pathway parallel to glycolysis (Fig 1) remained almost

unchanged in the M. pectoralis, however, was significantly upregulated in the M. vastus latera-

lis (Table 2: Carbohydrate metabolism: Pentose phosphate pathway). The intermediates cover-

ing the full pathway of the cycle, such as 6-phosphogluconate (1.47 fold), ribose-5-phosphate

(1.32 fold) and ribulose/xylulose-5-phosphate (4 fold) were significantly increased in the M.

vastus lateralis after 8 weeks of DT.

Amino acid metabolism was significantly upregulated in response to 8 weeks of DT.

BCAAmetabolism was significantly upregulated in the M. vastus lateralis in response to 8 weeks
of DT. No significant changes were detected in the BCAA metabolism (leucine, isoleucine and

valine) in the M. pectoralis, however, there was a significant increase in several different

BCAA metabolites, more specifically BCAA dipeptides, in the M. vastus lateralis after 8 weeks

of DT (Table 2: Amino acid metabolism: Proteinogenic BCAAs): glycylleucine (1.88 fold), gly-

cylvaline (2.20 fold), leucylglycine (1.58 fold) and valylleucine (1.63 fold), indicating increased

BCAA anabolism (Fig 2).

Aromatic amino acid (AAA) metabolism was significantly upregulated in both M. pectoralis
and M. vastus lateralis in response to 8 weeks of DT. The essential AAAs phenylalanine and his-

tidine showed very little significant changes in response to 8 weeks of DT. Carnosine, a dipep-

tide derived from histidine and β-alanine, showed a significant upregulation in response to 8

weeks of DT in both M. pectoralis and M. vastus lateralis (respectively 1.44 and 1.40 fold

increase).

Tryptophan showed a nearly significant increase in both M. pectoralis (1.19 fold) and a sig-

nificant increase in the M. vastus lateralis (1.24) in response to 8 weeks of DT. This was associ-

ated with a significant decrease in tryptophan betaine (respectively 0.52 and 0.39 fold). Also,

tyrosine metabolism was significantly upregulated in both muscles, for example p-cresol-glu-

curonide (respectively 2.69 and 2.91 fold increase) and 3-methoxythyrosine (respectively 1.81

and 1.78 fold increase) (Table 2: Amino acid metabolism: Aromatic amino acids).

Glutamine/glutamate metabolism was significantly upregulated in the M. pectoralis, not in
the M. vastus lateralis after 8 weeks of DT. Glutamate is known to be an important metabolic

hub for synthesis of various amino acids, nucleic acids, nucleotides and co-factor biosynthesis.

Glutamine (1.46 fold) and glutamate (1.19 fold), together with other metabolites of the

Fig 10. Principal component analysis (PCA) of metabolomic datasets. PCA was performed on the M. pectoralis and

the M. vastus lateralis of untrained and dry treadmill trained Friesian horses.

https://doi.org/10.1371/journal.pone.0249922.g010
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glutamine/glutamate metabolism (i.e. N-acetylglutamine, N-acetyl-aspartyl-glutamate

(NAAG)), were significantly upregulated in the M. pectoralis after 8 weeks of DT (Table 2,

Amino acid metabolism: Glutamate metabolism; Fig 1).

Glycine and serine metabolism were significantly upregulated in response to DT in both M.

pectoralis and M. vastus lateralis. Glycine metabolism is importantly involved in production of

specialized molecules such as heme, purines and creatine and it is a key building block of colla-

gen. Both glycine (0.79 fold) and acetyl-glycine (0.78 fold) were significantly decreased in the

M. pectoralis after 8 weeks of DT, whereas a significant increase in intermediates of glycine

metabolism, including sarcosine, betaine and serine was seen in both muscle groups after 8

weeks of DT (2.22 fold, 1.45 fold and 1.49 fold in the M. pectoralis respectively and 3.10 fold,

1.47 fold, 1.89 fold in the M. vastus lateralis) (Table 2, Amino acid metabolism: Glycine, serine

and threonine metabolism).

The cysteine,methionine and taurine metabolism showed differential changes in response to 8
weeks of DT. Cysteine is a non-essential amino acid that is required for protein synthesis and

for synthesis of non-protein compounds such as taurine, co-enzyme A, etc. Methionine is

involved in folate metabolism, nucleotide synthesis and control of redox status. Cysteine

metabolism intermediates were upregulated in M. pectoralis after 8 weeks of DT and showed a

fold increase of 1.52 for S-methylcysteine and 1.66 for S-methylcysteine sulfoxide. In the M.

vastus lateralis, cysteine increased 1.44 fold and methylcysteine sulfoxide 1.96 fold.

Methionine metabolism was upregulated in both M. pectoralis and M. vastus lateralis.

Intermediates of methionine metabolism S-methylmethionine increased respectively 1.68 and

1.25 fold, methionine sulfone 1.54 and 1.29 fold and S-adenosylmethionine (SAM) a 1.44 and

1.59 fold. Methionine was unchanged in the M. pectoralis but increased 1.13 fold in the M. vas-

tus lateralis.

Taurine was significantly increased in the M. pectoralis (1.28 fold) and significantly

decreased in the M. vastus lateralis (0.77 fold) and hypotaurine and N-acetyltaurine, which

remained unchanged in the M. pectoralis, decreased significantly in the M. vastus lateralis

(respectively 0.77 and 0.41 fold) (Table 2: Amino acid metabolism: Methionine, cysteine, SAM

and taurine metabolism).

Proline and arginine metabolism were significantly upregulated, especially in M. pectoralis,
after 8 weeks of DT. Ornithine increased in the M. pectoralis and M. vastus lateralis, respec-

tively 2.02 and 1.33 fold; citrulline was unchanged in the M. pectoralis and increased 1.11 fold

in M. vastus lateralis; arginosuccinate increased 1.77 fold in the M. pectoralis and remained

unchanged in the M. vastus lateralis. In the M. pectoralis, intermediates of arginine and orni-

thine metabolism increased significantly in response to 8 weeks of DT: respectively homoargi-

nine 1.78 fold, dimethylarginine 1.26, N-acetylarginine 1.59 and N-delta acetylornithine 1.39

fold increase. The intermediate homoarginine increased a 1.53 in the M. vastus lateralis,

whereas the intermediate homocitrulline decreased a 0.64 fold (Table 2: Amino acid metabo-

lism: Arginine, ornithine and proline metabolism).

