
The Scientific World Journal
Volume 2012, Article ID 126723, 8 pages
doi:10.1100/2012/126723

The cientificWorldJOURNAL

Research Article

Temperature-Sensitive Gels for Intratumoral Delivery of
β-Lapachone: Effect of Cyclodextrins and Ethanol

Marcilio S. S. Cunha-Filho,1 Carmen Alvarez-Lorenzo,2

Ramón Martı́nez-Pacheco,2 and Mariana Landin2
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This work evaluated the potential of Pluronics (varieties F127 and P123) in combination with solubilizing agents to be used as
syringeable in situ gelling depots of intratumoral β-lapachone (βLAP). Pluronic dispersions prepared at various concentrations in
the absence and the presence of ethanol and randomly methylated β-cyclodextrin (RMβCD) were characterized regarding their
rheological properties, drug solubilization capacity, and in vitro release. Pluronic F127 (18–23%) formulations combined high
ability to solubilize βLAP (enhancement solubility factor up to 50), adequate gel temperature range (over 25◦C), and gel strength
at 37◦C enough to guarantee the permanence of the formulation in the administration site for a period of time. βLAP release
rate was finely tuned by the concentration of the polymer and the addition of RMβCD (diffusion coefficient ranging between
9 and 69 μg·cm−2). The ethanol increases βLAP release rate but simultaneously led to weak gels. This paper shows that βLAP
formulations involving temperature-reversible Pluronic gels may be suitable for intratumoral drug delivery purposes.

1. Introduction

Conventional systemic cancer chemotherapy has limited
effectiveness in the treatment of solid tumours, the preferred
therapy being surgical removal despite frequent recurrence.
The use of local controlled release formulations of anticancer
drugs is attracting much attention due to the unique
physiology of solid tumours, which comprises a highly
disordered vasculature and zones of rapidly proliferation
cells where a formulation can be retained [1, 2].

β-lapachone (βLAP) is an anticancer drug that acts by a
novel mechanism of direct activation checkpoint regulators
inducing apoptosis, particularly useful for neoplasm of slow
cell cycle like prostate, pancreatic, colon, and some ovarian
and breast cancer [3–6]. Despite its great potential, several
factors hinder its use, mainly its low aqueous solubility
[7, 8] and its nonspecific distribution which leads to a low

tumour concentration and/or a systemic toxicity [9]. An
alternative approach for βLAP administration could be an
injectable formulation containing appropriate polymers able
to undergo a transition to semisolid depot into the tumour
tissues [1, 10, 11].

Pluronic (poloxamer or Lutrol) amphiphilic triblock co-
polymers of ethylene oxide (EO) and propylene oxide (PO)
blocks (EOx-POy-EOx) self-aggregate as polymeric micelles
possessing a relatively hydrophobic core in which poorly
soluble drugs can be hosted. The incorporation of the drug
into the micelles can improve drug solubility and chemical
stability and also regulate the biodistribution and the cell
accumulation [12, 13]. Therefore, Pluronic micelles have
been shown particularly suitable for the development of
formulations of anticancer agents [14] and thus they could
be also useful for the photosensitive βLAP [15]. Pluronic
micellar solutions undergo a sol-to-gel transition when
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heating above a certain temperature due to a progressive
dehydration of PPO and PEO blocks [12]. If the concen-
tration is adequately chosen, the micellar entanglements at
body temperature render a 3D physical network that behave
as a viscoelastic depot able to sustain drug release at the
site of application [10, 16]. Furthermore, pluronics can
alter the mechanisms responsible for multidrug-resistance
in cancer cells [17, 18]. Both micellization and gelling are
reversible phenomena and can be affected by the presence
of drugs or cosolvents in the formulation [19]. Nevertheless
the findings are sometimes contradictory and, for example,
quite opposite results have been reported regarding the effect
of ethanol on the critical gel temperature and concentration
of Pluronic F127 [20, 21]. The discrepancies could be related
to the different technique used to determine the gel point or
to the inherent polydispersion of the block copolymers and
the presence of some impurities.

