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Dear Editor,

a recently published article [1] questions the Wiener-Granger 
causality test, more commonly referred to as the Granger causality 
test. Although the abstract of the paper states that the results were 
obtained by mathematical tools such as the Fourier transform and dif-

ferential calculus, the presented serious claim that “...not even the most 
basic requirement underlying any possible definition of causality is met by 
the Granger causality test...” is in fact based on a questionable numeri-

cal testing of two filtered neural signals (A and B). We will show that 
the validity of the presented considerations is unfounded for several 
reasons.

It is said that a time series 𝑥 =∶ {𝑥𝑡}𝑇𝑡=1 Granger causes a time series 
𝑦 =∶ {𝑦𝑡}𝑇𝑡=1 if the variance (or, equivalently the standard deviation) of 
the prediction error of 𝑦 including only past values of 𝑦

𝜖𝑡(𝑦∕𝑦) = 𝑦𝑡 −
𝑝∑

𝑗=1
𝛼𝑗𝑦𝑡−𝑗 (1)

is greater than the variance of the prediction error of 𝑦 including jointly 
the past values of both 𝑦 and 𝑥

𝜖𝑡(𝑦∕𝑦,𝑥) = 𝑦𝑡 −
𝑝∑

𝑗=1
𝛽𝑗𝑦𝑡−𝑗 −

𝑞∑
𝑗=1

𝛾𝑗𝑥𝑡−𝑗 , (2)

i.e., 𝑥 is helpful in predicting 𝑦. 𝑇 denotes the length of the time se-

ries. Granger showed that a time series 𝑦 is not Granger-caused by a 
time series 𝑥 if and only if all coefficients at past values of 𝑥 in the lin-

ear joined prediction model of 𝑦𝑡 (i.e., 𝛾𝑗 ’s in Equation (2)) are zero [2]. 
Other equivalent conditions and corresponding alternative testing op-

tions are discussed in [3]. Most often, however, Granger’s causality is 
statistically evaluated by the 𝐹 -test of significance of regression coeffi-

cients [4]. If the correlation structure of 𝑥 and 𝑦 is adequately captured 
by an autoregressive model of a finite reasonable order, then the 𝐹 -test 
is an exact (or robust) test, i.e. the probability of a false detection by 
the 𝐹 -test is equal to a chosen significance level 𝛼. The power of the 
𝐹 -test, defined as a complement to the probability of a false negative 
detection, depends on the length of the time series. The power increases 
to 1 by increasing 𝑇 .

In [1], instead of the 𝐹 -test (or any statistical test), the causal link 
between time series is inferred after just comparing the standard devi-

ation estimates of the predictive errors, i.e. 𝜎(𝜖𝑡(𝑦∕𝑦)) and 𝜎(𝜖𝑡(𝑦∕𝑦, 𝑥))
to each other. Such an approach does not provide a statistical signifi-

cance of a prediction improvement. Statistical inference is important in 
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order to provide a conclusion about the underlying population param-

eters based on a sample of the data. Another problem is that the root 
mean square (RMS) given as

𝑅𝑀𝑆 =

√ ∑𝑇

𝑡=𝑝′+1 𝜖
2
𝑡

𝑇 ′ , 𝑝′ =𝑚𝑎𝑥(𝑝, 𝑞), 𝑇 ′ = 𝑇 − 𝑝′, (3)

as an used estimator of standard deviation in [1], spuriously decreases 
by adding a variable to a prediction as can also be seen, e.g., in Fig-

ures 6, 7 of the paper [1]. Then, it is clear that to compare the estimated 
𝜎(𝜖𝑡(𝑦∕𝑦)), 𝜎(𝜖𝑡(𝑦∕𝑦, 𝑥)) by RMS is meaningless and such test is not suit-

able for analysing the Granger causality at all. Note that in a regression 
with nonstochastic regressors, RMS is a biased estimator of standard 
deviation, see e.g. [5]. An unbiased estimator can be obtained decreas-

ing the number of the model’s data 𝑇 ′ by the number of coefficients in 
a linear prediction, i.e. by 𝑝 for 𝜖𝑡(𝑦∕𝑦), and by 𝑝 + 𝑞 for 𝜖𝑡(𝑦∕𝑦, 𝑥). If 
the unbiased estimator, here referred as the root adjusted mean square 
(RAMS), was used, it may be possible to reach a different conclusion 
about the causal connection between the observed time series.

