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Abstract: Lithospermum erythrorhizon (LE) is known in Korean traditional medicine for its potent
therapeutic effect and antiviral activity. Currently, coronavirus (COVID-19) disease is a developing
global pandemic that can cause pneumonia. A precise study of the infection and molecular pathway
of COVID-19 is therefore obviously important. The compounds of LE were identified from the
Natural Product Activity and Species Source (NPASS) database and screened by SwissADME. The
targets interacted with the compounds and were selected using the Similarity Ensemble Approach
(SEA) and Swiss Target Prediction (STP) methods. PubChem was used to classify targets linked to
COVID-19. The protein–protein interaction (PPI) networks and signaling pathways–targets–bioactive
compounds (STB) networks were constructed by RPackage. Lastly, we performed the molecular
docking test (MDT) to verify the binding affinity between significant complexes through AutoDock
1.5.6. The Natural Product Activity and Species Source (NPASS) revealed a total of 82 compounds
from LE, which interacted with 1262 targets (SEA and STP), and 249 overlapping targets were
identified. The 19 final overlapping targets from the 249 targets and 356 COVID-19 targets were
ultimately selected. A bubble chart exhibited that inhibition of the MAPK signaling pathway could be
a key mechanism of LE on COVID-19. The three key targets (RELA, TNF, and VEGFA) directly related
to the MAPK signaling pathway, and methyl 4-prenyloxycinnamate, tormentic acid, and eugenol
were related to each target and had the most stable binding affinity. The three bioactive effects on the
three key targets might be synergistic effects to alleviate symptoms of COVID-19 infection. Overall,
this study shows that LE can play a role in alleviating COVID-19 symptoms, revealing that the three
components (bioactive compounds, targets, and mechanism) are the most significant elements of LE
against COVID-19. However, the promising mechanism of LE on COVID-19 is only predicted on the
basis of mining data; the efficacy of the chemical compounds and the affinity between compounds
and the targets in experiment was ignored, which should be further substantiated through clinical
trials.

Keywords: COVID-19; Lithospermum erythrorhizon; MAPK signaling pathway; methyl
4-prenyloxycinnamate; tormentic acid; eugenol; RELA; TNF; VEGFA

1. Introduction

The outbreak of a new health crisis due to coronavirus disease 2019 (COVID-19)
occurred in Wuhan, Hubei Province, China, in December 2019 [1]. On 9 January 2020, the
novel coronavirus SARS-CoV-2 was officially acknowledged as the sole contributor to this
outbreak [2]. The World Health Organization (WHO) initially called this situation a Public
Health Emergency of International Concern on 30 January [3], and then announced it was
a global pandemic on 11 March [4].

The novel coronavirus was designated as severe acute respiratory syndrome coronavirus-
2 (SARS-CoV-2, 2019-nCoV) because of its high genetic similarity (around 80%) to SARS-CoV,
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which caused acute respiratory distress syndrome (ARDS) and high mortality between 2002
and 2003 [5]. The SARS-CoV-2 epidemic was considered to have primarily started through
a zoonotic transmission linked to a seafood market in Wuhan, China. Subsequently, it was
later identified that human to human transmission played a leading role in the ensuing
outbreak [6]. At the time of writing, the COVID-19 has infected 213 countries, and the
total number of COVID-19 deaths has reached around 6,130,000 [7]. As of 25 March 2022,
approximately 478,260,000 cases were reported worldwide, according to Worldometer [7].
The clinical symptoms of COVID-19 are quite varied, ranging from an asymptomatic
condition to intense respiratory distress disorder and multiple organ abnormalities [8]. The
common symptoms are fever, dry cough, tachypnea, and shortness of breath [9]. Currently,
efforts to developing treatments for COVID-19 by repurposing medications are underway
and vaccine development continues. However, the attempts have been hampered by
limited information on how this coronavirus penetrates human hosts [10]. Alternatively,
natural products have played a vital role in providing drug candidates against various
diseases, including the emergence of mutant coronaviruses [11]. Folk remedies have led to
the discovery of phytochemicals that are invaluable drug resources and have led to drug
candidates such as aspirin from Salix, Taxol from Taxus brevifolia, and artemisinin from
Artemisia annua [12,13].

The early Korean medical book, Dongui Bogam, shows that Lithospermum erythrorhizon
can be used to treat measles caused by Measles morbillivirus. According to an experiment
conducted on Beagle dogs, the data suggested that the no observed adverse effect level
(NOAEL) of LE extraction was 100 mg/kg/day. Therefore, LE may have a favorable
therapeutic effect and is safe to use on virus-related diseases [14]. At present, the bioactive
compounds and mechanisms of LE against viruses have not yet been reported. Hence,
the exploration of bioactive compounds and mechanisms of LE against the COVID-19
virus should be undertaken to discover more scientific evidence to support its therapeutic
application in treating COVID-19. Moreover, we utilized the natural product activity
and species source (NPASS) database that we then combined with around 30,000 natural
products from diverse traditional and herbal medicines [15]. Moreover, the NPASS is a
reliable database with many curated experimental results based on natural compounds [16].