Proline increased significantly in both muscles in response to DT (1.16 fold in M. pectoralis

and 1.39 fold in M. vastus lateralis) and N-methylproline increased in M. pectoralis (1.31 fold)

but not in M. vastus lateralis.

Glutathione metabolism was altered in both muscle groups in response to 8 weeks of

DT. Interestingly, levels of oxidized glutathione (GSSG) were significantly increased in M.

pectoralis (1.74 fold) in response to DT, but not in M. vastus lateralis. This was accompanied

by an increased level of 5-oxoproline (1.57 fold), a degradation product of GSH. Levels of

reduced glutathione (GSH) tended to increase in both muscle groups after 8 weeks of DT

(respectively 1.60 in M. pectoralis and 1.57 fold in M. vastus lateralis). At last, it is clear that

DT impacted the M. vastus lateralis more than the M. pectoralis, since almost all intermediates
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of glutathione metabolism increased significantly when comparing trained (DT)/untrained M.

vastus lateralis over M. pectoralis (Table 2: Amino acid metabolism; Glutathione metabolism).

Discussion

Training of horses is still done quite empirically, which is not always favorable for both the

horse and the horse owner. This is the first study to apply a standardized multi-modal

approach combining longitudinal follow-up of muscle diameter, muscle fiber type composi-

tion and untargeted muscle metabolomics in a set of strategically chosen muscles. The study

creates a reference baseline for future training studies, working towards the creation of opti-

mally efficient, effective and breed specific and discipline-specific training programs. Thanks

to the multi-modal approach a first glimpse is obtained on the interaction between training,

muscle plasticity and training-induced shifts in muscle metabolism. It was chosen to apply

untargeted metabolomics because it allows for obtaining a thorough 360˚ view on muscle

metabolism in all its diversity and not only focusing on the “well known” energy pathways.

This is the first equine study to apply untargeted metabolomics and combining it with longitu-

dinal follow-up of muscle morphometrics and muscle fiber typing.

Heart rate

AT induced more effects on heart rate compared to DT, and this is in accordance with Greco-

Otto et al. (2017) who reported similar findings in Quarter horses. Apparently, AT represents

a more important training load, at least with the currently applied training protocol, when

compared to DT [80]. This is confirmed by the evolution of a decreased heart rate seen after

acute AT sessions after conditioning for 8 weeks. For DT, no effect was seen, neither before or

after 8 weeks of training, nor before or after a training session. One of the possible explanations

could be the rather low intensity of DT.

Muscle diameter

When looking at both training techniques, AT has a much more generalized pronounced

effect on muscle growth and this is most pronounced for the muscles of the hindquarters,

though also muscles of the forehand are influenced. DT on its turn predominantly modulates

muscles of the forehand, though to a much lesser extent. From a kinematic point of view, AT

induces hypertrophy of muscles involved in elevation and forward movement of the forelimb,

flexion of the hind limb and muscles used for creating a more ‘upright’ position [88]. DT, on

its turn, modulates forehand muscles involved in abduction, forward movement and suspen-

sion of the forelimbs and decreases the diameter of muscles of the hind limbs involved in

straightening the hip, knee and hock joint, straightening of the back and flexion of the knee.

At first sight, it seems atypical that some muscles of the hind limbs such as M. vastus lateralis

and M. semitendinosus decrease in muscle diameter in response to DT, but when looking at

mean CSA of these muscles, no significant change is seen after DT. It can thus be concluded

that this is not a decrease in muscle diameter per se, but rather a relative decrease in muscle

diameter most probably due to a reduction of intramuscular adipose tissue depots. Indeed,

when measuring muscle diameter with ultrasound, intramuscular fat is also taken into account

and thus influences the measured diameter [89]. Application of ultrasound for longitudinal

follow-up of muscle diameter obviously has its shortcomings. However, unlike in human, in

horses it is practically impossible to apply repetitive CT scan follow-up for this purpose, since

it would require general anesthesia on each occasion and on top of that the horses’ core body

and legs above knee and elbow do not fit inside the largest bore CT scanners. Several studies

have discussed the reducing effect of exercise on intramuscular adipose tissue depots and its
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enhancing effect on insulin sensitivity in humans, dogs and horses [90–95]. However, none of

these studies has additionally involved evolution of muscle fiber CSA. Several studies have

reported on the presence of a fair amount of intramuscular fat in equine muscles [96, 97].

Maximal effect of training on muscle diameter. In the current study, muscle diameter

measurements were performed in the beginning of the study, after 4 and after 8 weeks of train-

ing to obtain a better view on when maximal morphometric effects are reached. As mentioned

previously, AT had a much more pronounced overall muscle modulating effect when com-

pared to DT and this was seen throughout the entire training period of 8 weeks, during which

the intensity and duration of exercise remained unchanged. Maximal growth was reached in 7

and 6 muscle groups in answer to respectively DT and AT after already 4 weeks of training.

This is crucial information to set up optimal efficient and cost efficient training protocols, and

therefore, it can be suggested that exercise intensity and/or duration should be increased after

4 weeks of this type of exercise.