The aim of the study was to evaluate the potential of
two Pluronic varieties, F127 and P123, to be used in the
formulation of temperature-sensitive vehicles of βLAP. For
an efficient intratumoral delivery of βLAP, the following
essential criteria should be taken into account: (i) an
adequate amount of βLAP has to be solubilised; (ii) the
formulation should be syringeable in the tumour; (iii) it
should form a gel of sufficient consistency to guarantee the
formation of a depot system; (iv) the depot should sustain
drug release. To carry out the work, aqueous dispersions
of the Pluronics at different concentrations were prepared
and the effect of additives, such as randomly methylated
β-cyclodextrin (RMβCD) and ethanol, on βLAP solubility
and gel properties was evaluated. Both RMβCD [8] and
ethanol could be an aid for drug solubilisation when
micelles become saturated. However, both additives could
alter the hydrophobic interactions among PPO blocks and
thus decrease the solubilisation ability of the micelles [22].
A compromise between both effects should be reached.
Additionally, the effect of sterilization by autoclaving on the
rheological behaviour and physical stability of the systems
was also studied.

2. Materials and Methods

2.1. Materials. β-lapachone (βLAP; batch L503; 3,4-di-
hydro-2,2-dimethyl-2H-naphthol-[1,2-b]pyran-5,6-dione;
C15H14O3; MW 242.3) was supplied by Laboratorio Farm-
acêutico do Estado de Pernambuco, LAFEPE (Recife, Brazil)
with purity estimated by DSC and HPLC in 99.9%.
Randomly methylated β-cyclodextrin (RMβCD; degree of
substitution 0.57) was kindly donated by Roquette
(Barcelona, Spain). Pluronic F127 was purchased from
Sigma-Aldrich (St. Louis, USA) and Pluronic P123 was sup-
plied by BASF (Ludwigshafen, Germany). All other chemicals
were of analytical grade. Purified water (Millipore, Milli Q
Plus, Billerica, USA) was used.

2.2. Preparation of Pluronic Dispersions. Stock solutions of
Pluronic F127 and P123 were prepared adding the adequate
amount of copolymer to water under stirring and kept at 4◦C

until obtaining a clear transparent solution of 35% (w/w)
[12]. Then dilutions of Pluronic F127 (18, 23, or 28% w/w)
and P123 (28% w/w) were prepared. When was needed,
the drug and the RMβCD or ethanol were incorporated
in the solution used to dilute the concentrated Pluronic
dispersions. Drug concentration tested was 0.2 mg·mL−1 and
additives concentrations were 5% (w/v) for RMβCD and
20% (v/v) for ethanol.

2.3. Analytical Methods. βLAP was determined spectropho-
tometrically at 257 nm (Agilent 8453, Germany). Calibration
curve in water/ethanol (1 : 1 v/v) was made using standard
solutions in the range of 2 to 10 μg.mL−1. No effect of
additives on the spectrum of βLAP solution was observed.

2.4. Rheological Evaluation. The influence of temperature
from 5◦C to 40◦C on the loss or viscous (G′′) and storage
or elastic (G′) moduli of the dispersions was evaluated in a
Rheolyst AR-1000 N rheometer (TA Instruments, Newcastle,
UK) equipped with an AR2500 data analyzer, a Peltier plate,
and a cone with a diameter of 60 mm and 1.58 degree.
The gap was fitted to 50 μm. Measurements were performed
at 0.5 rad·s−1 with an oscillatory stress of 0.1 Pa and a
ramp of 2◦C·min−1. The temperature at which the elastic
modulus cross-overs the viscous modulus was considered the
gel temperature [19].

Creep-recovery assays were performed at 37◦C. During
the creep phase, a fixed shear stress of 10 Pa for Pluronic F127
systems and 0.3 Pa for Pluronic P123 systems was applied
for 5 min. The samples were equilibrated at 37◦C during 2 h
before assay. Gel strength was calculated as the inverse of the
maximum value of compliance of the retardation phase of
creep-recovery profiles. The experiments were carried out in
triplicate.