Accordingly, network pharmacology—a multiple analytical mode—can investigate
interaction networks such as compounds, genes, protein targets, and diseases [17]. Addi-
tionally, network pharmacology can elucidate the mechanism(s) of drug action through
networking analysis, which is a role model to shift from “one drug-one target” to “mul-
tiple targets” [18]. Therefore, the conception has been extensively utilized to analyze
the bioactive compounds and molecular mechanisms of drug candidates against diverse
diseases [19]. In this study, network pharmacology was utilized to analyze the bioactive
compounds and mechanism(s) of LE against COVID-19. Firstly, compounds from LE were
identified using the public database and were confirmed as drug-likeness by the Lipinski
rule in SwissADME. Then, targets related to the selected compounds or COVID-19 targets
were identified using public databases, and the overlapping targets were selected between
compounds and COVID-19 targets. Thirdly, the key bioactive compounds and hub targets
of LE against COVID-19 were identified by exploring the interaction of the overlapping tar-
gets. Finally, AutoDockTools were used to analyze the binding affinity between promising
bioactive compounds and targets. To date, there have been no scientific reports on bioactive
compounds and mechanisms of LE against COVID-19. In brief, our study workflow is
represented in Figure 1.
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Figure 1. The workflow of this study.

2. Materials and Methods
2.1. Selective Compounds’ Construction and Drug-Likeness Evaluation

The compound information of LE was collected by NPASS (http://bidd2.nus.edu.sg/
NPASS/, accessed on 21 October 2021), Google Scholar, and SMILES (Simplified Molecular
Input Line Entry System). The molecular formula of selective compounds was identi-
fied using ChemSpider (https://www.chemspider.com/StructureSearch.aspx) (accessed
on 21 October 2021) or PubChem (https://pubchem.ncbi.nlm.nih.gov/) (accessed on
21 October 2021) to confirm compound names or structures. The drug-likeness properties
of the identified compounds were confirmed through Lipinski’s rule on SwissADME (http:
//www.swissadme.ch/) (accessed on 21 October 2021) [20]. The compound structures were
drawn in PubChem Sketcher V2.4 (https://pubchem.ncbi.nlm.nih.gov/edit3/index.html)
(accessed on 21 October 2021) [21].

2.2. Targets Associated with Selected Compounds or COVID-19

Based on SMILES, targets related to the selected compounds were identified via both
SEA (http://sea.bkslab.org/) (accessed on 23 October 2021) [22] and STP (http://www.
swisstargetprediction.ch/) (accessed on 24 October 2021) [23] using the “Homo Sapiens”
mode. We selected the overlapping targets between SEA and STP databases based on the
use of a Venn diagram. Moreover, the COVID-19 targets were adapted from PubChem
(https://pubchem.ncbi.nlm.nih.gov/) (accessed on 24 October 2021). The final targets
between the selected compounds-related targets and COVID-19 targets were visualized by
a Venn diagram plotter.

2.3. The Analysis of the Protein–Protein Interaction (PPI) Networks

The final targets were utilized to construct a protein–protein interaction (PPI) network
on STRING (https://string-db.org/) (accessed on 27 October 2021). In the PPI network,
the size of circle represents the degree of value. In particular, a target indicated in red color
in the most central position was considered the most significant target.

2.4. The Construction of a Bubble Chart

A bubble chart was constructed according to the rich factor, which is defined as the
proportion of the number of genes expressed differentially in a signaling pathway [24].

http://bidd2.nus.edu.sg/NPASS/
http://bidd2.nus.edu.sg/NPASS/
https://www.chemspider.com/StructureSearch.aspx
https://pubchem.ncbi.nlm.nih.gov/
http://www.swissadme.ch/
http://www.swissadme.ch/
https://pubchem.ncbi.nlm.nih.gov/edit3/index.html
http://sea.bkslab.org/
http://www.swisstargetprediction.ch/
http://www.swisstargetprediction.ch/
https://pubchem.ncbi.nlm.nih.gov/
https://string-db.org/
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Thus, we identified a hub signaling pathway related to a key target in PPI networks. The
bubble chart was plotted in RPackage based on STRING (https://string-db.org/) (accessed
on 27 October 2021).

2.5. The Assembly of Signaling Pathways–Targets–Bioactive Compounds (STB) Networks

The STC networks were illustrated the relationships of the three components (signal-
ing pathways–targets–bioactive compounds) and obtained the most critical target in the
correlation. In the network, yellow rectangles (nodes) stood for the signaling pathways;
blue triangles (nodes) represented targets; and pink circles (nodes) denoted bioactive com-
pounds. The size of the blue triangles marked the number of correlations with the signaling
pathways; the size of the pink circles depicted the number of connections with the targets.
The merged networks were completed in RPackage.

2.6. The Preparation of the Bioactive Compounds and Targets for Molecular Docking Test (MDT)

The bioactive compounds were associated with the key signaling pathway were
extracted .sdf format from PubChem, which were converted into .pdb format using Pymol,
and then they were changed into .pdbqt format via AutoDock. The number of three
proteins on the MAPK signaling pathway, i.e., TNF (PDB ID: 5YOY), RELA (PDB ID:
2O61), and VEGFA (PDB ID: 3P9W) were obtained using STRING via RCSB PDB (https:
//www.rcsb.org/) (accessed on 28 October 2021). The targets were converted .pdb format
into .pdbqt format via AutoDock (http://autodock.scripps.edu) (accessed on 30 October
2021).

2.7. The MDT on a Key Signaling Pathway

The MDT were performed to verify the affinity between bioactive compounds and
targets on a key signaling pathway. The set-up condition consisted of a value of 4 for the
energy range and a value of 8 for the exhaustiveness as the default settings in order to
identify 10 different poses of bioactive compounds. The center value of each target on a
key signaling pathway was RELA (x = 15.616, y = −22.641, z = −18.824), TNF (x = 243.718,
y = −425.984, z = 261.631), and VEGFA (x = −12.652, y = 70.481, z = −40.286). The cubic
box size of active site was set at x = 40 Å, y = 40 Å, and z = 40 Å. The 2D molecular docking
studies were performed in LigPlot+ 2.2 [25]. The lower the binding energy (the higher the
negative value), the greater the stable binding is between the bioactive and the target.

