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Abstract

Objective: To identify dysregulated miRNAs in testicular tissues from animal models and

patients with cryptorchidism.

Methods: Databases were systematically searched for studies published before 10 May 2020 that

had investigated miRNAs in cryptorchidism. Predicted targets of the identified miRNA bio-

markers were obtained by searching TargetScan and Starbase. Gene ontology (GO) and Kyoto

Encyclopaedia of Genes and Genomes (KEGG) pathway enrichment analyses were subsequently

conducted.

Results: Five publications met the eligibility criteria for the review. 21 differentially expressed

miRNAs were the most abundantly reported in 185 animal and human tissue samples. Three

miRNAs (miR-210, miR-449a and miR-34c) were dysregulated in both animal and human testic-

ular tissues. The top five relevant lncRNAs associated with the miRNAs were NEAT1,

KCNQ1OT1, XIST, AC005154.1, and TUG1.

Conclusions: Further research is warranted to explore the potential of these dysregulated

miRNAs as biomarkers or therapeutic targets for male infertility associated with cryptorchidism.
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Introduction

Cryptorchidism or undescended testis

(UDT) is the most common childhood con-

genital malformation in boys and occurs in

approximately 1.0–4.6% of full-term and

up to 45% of preterm neonates.1
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Following spontaneous descent within the

first month of life up to 1.5% of all full-

term male infants still have undescended

testes at the age of one year.2 The exact

mechanism of testicular descent is not

fully understood and UDT can occur any-

where along the normal developmental

descent pathway, from the abdominal

cavity to entrance of the scrotum.3

While cryptorchidism can be treated by

early surgery to improve cosmetic appear-

ance and reduce the possibility of malignan-

cy, some men exhibit low fertility as

adults.4,5 In fact, 20%�25% of boys with

UDT may be at risk of infertility after treat-

ment.6 It has been suggested that blood

hormone levels and testicular biopsies in

these patients could assist in the assessment

of adult reproductive function.6 However,

often due to ethical reasons, it is difficult

to obtain testicular tissues from boys with

UDT. Therefore, there is an urgent need to

find a non-invasive marker that may

improve the prevention and prognosis of

cryptorchidism.
Micro (mi)RNAs are a class of short

non-coding RNA molecules approximately

22 nucleotides in length, that negatively reg-

ulate gene expression either by mRNA deg-

radation or translational repression at the

post-transcriptional level. 7–11Several stud-

ies have investigated the potential role of

miRNAs in spermatogenesis,12–16 and it

has been suggested that miRNAs may reg-

ulate early embryonic development, sper-

matic function, and fertilization in humans

and animals.17 Indeed, the dysregulation of

miRNAs has been shown to be a common

event in spermatogenesis arrest and sperma-

tocyte apoptosis.18–20Therefore, miRNAs

may have potential as non-invasive diag-

nostic markers as well as therapeutic targets

for male infertility. Accordingly, we con-

ducted a systematic review according to

PRISMA (Preferred Reporting Items for

Systematic Reviews and Meta-Analyses)

regulations 21to identify dysregulated
miRNAs associated with cryptorchidism.

Methods

PubMed, Web of Science and EMBASE
databases were systematically searched for
all studies published before 10 May
2020 that had investigated miRNAs in
cryptorchidism. Keywords/terms
included: (“Cryptorchidism” [Mesh])
“Cryptorchidism” OR “Cryptorchism” OR
“Undescended Testes” OR “Undescended
Testis” OR “UDT” AND (“MicroRNAs”
[Mesh] OR “MicroRNAs” OR “Micro
RNA” OR “MicroRNA” OR “miRNAs”
OR “miRNA” OR “pri-miRNA” OR
“pre-miRNA” OR “Small Temporal
RNA” OR “stRNA”). All miRNA names
were standardized by the miRbase.22

Studies included in the review had
miRNA expression data, from animal
models or patients with cryptorchidism
and controls. Studies were excluded if they
used cell lines, had insufficient data, and/or
were reviews, commentaries, editorials, or
meeting abstracts. The following items
were extracted: title; authors; date; country;
species; miRNA expression profiling assay
type; number of dysregulated miRNAs
(downregulated and upregulated).

To identify the potential target of the
miRNAs we used Starbase a database that
provides comprehensive information on
miRNA and long non-coding (lnc)RNA
interactions 23,24The top 20 lncRNAs most
closely related to the miRNAs were visual-
ised using clusterProfiler (R) installed with
Seaborn. In addition, to identify potential
subcellular localizations of the lncRNAs,
we used two databases (lncLocator25 and
lncATLAS26). The lncLocator has the abil-
ity to predict five subcellular localizations
of lncRNAs (i.e., cytoplasm, nucleus, cyto-
sol, ribosome, and exosome 25Results were
analysed and presented by GraphPad Prism
7. LncRNAs considered the most relevant
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to cryptorchidism were uploaded into the
lncATLAS database. 26

TargetScan was used to predict potential
biological targets of the miRNAs. 27 Gene
Ontology (GO) enrichment analysis and
Kyoto Encyclopaedia of Genes and
Genomes (KEGG) pathway analysis were
subsequently conducted.