Muscle fiber type composition

Effect of muscle. Horses are known to contain more fast twitch than slow twitch fibers

and this was reflected in all muscle biopsies in this study, with type IIA being identified as pre-

dominant fiber type. When looking at muscle fiber type composition, important differences

were seen between the three biopsied muscles. The M. pectoralis and M. vastus lateralis are

very alike with respect to fiber type composition, however, the M. semitendinosus contains a

significant lower amount of type I fibers (15%) when compared to the M. pectoralis and M.

vastus lateralis. Physiologically, differences in fiber type composition between muscles can be

attributed to differences in their physiological function. It has been shown that postural mus-

cles contain a greater amount of small aerobic slow twitch type I fibers, whereas locomotor

muscles are mainly composed of fast twitch either aerobic (type IIA or type IIX) or anaerobic

(type IIB) muscle fibers [98–100] and in between these two archetypes there is of course a wide

range of distribution options possible depending on the fact whether a certain muscle has a

more posture like versus locomotion like function. As mentioned previously, before training,

both M. pectoralis and M. vastus lateralis showed a similar muscle fiber type composition. In

view of the identified muscle fiber type distributions it can be envisioned that both M. pectora-

lis and M. vastus lateralis cover besides their predominant locomotor function, also a postural

role, which is not the case for the M. semitendinosus. This is supported by Payne et al. (2005)

who ascribe an important role to the M. pectoralis in the adduction and stabilization of the

forelimb and for the M. vastus lateralis an important role for extension of the stifle. The M.

semitendinosus on its turn, has a role in extension of the hip during stance, flexion of the stifle

and extension of the hock during swing, which shows that this muscle is pure locomotor and

explains why this muscle has a greater amount of fast twitch fibers [101, 102].

The mean CSA provides a view on the average muscle fiber size, across all fiber types. In

our study, the mean CSA of the M. pectoralis and M. semitendinosus were similar and were

greater than the mean CSA of the M. vastus lateralis. Furthermore, fiber CSA of type I fibers

was larger in the M. pectoralis when compared to the M. vastus lateralis. It would be interest-

ing to investigate whether this coincides with a more pronounced basic storage capacity for

energy reserves in these muscles. For example, it was shown by a study of Jaworowski et al.,

(2002) that the activity of lactate dehydrogenase and phosphofructokinase, two important

enzymes for the glucose metabolism, were correlated with CSA of type II fibers [103].

Effect of training. Training clearly affects both fiber type composition and mean CSA of

different muscles. Despite the fact that the M. pectoralis and M. vastus lateralis have compara-

ble muscle fiber type compositions, they show a different shift in fiber type composition in
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response to the same DT protocol. Type I fibers significantly increased in the M. pectoralis in

response to 8 weeks of DT, whereas they significantly decreased in the M. vastus lateralis. This

can be explained by the fact that DT challenges these muscle groups in a different way. In gen-

eral, low intensity exercise will induce shifts in muscle fiber types more from IIX to IIA and

from IIA to type I and this has been shown in different species, such as rats [104], mice [105]

and horses [38, 106, 107]. Several studies have looked into the effect of treadmill exercise on

muscle fiber type composition in horses, but results were equivocal due to differences in

applied training protocols, differences in biopsied muscles, age and breed of the enrolled

horses. Some studies found no change in muscle fiber type composition [108, 109], whereas

other studies did describe shifts in muscle fiber type composition [49, 110]. Hodgson et al.

(1985) published a study of 4 horses trained on a treadmill for 7 weeks. They applied training

sessions consisting of 1 min at 110 m/min followed by 5 min at 200 m/min. The second train-

ing interval was gradually increased each week until 12 min duration. No significant changes

in muscle fiber type composition of the M. gluteus medius could be detected, nor were there

changes in capillary content of muscle fibers [108]. Likewise, Essén-Gustavsson (1989)

reported no change in muscle fiber type composition after 5 weeks of high speed treadmill

training in the M. gluteus medius. However, they did detect a significant decrease in the CSA

of type IIA fibers and a significant increase in capillary density, which matches with an

increase in aerobic capacity [109].

When looking at evolution of mean CSA across muscle fibers, in the current study, it

decreased significantly in response to training only in the M. pectoralis. The fiber CSA of the

different fiber types remained unchanged with training in all 3 muscle groups. It has been

shown that there is an inverse relationship between fiber CSA and maximal oxygen consump-

tion [111, 112]. Therefore, these results suggest that DT has an important oxidative modulating

effect on the M. pectoralis, probably by imposing “endurance like” exercise on that muscle

group, whereas the M. vastus lateralis is most probably more subjected to “power training”

during DT. At first sight it seems not logical that de M. pectoralis increases its oxidative capac-

ity through an increased amount of type I fibers and at the same time importantly increases its

muscle diameter, an effect that is expected to occur in response to power training. On the

other hand the M. vastus lateralis decreased its aerobic capacity, since type I fibers decreased,

however decreased muscle diameter at the same time. When looking at mean CSA of muscle

fibers, we can see that it decreased after DT in the M. pectoralis. The event of muscle growth

associated with a decrease in mean CSA supports occurrence of muscle hyperplasia [113–117]

and upregulation of oxidative metabolic machinery [118]. Indeed, small fibers are associated

with a higher partial pressure of oxygen, and thus aerobic processes can easily take place in

these fibers [118]. Although the M. vastus lateralis decreased in muscle diameter, the mean

CSA did not change in response to DT. Therefore, the decrease in muscle diameter should not

be viewed as muscle atrophy, however rather as the consequence of disappearing intramuscu-

lar fat stores. The evolution in muscle fiber type composition shows that DT induces a shift in

phenotype that resembles power training in the M. vastus lateralis, which coincides with the

upregulation of the glycolytic machinery identified with untargeted metabolomics in the cur-

rent study.

Up till now, there are no data available on the minimum training duration required to

induce shifts in muscle fiber type composition in horses. A study of Eto et al. (2004) could not

detect significant changes in myosin heavy chain composition after 12 weeks of high intensity

training of Thoroughbred horses [119]. But 16 weeks seemed to be enough to effectively

decrease type IIX and increase type IIA fibers in Thoroughbred horses [39]. It is important to

keep in mind that shifts in muscle fiber type composition are expected to be accompanied with

shifts in the metabolic fingerprint of a certain muscle, although obviously, from a physiological
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point of view it can be assumed that metabolic shifts precede muscle fiber type shifts, which

means that even if fiber type composition of a muscle does not change visually with the con-

ventional immunohistochemical myosin heavy chain staining protocol, the shift in metabolic

machinery most probably has already taken place. It can be expected that both of them do not

reach their optimal configuration at the same time, however, the time lag between both phe-

nomena is unknown.