3. Results
3.1. Potential Bioactive Compounds from LE

We obtained the 82 bioactive compounds in LE through NPASS database and physico-
chemical properties of these compounds are listed in Table 1. All of them were confirmed
by Lipinski’s rule [26] and TPSA (<140 Å2) [27]. Thus, we considered that these compounds
might be potential therapeutic agents against COVID-19.

Table 1. The physicochemical properties of 82 chemical compounds in LE.

Compounds

Lipinski Rules

PubChem
ID MW HBA HBD MLogP

Lipinski’s
Viola-
tions

Bioavailability
Score TPSA

No. <500 <10 ≤5 ≤4.15 ≤1 >0.1 <140
Å2

1 (S)-1-Phenylethanol 443135 122.16 1 1 1.87 0 0.55 20.23
2 3-Methylbutanoic acid 10430 102.13 2 1 0.89 0 0.85 37.30
3 cis-Caffeic acid 1549111 180.16 4 3 0.70 0 0.55 77.76
4 Phenylethyl alcohol 6054 122.16 1 1 1.87 0 0.55 20.23

https://string-db.org/
https://www.rcsb.org/
https://www.rcsb.org/
http://autodock.scripps.edu
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Table 1. Cont.

Compounds

Lipinski Rules

PubChem
ID MW HBA HBD MLogP

Lipinski’s
Viola-
tions

Bioavailability
Score TPSA

No. <500 <10 ≤5 ≤4.15 ≤1 >0.1 <140
Å2

5 Thiophene 8030 84.14 0 0 1.12 0 0.55 28.24
6 Caryophyllene 5281515 204.35 0 0 4.63 1 0.55 0.00
7 Alkannin 72521 288.30 5 3 0.42 0 0.55 94.83
8 b-b-Dimethylacrylalkannin 442720 370.40 6 2 1.43 0 0.55 100.90
9 Shikonofuran C 5321288 358.43 5 2 2.36 0 0.55 79.90

10 Isovanillin 12127 152.15 3 1 0.51 0 0.55 46.53
11 (R)-2-methylbutanoate 6950479 102.13 2 1 0.89 0 0.85 37.30
12 Ethyl oleate 5363269 310.51 2 0 5.03 1 0.55 26.30
13 Camphor 2537 152.23 1 0 2.30 0 0.55 17.07
14 (−)-Caryophyllene oxide 1742210 220.35 1 0 3.67 0 0.55 3.67
15 Methyl linolenate 5319706 292.46 2 0 4.61 1 0.55 26.30
16 Totarol 92783 286.45 1 1 4.92 1 0.55 20.23
17 Oleanolic acid 10494 456.70 3 2 5.82 1 0.85 57.53
18 (S)-2-methylbutanoate 6950480 101.12 2 0 0.89 0 0.85 40.13

19 Hexadecanoic acid methyl
ester 8181 270.45 2 0 4.44 1 0.55 26.30

20 (−)-Borneol 1201518 154.25 1 1 2.45 0 0.55 20.23
21 Cinnamic aldehyde 637511 132.16 1 0 2.01 0 0.55 17.07
22 Valeric acid 7991 102.13 2 1 0.89 0 0.85 37.30

23 Methyl
4-prenyloxycinnmate 14414116 246.30 3 0 3.48 0 0.55 35.53

24
(3S,4S)-4,7,7-

trimethylbicyclo[2.2.1]heptan-
3-ol

12242815 154.25 1 1 2.45 0 0.55 20.23

25 Paeonol 11092 166.17 3 1 0.83 0 0.55 46.53
26 β-Selinene 519361 204.35 0 0 4.63 1 0.55 0.00
27 Docosanol 12620 326.60 1 1 5.84 1 0.55 20.23
28 Phenylacetaldehyde 998 120.15 1 0 1.78 0 0.55 17.07
29 11-O-Acetylalkannin 137628887 330.33 6 2 0.82 0 0.55 100.90
30 palmitic acid 985 256.42 2 1 4.19 1 0.85 37.30
31 furfural 7362 96.08 2 0 −0.56 0 0.55 30.21
32 isobutyric acid 6590 88.11 2 1 0.49 0 0.85 37.30
33 isobutylshikonin 479500 358.39 6 2 1.28 0 0.55 100.90
34 Shikalkin 5208 288.30 5 3 0.42 0 0.55 94.83
35 shikonin 479503 288.30 5 3 0.42 0 0.55 94.83
36 Propionylshikonin 153984 344.36 6 2 1.06 0 0.55 100.90

37 β-
hydroxyisovalerylshikonin 479502 388.41 7 3 0.71 0 0.55 121.13

38 eugenol 3314 164.20 2 1 2.01 0 0.55 29.46
39 cis-Anethole 1549040 148.20 1 0 2.67 0 0.55 9.23
40 tormentic Acid 73193 488.70 5 4 4.14 0 0.55 97.99
41 oleic Acid 445639 282.46 2 1 4.57 1 0.85 37.30
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Table 1. Cont.