Let us explain all of this on a simple example of unidirectionally 
(𝑥 → 𝑦) linearly coupled time series defined as

𝑥𝑡 = 𝛼1𝑥𝑡−1 + 𝛼2𝑥𝑡−2 + 𝜖𝑡(𝑥)

𝑦𝑡 = 𝛽1𝑦𝑡−1 + 𝛽2𝑦𝑡−2 + 0.1𝑥𝑡−2 + 𝜖𝑡(𝑦),
(4)

where coefficients 𝛼1, 𝛼2, 𝛽1, 𝛽2 ∼𝑈 (−1, 1) are uniformly generated on in-

terval [−1, 1], 𝜖𝑡(𝑥), 𝜖𝑡(𝑦) ∼𝑁(0, 0.52) are identically normally distributed 
zero-mean variables with common (time invariant) variance equal to 
0.52. Since the errors 𝜖𝑡(𝑥), 𝜖𝑡(𝑦) represent zero mean white noise vector 
processes (serially independent) and coefficients were chosen so that 
both time series were stable, the processes (4) satisfy the assumptions 
for Granger causality analysis. We analyzed the performance of the 𝐹 -

test at significance level 𝛼 = 5% and two non-statistically made decisions 
(one with RMS and one with RAMS) on 10000 simulations of the time 
series (4). Fig. 1 shows the number of detections of a certain link be-

tween time series 𝑥, 𝑦 by the three studied approaches.

We can see in Fig. 1 that the probability of a false positive detection 
of the non-statistical decision with RMS equals to one. In contrast to 
the RMS results, the test with RAMS incorrectly detected the causal link 
from 𝑦 to 𝑥 in approximately 40% of the simulations and failed to detect 
the true causal link from 𝑥 to 𝑦 in approximately 5% of simulations. The 
false positive rate for the 𝐹 -test equals to the chosen significance level 
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Fig. 1. Number of correct detections of the causal link 𝑥 → 𝑦 (on the left) and false detections of 𝑦 → 𝑥 (on the right) obtained by the made decision with RMS used 
in [1], by the made decision with RAMS, and by the 𝐹 -test (𝛼 = 5 %) from 10000 simulations of the time series (4), 𝑝 = 2, 𝑇 = 500, 𝑞 = {1, 2, … , 5}.
𝛼 = 5% independently of the value of 𝑞 and its power (ability to detect 
true causal link) is around 70% for our simulations. Fig. 1 demonstrates 
the fact that RMS falsely decreases even by adding the past value of 
causally independent time series to the linear joined prediction, and 
the non-statistical decision with RMS is therefore completely unsuitable 
for inferring Granger causality.

The second problem is that at least the filtered signal B violates 
the fundamental assumption of the Granger causality definition. The 
Granger causality test involved only stochastic stationary processes 
which can be fitted by a linear autoregressive model. A stationarity is 
required since a causal relation is analyzed by comparing the variance 
of predictive error of the linear predictions. In the non-stationary case, 
the variances will depend on time and the existence of causality may 
alter over time. Assuming that a stable process has been initialized in 
the infinite past, the process is stationary and ergodic with time invari-

ant mean, variance, and autocovariances [6]. So, one way to determine 
if an autoregressive model of order 𝑝 (𝐴𝑅(𝑝)) is stationary is to check 
if the roots of its characteristic equation lie outside the unit circle. We 
analyzed the stability of non-filtered signal B and two filtered versions 
of signal B fitted by AR(4). Table 1 shows the obtained coefficients 
(i.e., the values from Table 3 in [1]) and the computed roots of their 
characteristic equations. It follows from Table 1 that the non-filtered B 
signal seems to be a stable process (i.e., all four roots lie outside the 
unit circle), while the fitted filtered signal B with any of two cutting 
frequencies is unstable (i.e., at least one of the roots lies inside or on 
the border of the unit circle). The filtration led to the violation of sta-

bility assumption for the signal B. Moreover, the signal B filtered with 
the cutting frequency 0.008 led to a non-stochastic (deterministic) func-

tion. In general, if a value of time series is perfectly predictable from 
its own past, clearly no value from another time series can improve the 
prediction [3]. Consequently, the Granger causality test is no valid with 
any of two filtered signals B.