The effect of 8 weeks of DT on muscle metabolic profile of M. pectoralis

and M. vastus lateralis

The currently widely applied conventional tools to obtain a view on the physiological adapta-

tions of the equine muscle to training, such as muscle fiber typing, assessment of glycogen con-

tent and enzymatic activity, all have well recognized limitations [111, 120, 121]. The current

study has revealed the involvement of several unnoticed metabolites that deserve future atten-

tion in horses, such as acylcarnitines, BCAAs, AAAs and specifically for the Friesian breed: gly-

cine and proline metabolism.

Corresponding to the different muscle fiber type shifts seen in the current study for the M.

pectoralis and the M. vastus lateralis in response to training, different metabolic shifts were

also observed for both monitored muscles. It is important to realize that the current study per-

tained to resting biopsies and that no biopsies were harvested after acute exercise. These results

represent thus “a local view” in a “local muscle”. In general, the machinery for fatty acid oxida-

tion was significantly upregulated in the M. pectoralis that also showed plasticity towards a

more pronounced slow twitch profile in response to 8 weeks of DT; versus a significant

increased readiness of the machinery for glycolysis, pentose phosphate pathway activity and

BCAA catabolism that was seen in the M. vastus lateralis, which showed plasticity towards a

more pronounced fast twitch profile. Important to notice is the lack of change in short chain

fatty acid metabolism and the modest change in glycogen metabolism pathway only in the M.

vastus lateralis. Below, a detailed overview is provided, each time focusing on a specific meta-

bolic pathway, looking into the effect of 8 weeks of DT, followed by comparing both M. pector-

alis and M. vastus lateralis.

Fatty acid oxidation is significantly upregulated in response to 8 weeks of DT in the M.

pectoralis. Fatty acid metabolism entails on one hand catabolic processes that generate ATP,

and on the other hand anabolic processes that generate important molecules such as phospho-

lipids that are important building blocks for all cell membranes, second messengers, local hor-

mones and ketone bodies. In the current study the fatty acid oxidation (catabolism) pathway

was significantly upregulated in response to 8 weeks of DT in the M. pectoralis. This was sig-

nificantly less pronounced in the M. vastus lateralis. Lipids, which are predominantly stored in

fat depots inside the body, are composed of one glycerol molecule and three free fatty acid

molecules. These free fatty acids can be either labeled as short chain fatty acids (their aliphatic

tail contains less than 5 carbons); medium chain (contain in between 6 and 12 carbons) or

long chain (contain 13 to 21 carbons).

It is well known that fatty acids generate the largest amount of ATP, when compared to

other fuels such as carbohydrates, proteins and ketones. Indeed, one mole of carbohydrates

yields 36 to 38 moles of ATP, whereas, depending on the type of fatty acids involved, one mole

can yield more than 450 moles of ATP [122]. Due to the complexity of the oxidative burning

of fats, this pathway does not generate ATP at high speed, that is why it can only provide ATP

for realization of low grade exercise of long duration, in other words, aerobic exercise. This is

because oxidative burning of fats encompasses several different successive steps (Fig 1). First

the fatty acids need to be “activated” by coupling them to acetyl-CoA in the cytosol of the
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muscle cell. Thereafter, they are shuttled by acylcarnitines through the inner and outer mem-

brane of the mitochondria, right into the mitochondrial matrix [123, 124]. Inside the mito-

chondrial matrix, first β-oxidation takes place, yielding acetyl-CoA that is subsequently drawn

into the TCA cycle. The TCA cycle produces FADH2 and NADH + H+, which are subse-

quently drawn into the electron transfer system to produce a large amount of ATP. After 8

weeks of DT, multiple long chain fatty acids (LCFAs) were significantly decreased in the M.

pectoralis (i.e. saturated fatty acids palmitate, stearate, arachidate; and unsaturated fatty acids

palmitoleate, 10-heptadecenoate) together with a significant increase in long chain acylcarni-

tines, which are the carnitine-bound forms of LCFAs necessary for the transport of LCFAs

into mitochondria, demonstrating upregulation of fat oxidation pathways. These findings are

in accordance with a study of Garvey et al. (2015) that applied untargeted metabolomics on

soleus and plantaris muscle of rats after 8 weeks of voluntary treadmill running. They found a

significant reduction in LCFAs and a significant increase in acylcarnitines [21]. In contrast,

Klein et al. (2020) found both increased LCFA content and increased long chain acylcarnitines

in the M. gluteus medius of horses after an aerobic training period of 12 weeks [23]. Our study

results show that the full β-oxidation machinery of the M. pectoralis has been lifted to a higher

level of readiness, after 8 weeks of DT. In humans, it has also been shown that decreased con-

centrations of LCFAs in the skeletal muscles are associated with higher levels of insulin sensi-

tivity and an increased glycogen storage capacity [125, 126]. The significant increase in type I

muscle fibers, together with the significant decrease of mean CSA seen in the M. pectoralis

after 8 weeks of DT, are in line with these results. Type I fibers are well known for their pro-

found aerobic capacity and rely thus entirely on aerobic pathways such as β-oxidation to gen-

erate energy (Fig 1).

Only long chain (LCFAs) and no medium chain fatty acids (MCFAs) were found in the

present study, which is in accordance with two other studies that looked into fat composition

of equine muscles, in which they could not find MCFAs and concluded that fat of equine mus-

cle is made predominantly out of LCFAs C16 and C18 [96, 127]. Important to notice is that no

significant changes were detected in the level of the short chain fatty acids (SCFAs) such as

butyrate and valerate. This brings to question whether these are important fuels for horses.

Also, in the study of Klein et al. no changes in SCFA levels could be detected [23]. Several

equine studies have suggested in the past that SCFAs most probably account for 70 to 80% of

energy needs [128–130]. However, based on the current study results, one could question this

from a physiological point of view. In ruminants, SCFAs produced by ruminal flora, are the

most important energy source [131], however, in horses, most probably this is not the case and

other microbiome related xenobiotic metabolites may be of much greater importance to fuel

the TCA cycle. It could be an option, for example, that BCAAs are produced by the intestinal

flora in horses [23, 132]. Indeed, recent findings have demonstrated a positive correlation

between microbiome composition and BCAA blood levels in both humans [133] and horses

[132].