Compounds

Lipinski Rules

PubChem
ID MW HBA HBD MLogP

Lipinski’s
Viola-
tions

Bioavailability
Score TPSA

No. <500 <10 ≤5 ≤4.15 ≤1 >0.1 <140
Å2

42 1-eicosanol 12404 298.55 1 1 5.39 1 0.55 20.23
43 decanoic acid 2969 172.26 2 1 2.58 0 0.85 37.30
44 borneol 64685 154.25 1 1 2.45 0 0.55 20.23
45 ethyl linoleate 5282184 308.50 2 0 4.93 1 0.55 26.30
46 cetostearyl alcohol 62238 512.93 2 2 7.28 2 0.17 40.46
47 2-acetylpyrrole 14079 109.13 1 1 −0.18 0 0.55 32.86

48

(1R)-2-[(2R,6R)-6-[(2S)-2-
hydroxy-2-phenylethyl]-1-
methylpiperidin-2-yl]-1-

phenylethanol

6604328 339.47 3 2 3.03 0 0.55 43.70

49 methyleugenol 7127 178.23 2 0 2.30 0 0.55 18.46
50 caffeic acid 689043 180.16 4 3 0.70 0 0.55 77.76
51 β-Ionone 638014 192.30 1 0 2.94 0 0.55 17.07
52 carene 26049 136.23 0 0 4.29 1 0.55 0.00
53 dimethylacrylshikonin 479499 370.40 6 2 1.43 0 0.55 100.90
54 acetylshikonin 479501 330.33 6 2 0.82 0 0.55 100.90
55 methyl tetradecanoate 31284 242.40 2 0 3.94 0 0.55 26.30
56 deoxyshikonin 98914 272.30 4 2 1.25 0 0.55 74.60
57 buthylshikonin 10089766 358.39 6 2 1.28 0 0.55 100.90
58 3-methylbut-2-enoic Acid 10931 100.12 2 1 0.79 0 0.85 37.30
59 shikonofuran E 5321290 356.41 5 2 2.28 0 0.55 79.90
60 methyl oleate 5364509 296.49 2 0 4.80 1 0.55 26.30
61 Isovalerylshikonin 479497 372.41 6 2 1.51 0 0.55 100.90
62 α-methyl-butylshikonin 479498 372.41 6 2 1.51 0 0.55 100.90
63 isobutylalkannin 137629300 358.39 6 2 1.28 0 0.55 100.90
64 Methyl linoleate 5284421 294.47 2 0 4.70 1 0.55 26.30
65 (−)-camphor 444294 152.23 1 0 2.30 0 0.55 17.07
66 isovaleryl alkannin 5318685 372.41 6 2 1.51 0 0.55 100.90
67 2-pentylfuran 19602 138.21 1 0 1.84 0 0.55 13.14

68

[(1R)-1-(5,8-dihydroxy-1,4-
dioxonaphthalen-2-yl)-4-

methylpent-3-enyl]
(6Z,9Z)-octadeca-6,9-

dienoate

44438574 550.73 6 2 3.95 1 0.55 100.90

69

[(1R)-1-(5,8-dihydroxy-1,4-
dioxonaphthalen-2-yl)-4-

methylpent-3-enyl]
pent-4-enoate

9999214 370.40 6 2 1.43 0 0.55 100.90

70

[(1R)-1-(5,8-dihydroxy-1,4-
dioxonaphthalen-2-yl)-4-

methylpent-3-enyl]
benzoate

10475609 392.40 6 2 1.99 0 0.55 100.90

71

[(1R)-1-(5,8-dihydroxy-1,4-
dioxonaphthalen-2-yl)-4-

methylpent-3-enyl]
pentanoate

145992534 476.61 6 2 2.15 0 0.55 151.50

72 nonanal 31289 142.24 1 0 2.39 0 0.55 17.07
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Table 1. Cont.

Compounds

Lipinski Rules

PubChem
ID MW HBA HBD MLogP

Lipinski’s
Viola-
tions

Bioavailability
Score TPSA

No. <500 <10 ≤5 ≤4.15 ≤1 >0.1 <140
Å2

73 ursolic acid 64945 456.70 3 2 5.82 1 0.85 57.53
74 methyl decanoate 8050 186.29 2 0 2.87 0 0.55 26.30
75 hexanal 6184 100.16 1 0 1.39 0 0.55 17.07
76 2-methylbutanoic acid 8314 102.13 2 1 0.89 0 0.85 37.30
77 shikonofuran D 5321289 344.40 5 2 2.14 0 0.55 79.90
78 linoleic acid 5280450 280.45 2 1 4.47 1 0.85 37.30
79 D-1-phenylethyl 637516 122.16 1 1 1.87 0 0.55 20.23
80 P-cymene 7463 134.22 0 0 4.47 1 0.55 0.00
81 phenanthrene 995 178.23 0 0 5.17 1 0.55 0.00
82 anethole 637563 148.20 1 0 2.67 0 0.55 9.23

3.2. Targets Associated with the 82 Compounds or COVID-19

As shown in Supplementary Table S1, the total number of 1262 targets (SEA + STP)
related to 82 compounds was identified in DisGeNET and OMIM. Then, the overlapping
249 targets between SEA and STP were obtained (Figure 2). The 249 targets (Supplementary
Table S2) were analyzed with 356 COVID-19 related targets (Supplementary Table S3).
Finally, the Venn diagram (Figure 3) showed that 19 overlapping targets (Supplementary
Table S4) were directly associated with response to COVID-19 infection.
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3.3. The Protein–Protein Interaction (PPI) Networks from 19 Targets

In the PPI networks, the TNF target was considered to be the most significant target
with the highest degree of value (15) (Table 2). Moreover, the 19 targets were closely
interconnected with each other (19 nodes and 69 edges) (Figure 4). The TNF in the most
central position was the most significant target in the PPI networks.