Another problem is how the concept of testing the time inverted 
signal A is discussed. According to the results of RMS analysis it was 
stated in [1] that the future of the signal B is equally well predicted 
from the past of A as the past of B is predicted from the future of A, 
where the time inverted signal A represented the “future” of the signal 
A. However, it is not an evidence that the past of B can be equally well 
predicted from the future of A if the values from the time inverted signal 
A are included to the linear joined prediction of B. Indeed, the filtered 
signal B was not actually predicted from a future of A by using the time 
inverted signal A. Let us show this on an example of two short time 
2

Table 1. Coefficients of AR(4) from Table 3 in [1] and the 
roots of the characteristic equations of the fitted AR(4).

Non-filtered signal B

AR coefficients Roots

0.9393, 0.0077, 3.5321 + 0i, -1.1915 + 2.3763i

0.0858, -0.0398 -1.1915 - 2.3763i, 1.0066 + 0i

Signal B with cutting frequency at 0.16

AR coefficients Roots

2.9904, -3.7965 0.66829 + 0.87492i, 0.66829 - 0.87492i

2.5387, -0.7342 1.095 + 0i, 1.0262 + 0i

Signal B with cutting frequency at 0.008

AR coefficients Roots

3.8981, -5.7480 0.9836 + 0.22857i, 0.9836 - 0.22857i

3.8001, -0.9502 1.0321 + 0i, 1 + 0i

series 𝑎 ∶= {𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5} and 𝑏 ∶= {𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑏5}. Consider that 𝑝 =
𝑞 = 2 and that 𝑏 is predicted from two own past values and with two past 
values from the time inverted 𝑎, i.e., {𝑎5, 𝑎4, 𝑎3, 𝑎2, 𝑎1}. It implies that 
the value 𝑏3 is predicted using a linear combination of 𝑏1, 𝑏2, 𝑎5, 𝑎4, the 
value 𝑏4 is predicted using a linear combination of 𝑏2, 𝑏3, 𝑎4, 𝑎3, and the 
value 𝑏5 is predicted using a linear combination of 𝑏3, 𝑏4, 𝑎3, 𝑎2 (values 
𝑏1, 𝑏2 cannot be obviously predicted according to the chosen orders of 
the prediction model). Which means that value 𝑏3 is predicted from the 
future of 𝑎, while values 𝑏4, 𝑏5 are not.

This brings us to the last problem of misinterpretation of the role of 
the Axiom A [3]: “The past and present may cause the future, but the fu-

ture cannot cause the past”. The author in [1] argued that the Granger 
causality test is in contradiction with the Axiom A since it was found 
that the future of signal A (i.e., the time inverted signal A in meaning 
of the author) is helpful for the prediction of the past B. We have al-

ready shown that the validity of this argument is questionable due to 
the previous mentioned reasons, but the implication is invalid in prin-

ciple. It must be emphasized that Axiom A was this axiom that allowed 
Granger to build a testable concept of causality, where stochastic na-

ture of time series and the direction of the flow of time play a central 
role. The origin of the theory can be found in work of Wiener [7]. Ac-

cording to the Wiener-Granger theory the causal connection from 𝑥 to 
𝑦 is evaluated by analysing of the prediction improvement and a pre-

diction can be based only on the past values of 𝑦 or the past of both 
two time series. The Granger causality test is done for a data under ac-

ceptance the Axiom A and therefore the truth of Axiom A for the data 
cannot be tested using a Granger causality test, see [3]. It is possible 
to discuss whether, after the time reversal of both two unidirectionally 
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connected time series and the subsequent causal analysis, the detected 
causality also reverses [8]. However, Granger’s definition of causality 
says nothing about improving the prediction of 𝑦 from the future val-

ues of 𝑥. There is no reason to expect, as the author did in [1], that 
the causal link from 𝑥 to 𝑦 will disappear after using the future of 𝑥 in-

stead of its past in the linear joined prediction of 𝑦 in general (it may 
depend on the prediction precision of 𝑥 and 𝑦 from their own past, on 
the strength of causal connection in the original order, and also on how 
far future values of 𝑥 are used in the linear joined prediction of 𝑦).

We believe that the paper [1] did not change the fact that the 
Granger causality test is a useful tool, if applied correctly, on appro-

priate data and with subsequent careful interpretation.
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