2.5. βLAP Solubilization. βLAP solubility was evaluated by
adding an excess of drug into 3 mL of blank Pluronic
systems placed in glass ampoules. The suspensions were son-
icated during 15 min and mechanically shaken (Gallenkamp,
Loughborough UK) at 200 rpm for 7 days at 4◦C. Then, the
systems were filtered through 0.45 μm nylon filters (Milli-
pore Corp, Billerica, USA) and diluted with water/ethanol
solution (1 : 1 v/v) to determine spectrophotometrically
βLAP concentration. The experiments were carried out in
quadruplicate. The enhancement factor (EF) was calculated
as the ratio between the βLAP solubility value in the system
and the βLAP solubility in pure water (0.03 mg·mL−1) [8].

2.6. In Vitro Release Assays. βLAP diffusion rate from
Pluronic dispersions was studied, in quadruplicate, using
horizontal side-by-side diffusion cells (Crown glass Corp.,
Somerville, NJ), separated by a dialysis membrane of a
molecular weight cut-off at 7000 Daltons (Visking corp.,
London, UK) and a diffusional area of 0.64 cm2. Pluronic
dispersions (2 mL) containing βLAP at a concentration of
0.2 mg·mL−1 were placed in the donor chamber at 37◦C.
The receptor medium, phosphate buffer pH 6.8 [23], was
continuously stirred with magnetic bar. During 20 h samples
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Table 1: Gel temperature of Pluronic F127 and P123 systems solely or containing 5% (w/v) RMβCD and 20% (v/v) ethanol: mean values
and, in parenthesis, the standard deviations.

Pluronic % Without drug or additives + βLAP
+ βLAP
+ ethanol

+ βLAP
+ RMβCD

F127

18% 25.5◦C (0.0) 24.1◦C (0.6) 6.0◦C (2.0) 29.1◦C (0.7)

23% 19.0◦C (0.0) 18.9◦C (0.6) 11.2◦C (0.7) 23.7◦C (0.6)

28% 11.6◦C (0.6) 12.8◦C (0.6) — 15.7◦C (0.8)

P123 28% 18.9◦C (0.5) 18.8◦C (0.7) 9.6◦C (0.8) 25.0◦C (0.8)

were collected regularly and replaced with fresh buffer in
order to keep sink conditions. The βLAP concentration in the
solutions was determined as previously described.

2.7. Autoclaving. Systems with 28% copolymer containing
or not drug and additives were placed in glass ampoules
and autoclaved for 20 minutes at 121◦C (Raypa model AES-
1219, Terrasa, Spain). Samples were then stored at 4◦C until
characterization. Gel temperature and rheological behaviour
after autoclaving were studied as described previously.
Samples were observed under optical microscopy (Olympus
SZ60 connected to a video camera Olympus DP12, Tokyo,
Japan), and the βLAP remaining in solution was determined
spectrophotometrically.

2.8. Statistical Analysis. The statistical analyses of rheological
measurements were performed by the one-way analysis of
variance (ANOVA) followed by least significant difference
test using Statgraphics plus version (α = 0.05).

3. Results and Discussion

3.1. Rheological Properties. The concentration range of
Pluronics to produce adequate systems for intratumoral
administration was chosen on the basis of preliminary
studies. Concentrations between 18–28% for Pluronic F127
and 28% for Pluronic P123 combine syringeability and
in situ gelling. Below 18% Pluronic F127 does not form
gels at 37◦C, but above 28%, gels are formed even below
10◦C making their handling difficult. The concentration
range for obtaining Pluronic P123 systems that undergo
the sol-gel transition at body temperature is narrower.
Concentrations lower than 28% form gels above 37◦C and at
a higher concentration the system becomes a gel even at 4◦C
being not syringeable. The gel temperatures of the systems
studied are shown in Table 1. Results of Pluronic F127
systems are in agreement with data in the literature [16].
In the concentration range studied, a close linear correlation
between polymer concentration and the gel temperature was
observed:

Gel temperature (◦C)

= 50.67−1.39 · (Pluronic F127 (%)); r2 = 0.9986.
(1)
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Figure 1: Creep-recovery profiles (37◦C) with indications of recov-
ery percentages for the four characteristic rheological behaviour
groups, namely, A (left axis): Pluronic F127 at 28% and 23%
(without additive; drug; drug + RMβCD); B (left axis): Pluronic
F127 at 18% (without additive; drug; drug + RMβCD); C (left axis):
F127 at 23% (drug + ethanol); and D (right axis): Pluronic P123 at
28% (without additive; drug; drug + ethanol; drug + RMβCD).