Table 2. The degree value of targets in PPI networks.

No. Target Degree of Values

1 TNF 16
2 VEGFA 15
3 CXCL8 11
4 NFE2L2 10
5 PPARA 10
6 HMOX1 9
7 PPARG 9
8 ACE 8
9 RELA 8
10 HDAC1 6
11 ANPEP 5
12 CCR5 5
13 ERN1 5
14 GSR 5
15 TLR9 5
16 MME 4
17 S1PR1 3
18 SIGMAR1 3
19 ABCG2 1
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3.4. A Bubble Plot and Signaling Pathways–Targets–Bioactive Compounds (STB) Networks

The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis
indicated that the 19 targets were associated directly with 18 signaling pathways (False
Discovery Rate < 0.05) (Figure 5). The identified 18 signaling pathways were involved in
the response to a COVID-19 infection. Detailed information on the 18 signaling pathways is
presented in Table 3. Additionally, a bubble plot suggested that the RAS signaling pathway
might be a key signaling pathway due to the lowest rich factor (0.008). Moreover, we
performed an STB networks analysis to identify the most important target based on the
degree of value (Figure 6). Thus, the highest degree of value in STB networks was the
RELA target with 17 degrees, which was considered as a notable target against COVID-19
(Table 4). Comprehensively, a signaling pathway that combined both TNF (a key target in
PPI networks) and RELA (a key target in STB networks) was the MAPK signaling pathway,
which had an antagonistic propensity on the relatively lower rich factor found in the 18
signaling pathways. We observed that the uppermost signaling pathway was not the RAS
signaling pathway but the MAPK signaling pathway, which consisted of the two core
targets (TNF and RELA).
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Table 3. Targets in 18 signaling pathways with enrichment related to COVID-19.

KEGG ID Description Target Genes False Discovery Rate

hsa04933
AGE-RAGE signaling
pathway in diabetic

complications

RELA, TNF, CXCL8,
VEGFA 0.000067

hsa04920 Adipocytokine signaling
pathway RELA, TNF, PPARA 0.000440

hsa04622 RIG-I-like receptor
signaling pathway RELA, TNF, CXCL8 0.000440

hsa04657 IL-17 signaling pathway RELA, TNF, CXCL8 0.000760

hsa04620 Toll-like receptor signaling
pathway RELA, TNF, CXCL8 0.000760

hsa04066 HIF-1 signaling pathway RELA, HMOX1,
VEGFA 0.000760

hsa04064 NF-kappa B signaling
pathway RELA, TNF, CXCL8 0.000760

hsa04071 Sphingolipid signaling
pathway RELA, TNF, S1PR1 0.000950

hsa04621 NOD-like receptor
signaling pathway RELA, TNF, CXCL8 0.000950

hsa04062 Chemokine signaling
pathway RELA, CXCL8, CCR5 0.002100

hsa05120
Epithelial cell signaling in

Helicobacter pylori
infection

RELA, CXCL8 0.005700

hsa03320 PPAR signaling pathway PPARA, PPARG 0.006400
hsa04010 MAPK signaling pathway RELA, TNF, VEGFA 0.007200

hsa04660 T cell receptor signaling
pathway RELA, TNF 0.010200

hsa04668 TNF signaling pathway RELA, TNF 0.011800
hsa04926 Relaxin signaling pathway RELA, VEGFA 0.016500
hsa04024 cAMP signaling pathway RELA, PPARA 0.031200
hsa04014 Ras signaling pathway RELA, VEGFA 0.039900

Table 4. The degree value of targets in the STB networks.

No. Target Degree of Values

1 RELA 17
2 TNF 11
3 CXCL8 8
4 VEGFA 5
5 PPARA 3
6 PPARG 2
7 CCR5 2
8 HMOX1 1
9 S1PR1 1
10 NFE2L2 0
11 ACE 0
12 HDAC1 0
13 ANPEP 0
14 ERN1 0
15 GSR 0
16 TLR9 0
17 MME 0
18 SIGMAR1 0
19 ABCG2 0
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3.5. The Molecular Docking Test on MAPK Signaling Pathway against COVID-19

The potential bioactive compounds were docked against three targets (RELA, TNF,
and VEGFA) to measure the binding energy. The MDT of the affinity between R1–R5 and
RELA target (PDB ID: 2O61) in the “Homo sapiens” setting was analyzed. The binding
energy of R1-RELA, R2-RELA, R3-RELA, R4-RELA, and R5-RELA demonstrated at −7.1,
−6.2, −5.7, −5.5, and −5.4 kcal/mol, respectively (Table 5). Methyl 4-prenyloxycinnamate
(R1) had the strongest affinity for RELA (PDB ID: 2O61) (Figure 7A). The binding energy
between T1–T12 and TNF target (PDB ID: 5YOY) in the “Homo sapiens” setting was revealed.
The presented binding energy of T1-TNF, T2-TNF, T3-TNF, T4-TNF, T5-TNF, T6-TNF, T7-
TNF, T8-TNF, T9-TNF, T10-TNF, T11-TNF, and T12-TNF were exposed to −7.3, −7.1, −6.6,
−6.5, −6.4, −6.3, −6.3, −6.3, −6.2, −6.1, −5.6 and −5.0 kcal/mol, respectively (Table 6).
Tormentic acid (T1) manifested the strongest affinity for VEGFA (PDB ID: 3P9W) (Figure 7B).
The binding energy between V1–V6 and VEGFA target in the “Homo sapiens” setting was
uncovered. The presented binding energies of V1-VEGFA, V2-VEGFA, V3-VEGFA, V4-
VEGFA, V5-VEGFA, and V6-VEGFA were −6.1, −5.2, −4.7, −4.6, −4.2, and −3.7 kcal/mol,
respectively (Table 7). Eugenol (V1) exhibited the strongest affinity for VEGFA (Figure 7C).
Collectively, methyl 4-prenyloxycinnamate, tormentic acid, and eugenol of LE on COVID-19
were promising bioactive compounds to dampen MAPK signaling pathway.