Glycolytic pathways were significantly upregulated in response to 8 weeks of DT in the

M. vastus lateralis. In line with the decrease in type I muscle fibers seen in the M. vastus

lateralis after 8 weeks of DT, metabolomics show a significant upregulation of the anaerobic

glycolytic machinery in that muscle. Glycolysis is the first step that takes place in the carbohy-

drate catabolism in the cytosol of the muscle cell (Fig 1). Glycogen, that functions as a carbohy-

drate storage fuel inside the cytosol, is broken down up until the level of pyruvate, rendering

rather low amounts of ATP. For reference, the conversion of 1 mole of glucose into pyruvate

yields 2 moles of ATP [122]. When anaerobic metabolism prevails, pyruvate will not be drawn

into the mitochondria to step into the TCA cycle and produce important amounts of ATP;

instead, the pyruvate is converted to lactate by the enzyme lactate dehydrogenase (LDH). The

PLOS ONE Flexibility of equine bioenergetics and muscle plasticity in answer to different types of training

PLOS ONE | https://doi.org/10.1371/journal.pone.0249922 April 13, 2021 28 / 46

https://doi.org/10.1371/journal.pone.0249922


anaerobic glycolysis can deliver quickly ATP necessary for explosive exercise, however, this

motor can only function for a short amount of time, since it swiftly consumes all stored glyco-

gen and it coincides with the accumulation of lactate. Metabolomics show upregulation of gly-

cogen breakdown products and upregulation of both early (glucose, glucose-6-phosphate and

fructose-6-phosphate) and late-stage (pyruvate and lactate) glycolytic intermediates (Fig 1).

Especially the pyruvate increase of 3.01 fold was quite striking. Part of the pyruvate will be

transaminated to alanine, which is also in line with the significant increase in alanine seen in

the M. vastus lateralis. The TCA cycle was not upregulated and lactate levels were increased, all

of which support the upregulated anaerobic machinery of the M. vastus lateralis in response to

8 weeks of DT. All of this was not seen in the M. pectoralis muscle.

TCA cycle was upregulated in M. pectoralis after 8 weeks of DT. When comparing

trained (DT)/untrained metabolomics profile of the M. pectoralis to the M. vastus lateralis,

almost all intermediates of the TCA cycle were increased, which is in line with the upregula-

tion of β-oxidation of fats that produces acetyl-CoA, which on its turn is drawn into the TCA

cycle. This is not the case for the M. vastus lateralis. Still, there are two metabolites of the TCA

cycle that are significantly increased in both M. pectoralis and M. vastus lateralis to quite an

extent, namely succinylcarnitine and 2-methylcitrate. It is possible that the TCA cycle is “fed”

by other products than pyruvate that jump into the cycle at steps further downstream from

acetyl CoA and not at the top, which is the obvious port of entry for pyruvate. A possible can-

didate for such scenario are the BCAAs and other microbiome derived xenobiotics (Fig 1) [23,

132, 134–136]. It is well known that BCAA are catabolized, especially during exercise, to ace-

tyl-CoA and/or succinyl-CoA, which supply the TCA cycle [23, 135, 137]. BCAAs serve thus

as energy sources and substrates to expand the pool of TCA cycle intermediates [135]. Micro-

biome derived xenobiotics could be as well a possible candidate, since evidence exists showing

that gut microbiome composition can influence the structure, function and energy expendi-

ture of muscles [134]. However, how these xenobiotics reach the muscles and how their catab-

olism takes place has still to be unraveled.

From a physiological point of view these alternative fuels, feeding the TCA cycle, or even

directly feeding the OXPHOS system [138], are expected to be processed very quickly since

they do not surpass all cycle stadia and they are expected to be glycogen sparing as has been

shown for BCAAs in several studies [139–142]. Most probably these fuels fit best with oxida-

tive fast twitch type IIA fibers, the predominant muscle fiber type of horses. Important to

notice is the modest change in the glycogen metabolism pathway and even only in one muscle

group (M. vastus lateralis) in response to 8 weeks of DT. Even if the training protocol used in

this study was not sufficient to induce glycogen depletion, these results bring to question as to

whether glycogen needs to be viewed as the most important energy source in horses. In con-

trast to human who need 24h to replenish their muscle glycogen content, horses need 48 to

72h. Physiologically this does not comply with what would be expected from an essential

energy source [24].

The pentose phosphate pathway (PPP) was significantly upregulated in response to 8

weeks of DT in the M. vastus lateralis. The PPP takes place in the cytosol and has several

different functions (Fig 1). From a phylogenetic point of view it is very old and probably dates

back to the prebiotic world. It contains two distinct phases: a first oxidative phase, which is

irreversible and results in the production of NADPH. One of the main goals of NADPH in the

cell is to reduce oxidative stress via reduction of glutathione. Besides that, NADPH oxidizes

pyruvate to malate, which is an intermediate of the TCA cycle. NADPH is also involved in

fatty acid synthesis. The second step of the PPP is the non-oxidative production of ribose-

5-phosphate necessary for production of nucleotides, nucleic acids and recycling back to fruc-

tose-6-phosphate; the latter can be drawn into the anaerobic glycolysis cycle and produces
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erythrose-4-phosphate necessary for the production of AAAs. Especially ribulose/xylulose-

5-phosphate and fructose-6-phosphate were significantly upregulated in the M. vastus lateralis

to a striking extent (respectively 4.00 fold and 1.70 fold). This was not the case for the M. pec-

toralis. Whether or not the PPP plays an important role as additional cycle to fuel the anaero-

bic glycolysis by furnishing it with fructose-6-phosphate, is not known in horses. In humans

and rats, the PPP has a predominant anabolic function and is especially active in tissues with

rapidly dividing cells such as bone marrow, skin and gastric mucosa, in need of high rate pro-

duction of nucleotides [143–145]. With that respect, ribulose/xylulose-5-phosphate are viewed

as the rate limiting intermediates for the de novo synthesis of nucleotides [146]. Fast-twitch

muscle fibers are known to realize a much higher rate of nucleotide synthesis when compared

to slow-twitch fibers, due to the high speed at which fast-twitch processes take place [146].

Therefore, the upregulation of the PPP in the M. vastus lateralis after 8 weeks of DT matches

with the muscle fiber type composition switches seen in that muscle.