The addition of drugs and/or cosolvents can extensively
modify the gel temperature of the Pluronic systems [19] with
important repercussions on their utility for intratumoral
administration. For the Pluronic systems studied, the incor-
poration of βLAP did not cause significant changes (α < 0.05)
in the gel temperature. By contrast, the addition of ethanol
(up to 20%) dramatically decreased the gel temperature of
23% Pluronic F127 and 28% Pluronic P123 estimated as
the temperature at which the elastic modulus cross-overs
the viscous modulus (Table 1). However, the gels were softer
(lower G′ and G′′ after the sol-to-gel transition) than those
prepared without additives. Interestingly, the incorporation
of ethanol caused 18% Pluronic F127 system to remain
as a low viscosity solution at temperatures beyond 37◦C,
whilst 28% Pluronic F127 gel was not liquefied even below
at 4◦C. Thus, ethanol caused opposite effects depending
on the copolymer concentration. The reasons behind these
findings are not clear but should be related to that ethanol
makes micellization more difficult, but when micelles are
formed, ethanol incorporates into the micellar core causing
elongation (worm-like micelles), as already demonstrated
for the most hydrophobic variety tested Pluronic P123
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Table 2: Gel strength (N·m−2) of the systems at 37◦C: mean values and, in parenthesis, the standard deviations.

Pluronic % Without drug or additives + βLAP
+ βLAP
+ ethanol

+ βLAP
+ RMβCD

F127

18% 1554 (542) 1740 (124) — 1382 (462)

23% 5740 (1250) 5698 (2821) 692 (156) 4827 (1763)

28% 6524 (2300) 5174 (583) — 5892 (850)

P123 28% 10.8 (12.3) 8.8 (3.3) 10.0 (3.9) 8.5 (0.6)

[24]. The increase in the micellar size may favour certain
entanglement among PEO blocks of neighbour micelles,
leading to the cross-over of G′ and G′′ at lower temperature.
However, the transition from soft to hard gel requires that
the micelles aggregate to reach a percolation threshold.
As previously shown using SAXS, disorder in the micellar
aggregates results in soft gels, while ordered packing in bcc
or fcc structures results in hard gels [21]. Our results are
in reasonable agreement with those of Jones et al. [20]
and Chaibundit et al. [21] taking into account that the
inverted-tube test identifies hard gel formation while the
dynamic oscillatory analysis also enables the identification of
soft gel formation. Therefore, the addition of ethanol may
turn Pluronic dispersions into inappropriate formulations
for intratumoral injection purposes.

The incorporation of RMβCD at 5% w/w raised the
gel temperature of all systems studied especially of Pluronic
P123 dispersions, which is in agreement with results pre-
viously reported [25]. This fact can be explained by the
formation of supramolecular assemblies named polypseu-
dorotaxanes in which the PPO blocks are inserted in the
cyclodextrin cavities [22]. As a consequence, the copolymer
unimers involved in the supramolecular structure find that
it is difficult to form micelles. Thus, the critical micellar and
gelling concentrations of the copolymer increase.

To gain further insight into the rheological properties
of the gels at 37◦C, creep-recovery profiles were recorded
(Figure 1). The Pluronic dispersions studied can be classified
into four groups of different rheological behaviours. Group
A, the one with the highest viscosity, includes 23% and
28% Pluronic F127 dispersions without additives or with
βLAP or βLAP and RMβCD. Group B corresponds to 18%
Pluronic F127 formulated without additives or with βLAP
or βLAP and RMβCD. Group C includes the 23% F127
formulations with the drug and ethanol. Group D (with the
lowest viscosity) corresponds to 28% Pluronic P123 systems
with or without additives.