Table 5. Binding energy of potential active compounds on RELA (PDB ID: 2O61).

Grid Box
Hydrogen
Bond Inter-

actions

Hydrophobic
Interactions

Protein Ligand PubChem
ID Symbol

Binding
Energy

(kcal/mol)
Center Dimension

Amino
Acid

Residue

Amino Acid
Residue

RELA
(PDB

ID:
2O61)

Methyl 4-
prenyloxycinnmate 14414116 R1 −7.1 x = 15.616 size_x = 40 Arg33

Gln247,
Lys218,
Arg187

y = −22.641 size_y = 40
z = −18.824 size_z = 40

Paeonol 11092 R2 −6.2 x = 15.616 size_x = 40 Arg246 Lys272,
Lys241

y = −22.641 size_y = 40
z = −18.824 size_z = 40

Isovanillin 12127 R3 −5.7 x = 15.616 size_x = 40 N/A
Arg33,

Arg187,
Lys218

y = −22.641 size_y = 40
z = −18.824 size_z = 40

Anethole 637563 R4 −5.5 x = 15.616 size_x = 40 Arg305
Val248,
Lys218,
Arg246

y = −22.641 size_y = 40 Gln247,
Phe307

z = −18.824 size_z = 40

Cinnamic
aldehyde 637511 R5 −5.4 x = 15.616 size_x = 40 N/A

Pro189,
Asp185,
Cys120

y = −22.641 size_y = 40 His88, Tyr36,
Leu154

z = −18.824 size_z = 40
Val121,
Asn155,
Ala188
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Table 6. Binding energy of potential active compounds on TNF (PDB ID: 5YOY).

Grid Box
Hydrogen
Bond Inter-

actions

Hydrophobic
Interactions

Protein Ligand PubChem
ID Symbol

Binding
Energy
(kcal/mol)

Center Dimension
Amino
Acid

Residue

Amino Acid
Residue

TNF
(PDB

ID:
5YOY)

Tormentic acid 73193 T1 −7.3 x = 243.718 size_x = 40 Arg31 Arg32, Ala33,
Leu29

y =
−425.984 size_y = 40 Asn19, Gln21,

Thr89

z = 261.631 size_z = 40 Val91, Lys90,
Arg32
Ser147

[(1R)-1-(5,8-
dihydroxy-1,4-

dioxonaphthalen-2-
yl)-4-methylpent-3-

enyl]
pent-4-enoate

9999214 T2 −7.1 x = 243.718 size_x = 40 Asn30 Lys128, Arg31,
Ala84,

y =
−425.984 size_y = 40 Leu29, Arg82,

Tyr87

z = 261.631 size_z = 40 Gln27, Trp28,
Asn46

Asp45, Leu43,
Glu127

Dimethylacrylshikonin 479499 T3 −6.6 x = 243.718 size_x = 40 Trp94,
Phe144

Gln21, Ala145,
Gly105

y =
−425.984 size_y = 40 Lys65, Asp143,

Pro20
z = 261.631 size_z = 40

Isovalerylshikonin 479497 T4 −6.5 x = 243.718 size_x = 40 Asn93,
Phe144

Pro20, Gln21,
Gly105

y =
−425.984 size_y = 40 Lys65, Asp143.

Ala145
z = 261.631 size_z = 40 Trp94

Isobutylalkannin 137629300 T5 −6.4 x = 243.718 size_x = 40
Thr69.
Tyr60,
Ser85

Lys65, Gly66,
Phe68

y =
−425.984 size_y = 40 Arg67, Gly66,

Lys58
z = 261.631 size_z = 40

α-Methyl-
butylshikonin 479498 T6 −6.3 x = 243.718 size_x = 40 Ala33,

Ala145
Val17, Arg32,

Ala18
y =

−425.984 size_y = 40 Pro20, Gln21,
Glu146

z = 261.631 size_z = 40 Arg31, Val91,
Ser147

Isobutylalkannin 137629300 T7 −6.3 x = 243.718 size_x = 40
Thr69,
Tyr60,
Ser85

Lys65, Gly66,
Phe68

y =
−425.984 size_y = 40 Arg67, Lys58

z = 261.631 size_z = 40
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Table 6. Cont.