Results

The literature search yielded an initial pool of
55 articles from which five reports ultimately
met the eligibility criteria (Figure 1).12–16

Four studies were performed in China and
one in Japan (Table 1); three studies used
human testicular tissues, two murine, one
horse and one rat.

Figure 1. Flow diagram of study selection.
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Analysis showed that 21 differentially
expressed miRNAs were the most abundant
in testicular tissue samples obtained from
animal models and patients with cryptor-
chidism. In tissues from animal models,
five miRNAs were differentially upregu-
lated and eight downregulated. (Table 2).
In human tissues, seven miRNAs were dif-
ferentially upregulated and four downregu-
lated. (Table 3). Three miRNAs (mi-210,
miR-449a, miR-34c) were dysregulated in
both types of tissues, miR-210 was upregu-
lated,13 whereas, miR-449a and miR-34c
were downregulated.14–16 The overlap of
most abundant miRNAs among animal
and human tissues is represented as a
Venn diagram in Figure 2.

The top 20 lncRNAs most closely related
to the top miRNAs are shown in Figure 3.
The top five lncRNAs were, NEAT1 (nucle-
ar paraspeckle assembly transcript 1),
KCNQ1OT1, XIST (X inactive specific
transcript), AC005154.1 and TUG1(taurine
up-regulated 1). Among the top 20

lncRNAs, 12 were identified by their
sequences uploaded in a fasta file on
lncLocator. The current lncLocator pre-
dicted five subcellular localizations of
these validated lncRNAs and the results
were sorted by possible proportions
(Figure 4A). Four lncRNAs (NEAT1,
KCNQ1OT1, XIST and TUG1) tended to
be located in the nucleus. Results from
lncATLAS confirmed that both NEAT1
and TUG1 primarily existed in the nucleus
(Figure 4B).

KEGG pathway analysis indicated that
the differentially expressed genes tended to
participate in pathways involving prostate
cancer, microRNAs in cancer, autophagy,
cellular senescence, and bacterial invasion
of epithelial cells (Figure 5A).

The top 10 enriched GO terms, included
in ‘biological process’, ‘cellular component’
and ‘molecular function’ are displayed in
Figure 5B. ‘Cotranslational protein target-
ing to membrane’ was the most significant
GO term under ‘biological process’ ‘endo-
some’ and ‘synapse’ were the most enriched

Table 2. The most abundant differentially
expressed miRNAs in testicular tissue from animal
models of cryptorchidism (validated by qRT-PCR).

Reference miRNA

No. of

samples

Upregulated

Duan et al, 201613 miR-210 24

Han et al. 202016 miR-181b 2

Han et al. 202016 miR-136 2

Han et al. 202016 miR-329b 2

Han et al. 202016 miR-370 2

Downregulated

Huang et al, 201815 miR-34c 24

Moritoki et al, 201412 miR-135a 3

Han et al. 202016 miR-545 2

Han et al. 202016 miR-9084 2

Han et al. 202016 miR-449a 2

Han et al. 202016 miR-9024 2

Han et al. 202016 miR-9121 2

Han et al. 202016 miR-8908e 2

Abbreviation: qRT-PCR; quantitative real-time reverse

transcription polymerase chain reaction.

Table 3. The most abundant differentially
expressed miRNAs in testicular tissue from
patients with cryptorchidism (validated by qRT-
PCR).

Reference miRNA

No. of

samples

Upregulated

Tang et al 201814 miR-299-5p 3

Tang et al 201814 miR-199-3p 3

Tang et al 201814 miR-142-3p 3

Tang et al 201814 miR-376c-3p 3

Tang et al 201814 miR-22c-3p 3

Tang et al 201814 miR-214c-3p 3

Duan et al, 201613 miR-210 6

Downregulated

Tang et al 201814 miR-449a 3

Tang et al 201814 miR-182-5p 3

Tang et al 201814 miR-138-5p 3

Huang et al, 201815 miR-34c 6

Abbreviation: qRT-PCR; quantitative real-time reverse

transcription polymerase chain reaction.
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terms under ‘cellular component’ and ‘glu-

tamate binding’ was the most enriched term

under ‘molecular function’.

Discussion

We performed a systematic review to iden-

tify studies of miRNAs in animal models or

patients with cryptorchidism. Levels of

miRNAs in testicular tissue or seminal

fluid may have potential as non-invasive

diagnostic markers as well as be therapeutic

targets for male infertility.28 Five studies
met our eligibility criteria and had investi-
gated dysregulated miRNA in cryptorchi-
dism.12–16 Of the 21 miRNAs that were
most abundant, three (miR-210, miR-449a
and miR-34c) were dysregulated in both
animal and human testicular tissues.13–16

In one study in a rat model of cryptorchi-
dism, miR-135a was expressed at a low level
and had a downregulation effect on
Forehead box protein O1 (FoxO1) which
is essential for spermatogonial stem cell

Figure 2. Venn diagram showing the most abundant miRNAs detected in testicular tissue samples obtained
from animal models and patients with cryptorchidism. Of the 21 dysregulated miRNAs detected, 10 were in
human tissues, eight in animal tissues and three (miR-210 [upregulated], miR-449a and miR-34c [down-
regulated]) were in both animal and human tissues.