The creep-recovery profiles exhibited an important elas-
tic component for groups A and B (Figure 1) with a total
recovery around 50%, which means that these systems form
a structured network able to store energy. By contrast, groups
C and D presented a minor elastic recovery (5%) and a
predominant viscous behaviour, which is related to their
softer structure. The parameter “gel strength” at 37◦C was
calculated as the inverse of compliance of the retardation
phase of creep-recovery profiles (Table 2). The incorporation
of ethanol led to a strong reduction on gel strength and

also to a decrease in elasticity for Pluronic F127 dispersions.
This confirms that, although gels are formed at lower
temperature in the presence of ethanol, the mechanism of
gelation and the structure of the network are not the same
as in water. The effect of ethanol on Pluronic P123 was
negligible. Similarly, cyclodextrin did not significantly alter
the viscoelastic profiles at 37◦C (Table 2).

3.2. βLAP Solubilisation Capacity of the Pluronic Systems.
The solubility of βLAP in the Pluronic systems and the cor-
responding enhancement factor (EF) are shown in Table 3.
Compared to water, Pluronic F127 formulations notably
enhanced βLAP solubility up to a copolymer concentration
of 23%; beyond that concentration a decrease was observed.
General literature indicates that above CMC the solubility
of a solute hosted in the micelles should increase linearly
with the concentration of the surfactant [26]. The fact that
28% Pluronic solution does not solubilise the drug as well as
23% one does can be related to the relatively high viscosity
of 28% Pluronic solutions even at 4◦C, which may make
drug dissolution and diffusion difficult; the attainment of the
equilibrium is delayed.

In agreement with the HLB values [12], Pluronic P123
(HLB 8) solubilised a higher amount of βLAP than Pluronic
F127 (HLB 22), although βLAP solubility still remained
below 1 mg·mL−1. For such a poorly soluble drug, the
single approach of micellization seems to be not enough
to improve the aqueous solubility to the desirable extent
[27], its combination with other solubilisation approaches
being necessary. Both RMβCD (5% w/v) and ethanol (20%
v/v) (Table 3) enhanced βLAP solubilisation to a great
extent. RMβCD increased the solubility in almost 50-fold in
both Pluronic F127 and P123, reaching drug concentrations
close to 1.5 mg·mL−1. Ethanol contributed even more to
βLAP solubilisation, particularly in P123 systems achieving
a concentration of 2.4 mg·mL−1.

3.3. In Vitro Release Assays. Drug release from an intratu-
moral implant is mainly controlled by diffusion, since the
volume of fluid around the administration site is expected
to be small and the dissolution of the polymer and the
disintegration of the depot extremely slow [10, 11]. Pluronic
systems containing 0.2 mg·mL−1 drug concentration with
adequate syringeability and gel temperature for intratumoral
purposes were tested in regards to their drug release per-
formance using diffusion cells. The selected membrane of
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Figure 2: βLAP release profiles of Pluronic F127 and P123 systems formulated with and without additives.

Table 3: βLAP solubility (mg·mL−1) and enhancement factor (EF) in F127 and in P123 systems at 4◦C with and without 5% (w/v) RMβCD
and 20% (v/v) ethanol: mean values and, in parenthesis, the standard deviations.

Without additives + ethanol + RMβCD

Pluronic % [βLAP] EF [βLAP] EF [βLAP] EF

F127
18% 0.248 (0.032) 8.3 0.660 (0.051) 22.0 1.037 (0.141) 34.6

23% 0.444 (0.108) 14.8 1.183 (0.102) 34.4 1.487 (0.117) 49.6

28% 0.208 (0.028) 7.0 — — 0.767 (0.141) 25.6

P123 28% 0.875 (0.209) 29.2 2.372 (0.385) 79.1 1.478 (0.383) 49.3

7,000 Da cut-off enabled the movement of the drug towards
the receptor compartment, the polymer being retained in the
donor compartment.