Grid Box
Hydrogen
Bond Inter-

actions

Hydrophobic
Interactions

Protein Ligand PubChem
ID Symbol

Binding
Energy
(kcal/mol)

Center Dimension
Amino
Acid

Residue

Amino Acid
Residue

β-β-
Dimethylacrylalkannin 442720 T8 −6.3 x = 243.718 size_x = 40

Ser56,
Asp54,
Tyr53

His73, Leu75,
Pro113

y =
−425.984 size_y = 40 Gln67,

Lys65 Asn57,Tyr115

z = 261.631 size_z = 40

Buthylshikonin 10089766 T9 −6.2 x = 243.718 size_x = 40
Thr79,
Ser95,

Gln149

Lys90, Asn92,
Ser81

y =
−425.984 size_y = 40 Glu146, Ile97,

Thr77

z = 261.631 size_z = 40 Asn137, Ile136,
Glu135
His78

[(1R)-1-(5,8-
dihydroxy-1,4-

dioxonaphthalen-2-
yl)-4-methylpent-3-

enyl]
pentanoate

145992534 T10 −6.1 x = 243.718 size_x = 40 Thr69,
Tyr60

Gly66, Lys65,
Lys58

y =
−425.984 size_y = 40 Arg67, Ser85,

Phe68
z = 261.631 size_z = 40

Ethyl oleate 5363269 T11 −5.6 x = 243.718 size_x = 40 N/A Glu127, Arg82,
Leu36

y =
−425.984 size_y = 40 Ala35, Leu36,

Gln125

z = 261.631 size_z = 40 Arg31, Asn34,
Arg32

Ala35, Gln125,
Asn34

Ethyl linoleate 5282184 T12 −5.0 x = 243.718 size_x = 40 N/A Gly101, Tyr53,
Asn57

y =
−425.984 size_y = 40 Ser56, His73,

Leu75

z = 261.631 size_z = 40 Pro113, Ala111,
Ser52

Ala33, Gln67
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Table 7. Binding energy of potential active compounds on VEGFA (PDB ID: 3P9W).

Grid Box
Hydrogen
Bond Inter-

actions

Hydrophobic
Interactions

Protein Ligand PubChem
ID Symbol

Binding
Energy

(kcal/mol)
Center Dimension

Amino
Acid

Residue

Amino Acid
Residue

VEGFA
(PDB

ID:
3P9W)

Eugenol 3314 V1 −6.1 x = −12.652 x = 40
Asp63,
Gly65,
Glu64

Ile83, Pro85, Glu64

y = 70.481 y = 40 Ile46, Asn62, Ile46
z = −40.286 z = 40

Ethyl
linoleate 5282184 V2 −5.2 x = −12.652 x = 40 N/A Ile46, Pro85, His86

y = 70.481 y = 40 Phe36, Ser50,
Cys60

z = −40.286 z = 40 Asp34, Glu64
Methyl
tetrade-
canoate

31284 V3 −4.7 x = −12.652 x = 40 Glu64 Ile46, Pro85, Asp63

y = 70.481 y = 40 His86, Phe36,
Ser50

z = −40.286 z = 40 Asn62, Phe47,
Asp63
Ile83

Ethyl oleate 5363269 V4 −4.6 x = −12.652 x = 40 N/A Ile83, Pro85, Glu64

y = 70.481 y = 40 Asn62, Asp63,
Glu64

z = −40.286 z = 40 His86, Ile46, Asp63
Ile83, Pro85

Hexadecanoic
acid methyl

ester
8181 V5 −4.2 x = −12.652 x = 40 N/A Ile46, Ile83, Glu64

y = 70.481 y = 40 Phe36, His86,
Ser50

z = −40.286 z = 40 Cys61, Asn62,
Pro85

Methyl
decanoate 8050 V6 −3.7 x = −12.652 x = 40 N/A Cys68, Asp63,

Phe47
y = 70.481 y = 40 Ile46, Ser50, Phe36

z = −40.286 z = 40 Asp34,His86,
Glu64
Glu67

4. Discussion

The compounds–targets network indicated that LE compounds might be significant
ligands that could be used to alleviate COVID-19 symptoms. Of these, RELA has a more
significant effect than any other kinds of targets. Furthermore, based on the pathway enrich-
ment, the MAPK signaling pathway is the uppermost mechanism of LE against COVID-19.
Thus, three targets (RELA, TNF, and VEGFA) linked to the MAPK signaling pathway
might be promising targets for use against COVID-19. Accordingly, the docking score on
the three targets suggested that three bioactive compounds (methyl 4-prenylcinnamate,
tormentic acid, and eugenol) were considered as the most notable compounds of LE against
COVID-19. Meanwhile, the results of the KEGG pathway enrichment analysis showed
that nine targets might play important roles against COVID-19. The relationships of the
18 signaling pathways with anti-virus were discussed as follows.
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• AGE-RAGE signaling pathway in diabetic complications: Activation of the binding of
AGE to its receptor RAGE can stimulate cytokine production, can cause tissue damage,
and the suppression of AGE-RAGE can effectively reduce inflammation [28].

• Adipocytokine signaling pathway: Most adipocytokines are pro-inflammatory factors
and they are closely linked to chronic inflammation [29,30].

• RIG-I-like receptor (RLR) signaling pathway: The RIG-I-like receptors (RLRs), RIG-I,
MDA5, and LGP2, play an important role in pathogen recognition of RNA virus
infections that instigate and regulate antiviral immunity [31].

• IL-17 signaling pathway: IL-17 can play vital roles in responding to pathogenicity
in diverse tissues, as well as being important for inflammation balance and tissue
cohesion during viral attacks [32].

• Toll-like receptor (TLR) signaling pathway: Nucleic acids originating from bacteria
and viruses can be recognized by the intracellular Toll-like receptor (TLR) and they
are also sensitive to self-nucleic acids in disease conditions such as autoimmunity [33].