Figure 3. The top 20 lncRNAs most closely related to the dysregulated miRNAs.
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Figure 4. (a) The lncLocator predicted five subcellular localizations of the 12 validated lncRNAs and the
results were sorted by possible proportions. Among the top five lncRNAs, NEAT1, KCNQ1OT1, XIST,
TUG1 tended to be located in the nucleus. (b) Subcellular localization plot displayed by lncATLAS for NEAT1
and TUG1 genes. Bars represent CN-RCI (relative concentration index calculated for the cytoplasm and
nucleus) values for the genes across the cell lines. Nuclear expression values (FPKMs) for the genes are
shown for both compartments (cytoplasm >zero, nucleus<zero). Bars are coloured by their absolute
nuclear expression.

Jia and Hao 7



Figure 5. (a) Functional enrichment analysis of differentially expressed miRNAs by Kyoto Encyclopaedia of
Genes and Genomes (KEGG) pathway analysis. The bubble size was directly proportional to the number of
miRNAs. Among the most enriched KEGG pathways, the top five terms were prostate cancer, miRNAs in
cancer, autophagy, cellular senescence, and bacterial invasion of epithelial cells. (b) GO enrichment analysis
of the differentially expressed miRNAs (Top 10 GO enrichment are presented). The most significant GO
term under the biological process category was ‘cotranslational protein targeting to membrane’. ‘Endosome’
and ‘synapse’ were the most enriched GO terms under cellular component category and ‘glutamate binding’
was the most enriched term under molecular function category.
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maintenance.12 It has been reported that
both miRNAs and mRNAs contribute to
the formation and differentiation of sper-
matogonia stem cells.29–31 Therefore, it is
important to determine the exact function
of each miRNA in testicular tissue and
determine the molecular pathways
involved.

Using Starbase, we identified the top five
lncRNAs targets of the miRNAs and four of
these (i.e., NEAT1, KCNQ1OT1, XIST,
TUG1) tended to be located in the nucleus.
Subsequent data from lncATLAS confirmed
that NEAT1 and TUG1 primarily existed in
the nucleus. NEAT1 is thought to act as a
miRNA sponge suppressing the interactions
between miRNAs and target mRNAs.32 In
addition to its role in several cancers, 32

NEAT 1 has been reported to exert modu-
lated action in several other diseases, such as
non-alcoholic fatty liver disease,33

Parkinson’s disease34 and congenital heart
disease.35 NEAT1 has been reported to alle-
viate hypoxia-provoked H9c2 cell apoptosis
and autophagy via miRNA-181b.35 One of
the studies included in this review reported
that compared with controls, miRNA-181b
was up-regulated in the cryptorchidism
group.16 We suggest that dysregulation
of miRNA–181b may be associated with
spermatogonial apoptosis.

A mutual regulation between miR-
142-3p and TUG1 has been reported in
some diseases, such as bladder cancer,36

ulcerative colitis,37 and septic acute kidney
injury.38 Interestingly, miR-142-3p was
found to be significantly upregulated in
human cryptorchidism tissues compared
with controls. 14 Therefore, we hypothesise
that in cryptorchidism, downregulated
TUG1 results in the downregulation of
the miR-142-3p targeted gene.

The most enriched GO terms under ‘cel-
lular components’ were ‘endosome’ and ‘syn-
apse’, and indicated a cell-cell contact role
mediated by the miRNAs. A previous study
found that the endosome marker, RAB11A,

was co-distributed with nectin 2 (located in

the Sertoli cell plasma membrane) at junc-

tions, and indicated that some of the inter-

nalized junction proteins might be recycled to

form junctions with the next generation of

spermatids.39 This research is consistent

with our results and confirms a possible

cell-cell contact role mediated by these

miRNAs through exosomes.
A KEGG pathway analysis indicated

that the dysregulated miRNAs were associ-

ated with several pathways including

autophagy. It has been reported that abnor-

mal autophagy can cause a variety of

diseases, including testicular dysfunction.40

Moreover, Sertoli cell function is vital in

spermatogenesis and autophagy has been

shown to affect Sertoli cells by regulating

the production of inflammatory factors

and apoptosis levels.41 In addition, Notch,

AMPK, Ras, and p53 signalling pathways

have been found to be associated with sper-

matogonial apoptosis and dysfunction in

spermatogenesis, which is consistent with

our results. 19,20,33,42–44

This review had several limitations. For

example, we chose the phenotype ‘cryptor-

chidism’ rather than ‘spermatogenesis’

which limited our literature search. In addi-

tion, we analysed a limited number of

miRNAs validated by qRT-PCR, which

may have underestimated the effect of

other miRNAs involved in cryptorchidism.
Although the aetiology of cryptorchi-

dism is unclear and may be affected by

many factors, this systematic review identi-

fied 21 significantly dysregulated miRNAs

in testicular tissues from animal models or

patients with UDT. Further research is

warranted to explore the potential of these

dysregulated miRNAs as biomarkers or

therapeutic targets.
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