Amino acid metabolism was significantly influenced in response to 8 weeks of DT.

Skeletal muscle is considered to be the largest protein pool inside the body. Any type of train-

ing, whether it is resistance training or endurance training, is expected to have its impact on

skeletal muscle amino acid metabolism, pushing the balance towards anabolic activity, in sup-

port of muscle build-up [147–149]. With that respect, BCAAs were upregulated in the M. vas-

tus lateralis, whereas glutamine/glutamate metabolism was upregulated in the M. pectoralis.

For both muscle groups, there was a significant upregulation of AAAs, glycine metabolism

and xenobiotic metabolism.

Branched-chain amino acids (BCAAs) were upregulated in response to 8 weeks of DT in the
M. vastus lateralis. The class of BCAAs is represented by three essential amino acids: valine,

leucine and isoleucine (Fig 2). They represent about 35% of the essential amino acids in the

muscle [150, 151]. What distinguishes them from other amino acids is the fact that they are

non-polar and their R-group is a branched chain. The fact that they are essential means that

they need to be ingested by the diet, at least in human and many other species [152]. In horses,

it is not known, though their vegan diet for sure serves as a source. A study in cows has demon-

strated that gut microbiome production of BCAAs is important as well [153].

In contrast to many other amino acids, breakdown of BCAAs does not take place predomi-

nantly in the liver, due to low hepatic activity of branched-chain amino acid aminotransferase

(BCAT). As a consequence, BCAAs supplemented orally are available for many extrahepatic

tissues, such as muscle tissue. Positive effects of BCAA supplementation have been reported in

a wide array of human and animal studies focusing on mitigation of cachexia and muscle wast-

ing, suppression of symptoms of encephalopathy, promotion of wound healing and with

respect to exercise physiology: attenuation of muscle fatigue and stimulation of insulin release

[154–157]. BCAAs can function as fuel to generate ATP to perform exercise. They enter the

muscle cell via transmembranar transportation molecules, such as L-type amino acid trans-

porter 1 (LAT1) and LAT2 [158–160]. BCAA catabolism is an oxidative process of which the

breakdown products are fed into the TCA cycle at steps further downstream from acetyl CoA

(Figs 1 and 2). The total oxidation of one mol of respectively leucine, isoleucine and valine gen-

erates 43, 42 and 32 moles of ATP. From an energetic point of view, it is thus an interesting

pathway. It has been shown that leucine oxidation is greater in trained rats when compared to

untrained rats [161, 162]. BCAA breakdown occurs in three consecutive steps. The first step is

catalyzed by the enzyme BCAT, which deaminates the three BCAAs into their respective α-

keto-branched-chain acid, being α-ketoisovalerate for valine; α-keto-β-methylvalerate for iso-

leucine and α-ketoisocaproate for leucine. Subsequently, a large multi-enzyme complex situ-

ated on the inner mitochondrial membrane, known as branched-chain α-ketoacid

dehydrogenase (BCKDH) converts these α-keto-branched-chain acids in two consecutive
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steps into products such as succinyl-CoA and acetyl-CoA, which are intermediates of the TCA

cycle, succinyl-CoA being fed into the TCA cycle at steps further downstream from acetyl

CoA. Both biotin and vitamin B12 are important co-factors for those steps. The shuttling of

BCAAs into the mitochondria is performed by acylcarnitines [163]. Both BCAA and glycyl

hydropeptides of BCAAs were significantly increased in the M. vastus lateralis, supporting the

idea that 8 weeks of DT upregulates readiness of the BCAA machinery in a muscle that devel-

ops a fast twitch profile. With that respect, also the significant increase of succinylcarnitine

(1.4 fold change) and 2-methylcitrate (1.77 fold change in the M. pectoralis and 2.26 in the M.

vastus lateralis), two entry ports for BCAA breakdown products into the TCA cycle is striking.

Nothing is known about the role of BCAAs in the energy metabolism of horses and in the face

of energy partition, it is not known at which time point of exercise this machinery engages. It

has been shown that BCAA oxidation is higher in muscles containing a high amount of aerobic

fibers compared to muscles made predominantly out of anaerobic fibers [164]. Keeping in

mind the fact that horses predominantly are constituted out of aerobic fast twitch fibers,

BCAAs could be a very important energy source that has gone unnoticed up until now. More

research is needed with that respect. Looking back into equine literature, BCAAs have been

found in several studies in muscle tissue, but their role in energy supply has been minimized

probably due to the lack of knowledge of BCAA metabolism and their contribution to energy

needs [62, 165, 166]. Our results are in accordance with Klein et al. 2020, who also showed that

BCAA breakdown occurred significantly in equine muscle during acute exercise and that after

12 weeks of a conditioning training program (4 days/week aerobic treadmill exercise and 1

day/week high speed treadmill exercise), the BCAA content increased in resting muscle biop-

sies of the M. gluteus medius [23].

Glutamine/glutamate metabolism was significantly upregulated in the M. pectoralis. Gluta-

mine content was significantly increased (1.46 fold) in the M. pectoralis. Several studies have

demonstrated that there is an important positive correlation between muscular glutamine lev-

els and the muscular protein synthesis balance [167, 168]. An upregulated anabolic profile is in

accordance with the increased muscle diameter of the M. pectoralis seen after 8 weeks of DT.

Glutamine shuttles nitrogen between tissues and is involved in several metabolic processes

such as cellular proliferation, acid–base balance and antioxidant synthesis (i.e. synthesis of

GSH) [169]. Exhaustive exercise and starvation caused glutamine deficiency [170–172]. Simi-

larly, muscle glutamine levels declined in overtrained individuals [173]. Glutamine is known

to be an important C donor for gluconeogenesis and glycogen synthesis [174–176]. More

recent studies have demonstrated a positive modulating effect of glutamine on insulin sensitiv-

ity and glycemic control [177–181]. Physiologically, these are all beneficial effects for a muscle

that develops a more pronounced aerobic profile, such as the M. pectoralis in response to 8

weeks of DT [177–181]. Finally, also N-acetyl-aspartyl-glutamate (NAAG) was upregulated in

the M. pectoralis DT group. NAAG is the most important neurotransmitter in the mammalian

brain and might have neuroprotective properties [182].