• HIF-1 signaling pathway: The dysfunction of HIF-1α develops influenza A virus (IAV)
replication by triggering autophagy in alveolar epithelial cells [27].

• NF-κb (Nuclear Factor kappa-light-chain-enhancer of activated B cells) signaling
pathway: Viruses have evolved to exploit NF-κb-driven cellular functions, and the
understanding of molecular mechanisms might be a new strategy against viral dis-
eases [34].

• Sphingolipid signaling pathway: Sphingolipid metabolites, such as ceramide and
sphingosine-1-phosphate, are signaling messengers that tune a wide range of cellular
processes and are essential for immunity, inflammation, and inflammatory disor-
ders [35].

• NOD-like receptor (NLR) signaling pathway: NLRs have been linked to human
diseases, including infections, inflammatory disorders, and even chronic inflamma-
tion [36].

• Chemokine signaling pathway: In COVID-19 patients, inhibiting the secretion of
cytokines and chemokines dulled the cytokine storm that represented the severity of
the disease and was a negative side effect [37].

• PPAR (Peroxisome Proliferator-Activated Receptor) signaling pathway: The regulation
of PPAR-α (Peroxisome Proliferator-Activated Receptor-alpha) with agonists enhanced
herpesvirus replication and reactive oxygen species (ROS) production [38].

• MAPK (Mitogen-Activated Protein Kinase) signaling pathway: it was reported that
the virus’s existence in hosts could activate the MAPK signaling pathway; some
viral specific proteins can maintain the persistent activation of the MAPK signaling
pathway [39].

• T cell receptor (TCR) signaling pathway: The TCR recognizes pathogens on ma-
jor histocompatibility complex molecules with the cooperation of CD4 (Cluster of
Differentiation 4) or CD8 (Cluster of Differentiation 8) co-receptors and produces
cytokines [40].

• TNF (Tumor necrosis factor-alpha) signaling pathway: TNF-α boosters influenza A
virus-induced production of antiviral cytokines by activating RIG-I (Retinoic acid-
inducible gene I) gene expression [41].

• Relaxin signaling pathway: Relaxin receptor abnormality enhances vascular inflam-
mation and damages external remodeling in arteriovenous fistulas [42].

• cAMP (Cyclic Adenosine MonoPhosphate) signaling pathway: cAMP stimulates
interleukin-10 production as the anti-inflammatory cytokine [43].

• RAS (Renin-Angiotensin System) signaling pathway: The use of RAS antagonists
might increase the risk of developing a SARS-CoV-2 infection. However, it is not suffi-
cient evidence for discontinuing RAS blockers in patients with
hypertension [44].

Based on the pathway enrichment analysis, RELA was considered as a hub target in LE
against COVID-19. The RELA was directly enriched in 17 out of 18 signaling pathways by
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the MAPK signaling pathway, indicating that the MAPK signaling pathway might be a hub
signaling pathway in LE against COVID-19. The other two targets (TNF and VEGFA) that
are directly related to the MAPK signaling pathway might be important targets for creating
synergistic effects against COVID-19. A report demonstrated that inhibition of RELA of
the NF-κB component reduce cytokine production and thus could alleviate inflammation
severity [45]. Most recently, it has been reported that anti-TNF treatment for COVID-19
patients with rheumatoid arthritis diseases showed preventive effects against the high
levels of cytokines involved in the immune response of infection, and the therapeutic
application of anti-TNFs can lessen the incidence of severe inflammation of COVID-19 [46].
Notably, a report indicated that vascular endothelial growth factor A (VEGFA) antagonized
by angiotensin-converting enzyme 2 (ACE2) that is upregulated by COVID-19 infection
because COVID-19 inhibits the expression of ACE2. Consequently, VEGFA increases
vascular permeability and lessens endothelial damage [47].

Endothelial cell inflammation is a serious symptom of COVID-19 infection, and its
uncontrollable cytokine production in tissues and cells causes a severe immune reaction,
which is defined as a “cytokine storm” that results in aggravating pneumonia. Moreover,
inhibition of the other two targets (TNF and VEGFA) related to the MAPK signaling
pathway contribute to anti-proinflammation and anti-vascular permeability against COVID-
19. Therefore, the key mechanism of LE against COVID-19 might be the ability to block
inflammation and vascular permeability in tissues and/or cells by inactivating the MAPK
signaling pathway (Figure 8). However, this research still has some limitations. The
incompleteness of the natural products dataset might create a fallacy and COVID-19 data is
updated continually as a new version. During the analysis, some results might cause an
error unexpectedly, if we are only focused on computational methods.
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COVID-19 Coronavirus disease 2019
HIF-1 Hypoxia-inducible factor 1
HIF-1α Hypoxia-inducible factor 1α
IL-17 Interleukin 17
KEGG Kyoto Encyclopedia of Genes and Genomes
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LGP2 Laboratory of Genetics and Physiology 2
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RAS Renin-Angiotensin System
RELA v-rel avian reticuloendotheliosis viral oncogene homolog

A
RIG-I Retinoic acid-inducible gene I
RLRs RIG-I-like receptors
RNA Ribonucleic acid
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SARS-CoV-2 Severe Acute Respiratory Syndrome Coronavirus 2
SEA Similarity Ensemble Approach
SMILES Simplified Molecular Input Line Entry System
STP Swiss Target Prediction
TCR T Cell Receptor
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TNF Tumor Necrosis Factor
TNF-α Tumor Necrosis Factor Alpha
VEGFA Vascular Endothelial Growth Factor A
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