As it has been previously described for other drugs, such
as sodium diclofenac and quinine formulated in Pluronic
gels [28, 29], βLAP release profiles fitted well to zero-order
kinetics. Formulation including 23% Pluronic F127 and 20%
ethanol is the one having the lowest correlation coefficient
(r = 0.967) but the model was maintained for comparison
purposes (Table 4). In this formulation, the presence of
ethanol spoils the gel structure of Pluronic F127 affecting

its strength (Table 2) and consequently accelerating βLAP
release rate (Figure 2(b)). By contrast, ethanol does not
seem to have any effect on drug release from Pluronic P123
formulation (Figure 2(d)) owing to the less disturbance of
the rheological behaviour (Table 2).

A negative correlation was observed between Pluronic
F127 concentration and the βLAP release rate (Table 4). As
the copolymer concentration raises, the entanglement of the
copolymer chains also increases limiting drug diffusion [28].
Beyond certain copolymer concentration, the increase in
macroviscosity does not correlate well with the hindrance to
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Table 4: Data from fitting βLAP release profiles to zero-order kinetics and total amount of drug released at the end of the assay (D20).

Pluronic % Additive Correlation coefficient Slope (μg h·cm−2) D20 (μg·cm−2)

F127 18%
Without 0.999 1.21 37.9

5% (w/v) RMβCD 0.999 2.19 69.2

F127 23%
Without 0.985 0.30 9.7

20% (v/v) EtOH 0.967 0.46 14.9

5% (w/v) RMβCD 0.996 0.94 29.2

F127 28%
Without 0.993 0.31 9.9

5% (w/v) RMβCD 0.987 0.68 22.1

P123 28%
Without 0.999 0.61 18.8

20% (v/v) EtOH 0.994 0.70 22.1

5% (w/v) RMβCD 0.986 1.04 32.8
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Figure 3: Gel temperature and gel strength at 37◦C of Pluronic systems before and after autoclaving.



The Scientific World Journal 7

diffusion and similar release profiles can be obtained [30].
This justifies the similar release kinetics observed for 23%
and 28% Pluronic F127 systems. Changes in the release rate
of βLAP from Pluronic systems containing ethanol could
be explained by the reduction in the gel strength of the
formulations together with the increment in drug solubility.

Although RMβCD did not alter the gel strength profiles
of the Pluronic dispersions (Table 2), it greatly accelerated
drug release (Figure 2). This effect can be explained by the
increase in βLAP solubility as a consequence of complex
formation with RMβCD [8]. The mesh size network of the
Pluronic gels seems to be great enough to allow the diffusion
of the drug-RMβCD complexes.

3.4. Autoclaving. No statistically significant differences were
denoted in the gel temperature or gel strength of the samples
before and after autoclaving (Figure 3) which is in agreement
with the physical stability of the Pluronic dispersions pointed
out by different authors [16, 31]. No crystalline growth was
observed under optical microscopy. Samples show that the
same UV-visible spectra and βLAP amount before and after
autoclaving are not significantly different [32]. Therefore,
autoclaving could be recommended as a sterilization method
for these intratumoral formulations.

4. Conclusions

Pluronic P123 systems have a high capacity of βLAP incor-
poration, especially when ethanol (20%) is present in the
formulation. However, the low gel strength of those systems
does not guarantee the permanence of the formulation in the
application site for a long period of time. Pluronic F127 in
the 18–23% range presents better perspectives for intratu-
moral formulation development. It combines adequate gel
temperature range (20–30◦C) and the gel strength at 37◦C
may be enough to delay erosion and to control drug release
rate. The βLAP loading and the release rate can be tuned by
the copolymer concentration and the addition of RMβCD.
The use of ethanol in combination with Pluronic F127
should be avoided as this cosolvent led to soft gels at 37◦C.
Autoclaving does not affect the physical-chemical properties
of the Pluronic systems and may be a suitable sterilization
method for the intratumoral formulations. Thus, βLAP
formulated in temperature-sensitive Pluronic gels may have
good perspectives for intratumoral delivery purposes.
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