Aromatic amino acids (AAAs) were significantly upregulated in both muscles, predominantly
the M. vastus lateralis following 8 weeks of DT. AAAs, which have an aromatic ring such as

tryptophan, tyrosine, phenylalanine and histidine were all significantly upregulated predomi-

nantly for the M. vastus lateralis. Among this group, three are essential: phenylalanine, trypto-

phan and histidine. Especially the upregulation of derivatives of histidine is striking: cis-

urocanate (4.75 fold), carnosine (1.10 fold) and homocarnosine (1.40 fold) in the M. vastus

lateralis. Cis-urocanate is an intermediate of the histidine degradation pathway. It is synthe-

tized from histidine by uncoupling ammonia. Further degradation leads to production of glu-

tamate, which on its turn is important for BCAA breakdown. Carnosine, is a dipeptide

consisting of the amino acids β-alanine and histidine. It is found in large amounts in muscle
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and brain tissue. It is known to mitigate acidosis due to its buffering capacity, to act as an anti-

oxidant, and to improve excitation-contraction coupling by regulating Ca2+ fluxes in the sar-

coplasmatic reticulum [183]. Several studies have shown that carnosine supplementation

improves performance capacity, especially for high intensity exercise [184–188]. Interestingly,

human training studies show very little effect of training on muscle carnosine content. High

carnosine levels are reported to be genetically determined or to occur as long term adaptation

in response to years of training [189]. Apparently, this does not apply for horses, which can

probably be attributed to their pronounced fast twitch profile.

Tyrosine (1.23 fold) and tryptophan (1.24 fold) were both upregulated in the M. vastus

lateralis. In several studies the muscular content of tyrosine is used as an indicator of muscular

protein catabolism, since the muscle cannot metabolize this amino acid [190, 191]. A rat study

has shown that tyrosine levels remain high in the muscles for more than 24h after a swimming

experiment of 10h duration [192]. Tryptophan is an important building block for serotonin

production. In human athletes, the plasma tryptophan/BCAA ratio is monitored for early

detection of occurrence of central fatigue [193] and tryptophan supplementation is known to

postpone the occurrence of central fatigue when performing endurance exercise [194]. Trypto-

phan also functions as a precursor for the kynurenine pathway, which is a complex metabolic

pathway that generates NAD+, which obviously is involved in many metabolic processes.

Increased plasma levels of tryptophan have been reported after prolonged exercise such as mil-

itary training or marathon races [195]; triathlons [196] and more than 4h of cycling [197].

Tryptophan can also exert a mitigating effect on the muscular inflammatory response. A recent

study showed that low intensity aerobic exercise associated with oral supplementation of tryp-

tophan in rats with fibromyalgia diminished the pro inflammatory cytokine IL-6 release in

muscles, as well as serum cortisol levels [198]. It is not known whether tryptophan can mitigate

the training induced inflammatory response in healthy subjects.

P-cresol-glucuronide was also importantly upregulated in both muscles (2.69 fold in M.

pectoralis and 2.91 fold in M. vastus lateralis). This metabolite is the result of bacterial fermen-

tation of dietary tyrosine [199]. So, most probably, it needs to be viewed as another xenobiotic,

just like the previously reported BCAA dipeptides, that is produced by the microbiome and is

used inside the muscle as fuel source [23].

Glycine and serine metabolism was significantly upregulated in response to DT in both M.

pectoralis and M. vastus lateralis. Glycine is a very important amino acid and can be synthe-

sized out of glucose, glutamate, betaine, serine, threonine, choline, and hydroxyproline. Several

of these building blocks were significantly upregulated in both muscles after 8 weeks of DT.

Also serine showed an important upregulation in both muscles (1.45 fold in M. pectoralis and

1.89 fold in M. vastus lateralis). Notably, serine can be converted to pyruvate which can then

be further processed by anaerobic glycolysis, or drawn into the TCA cycle in case aerobic

metabolism prevails. Sarcosine, which was also significantly upregulated in both muscles (2.22

fold in M. pectoralis and 3.10 fold in M. vastus lateralis) is an intermediate of the choline-sup-

ported pathway of glycine synthesis. Glycine is crucial for a series of important metabolic pro-

cesses such as synthesis of proteins, glutathione, heme, creatine, nucleic acids, and uric acid

and gluconeogenesis. Interesting to note is that glycine accounts for 1/3 of amino acids in col-

lagen and elastin. Keeping in mind, previous publications, in which a standard upregulation of

collagen breakdown in healthy Friesian horses was reported, it would be interesting to check

whether a similar upregulation of glycine metabolism is seen in other horse breeds in response

to 8 weeks of DT [200]. In the study of Klein et al. (2020) no changes in glycine or proline

metabolism were reported for the Standardbreds supporting the concept that this a Friesian

specific trait [23]. These findings are also in accordance with previous studies of our research

group focusing on aortic rupture and mega esophagus in Friesian horses, two important
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hereditary diseases in this breed, most probably expressed on top of an aberrant collagen and

elastin metabolism [200–203].

Methionine and cysteine metabolism were upregulated in response to 8 weeks of DT in both
muscles. Especially intermediates of cysteine and methionine metabolism were significantly

increased in both muscles. Methionine, which is an essential amino acid, functions as a precur-

sor for cysteine, succinyl-CoA, homocysteine, cysteine, creatine, and carnitine. Methionine

has important mitigating effects on metabolism, such as stimulation of protein synthesis and

increasing the capacity to cope with oxidative stress. The increased glutathione levels, found in

both muscles support this. It is well known that training improves the antioxidant defense

mechanisms in order to cope with higher oxidative stress levels [204, 205].

Proline and arginine metabolism were significantly upregulated, especially in M. pectoralis,
after 8 weeks of DT. Proline and arginine are biosynthesized out of glutamate, which was also

upregulated in the M. pectoralis (1.19 fold). Also ornithine, which is an important metabolite

of the urea cycle, was significantly upregulated (2.02 fold in M. pectoralis and 1.33 fold in M.

vastus lateralis). These findings support an upregulation of protein metabolism in especially

the M. pectoralis. Interestingly, in our study arginine intermediates were also upregulated,

which can function as precursors for ornithine synthesis. Ornithine is important in the urea

cycle, since it binds the ammonia group and is than recycled to start the urea cycle again.

Proline was significantly upregulated in both muscle groups (1.16 fold in M. pectoralis and

1.39 fold in M. vastus lateralis) and is known to be a biomarker for collagen content in muscles

of dogs [206]. In view of the previous remarks concerning collagen metabolism in healthy Frie-

sian horses, more research is needed with that respect.

Glutathione metabolism was altered in response to 8 weeks of DT in both muscles.

Several glutathione metabolism intermediates were significantly upregulated in both muscle

groups, still more pronounced in the M. pectoralis, indicating an increased capacity to cope

with oxidative stress. It is well known that training induces a low grade inflammatory reaction,

but in the same time induces protective mechanisms against oxidative stress, especially in mus-

cles that undergo aerobic training [207–209].

Possible limitations of the current study were the fact that no comparable follow-up was

performed in a third group of horses, housed in a similar fashion, but without being trained, to

discern between pure training effects and effects that could have manifested themselves natu-

rally in horses of 2.5 to 3.5 years old over the course of 8 weeks. Secondly, for allowing a com-

parative approach, DT was just like AT performed at a speed of 1.25 m/sec which is a rather

low training intensity.

Conclusion

AT is superior to DT to increase muscle diameter in the hindquarters, with maximum effect

reached already after 4 weeks for some muscle groups. DT decreased muscles of the hindquar-

ters and increased muscles of the forehand, again with maximum effect reached after 4 weeks

for some muscle groups.

Type IIA fibers were the predominant muscle fiber type in all studied muscles. The M.

semitendinosus contained less type I fibers when compared to the M. pectoralis and the M.

vastus lateralis, both of which showed similar muscle fiber type composition. The mean fiber

CSA of the M. pectoralis and the M. semitendinosus was significantly larger than that of the

M. vastus lateralis and CSA of type I fibers was significantly larger in the M. pectoralis when

compared to the M. vastus lateralis.

Different physiological adaptations occurred in the monitored muscle groups in response

to the same type of training (Table 3). The M. semitendinosus showed only minor changes,
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which proves that it is important which muscle groups are selected for longitudinal follow-up

in training trials. After DT, the M. pectoralis showed increased muscle diameter, more type I

fibers, decreased mean fiber CSA, and an upregulated oxidative metabolic profile: increased β-

oxidation (key metabolites: decreased long chain fatty acids and increased long chain acylcar-

nitines), TCA activity (intermediates including succinyl-carnitine and 2-methylcitrate), amino

acid metabolism (AA) (glutamine, aromatic AAs (AAAs), serine, urea cycle metabolites such

as proline, arginine and ornithine) and xenobiotic metabolism (especially p-cresol glucuro-

nide). The M. vastus lateralis expanded its fast twitch profile, with decreased muscle diameter,

decreased type I fibers and an upregulation of glycolytic and pentose phosphate pathway

(PPP) activity, and increased branched-chain and AAA metabolism (cis-urocanate, carnosine

and homocarnosine, tyrosine, tryptophan and p-cresol-glucuronide, serine, methionine, cyste-

ine, proline and ornithine).

The fact that only modest glycogen metabolism pathway changes were seen and no changes

in short chain fatty acids brings to question whether these are pivotal energy sources for horses.

Table 3. Overview of muscle morphometrics and muscle metabolism in horses.

Parameters M. pectoralis M. vastus lateralis M. semitendinosus

Effect of dry treadmill training on muscle morphometrics

Muscle morphometrics Muscle diameter Trained increased decreased decreased

Fiber type composition Untrained type I M. pectoralis = M. vastus lateralis < M. semitendinosus

Trained type I type I unchanged

Mean CSA Untrained M. pectoralis = M. semitendinosus > M. vastus lateralis

Trained decreased unchanged unchanged

Fiber CSA Untrained type I M. pectoralis > M. vastus lateralis not significant

Trained unchanged unchanged unchanged

Effect of dry treadmill training on metabolic profile (fold change)

Energy pathways FA oxidation Long chain FAs 0.2–0.7 unchanged

Long chain acylcarnitines 1.35–2.21 1.41–1.85

TCA cycle Succinylcarnitine 1.40 1.43

2-Methylcitrate 1.77 2.26

Glycolysis Pyruvate unchanged 3.01

PPP Ribulose/xylulose -5-phosphate unchanged 4.00

BCAA BCAA-dipeptides unchanged 1.20–2.20

Amino acid metabolism Carnosine 1.11 1.10

Homocarnosine 1.44 1.40

Tryptophan 1.19 1.24

Tyrosine unchanged 1.23

Sarcosine 2.22 3.10

Glutamine 1.45 unchanged

Serine 1.45 1.89

Proline 1.16 1.39

Cis-urocanate 2.63 4.75

Ornithine 2.02 1.33

Xenobiotics P-cresolglucuronide 2.69 2.91

Gluthatione GSH 1.60 1.57

Effect of 8 weeks of dry treadmill training (DT) on muscle morphometrics and muscle metabolism in the M. pectoralis, M. vastus lateralis and M. semitendinosus of

Friesian horses. FA: fatty acid; TCA: tricarboxylic acid; PPP: pentose phosphate pathway; BCAA: branched-chain amino acid; AAA: aromatic amino acid. In red:

significantly increased; in green: significantly decreased.

https://doi.org/10.1371/journal.pone.0249922.t003
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Results show that BCAAs, AAAs and microbiome-derived xenobiotics need further study in

horses. They feed into the TCA cycle at steps further downstream from acetyl CoA and most

likely are oxidized in type IIA fibers, the predominant fiber type of the horse. These study results

underline the importance of reviewing existing paradigms on equine bioenergetics.
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Formal analysis: Constance de Meeûs d’Argenteuil, Berit Boshuizen, Maarten Oosterlinck,

Don van de Winkel, Klara Goethals, Katrien Vanderperren, Cathérine John Ghislaine
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