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G protein-coupled receptor (GPCR) kinase 2 (GRK2) is an integrative node in many
signaling network cascades. Emerging evidence indicates that GRK2 can interact with a
large number of GPCRs and non-GPCR substrates in both kinase-dependent and
-independent modes. Some of these pathways are associated with endothelial cell (EC)
activity. The active state of ECs is a pivotal factor in angiogenesis. The occurrence and
development of some inflammation-related diseases are accompanied by pathological
angiogenesis, but there remains a lack of effective targeted treatments. Alterations in the
expression and/or localization of GRK2 have been identified in several types of diseases
and have been demonstrated to regulate the angiogenesis process in these diseases.
GRK2 as a target may be a promising candidate for anti-angiogenesis therapy.

Keywords: GRK2, GPCRs, endothelial cells, activity, angiogenesis
INTRODUCTION

G protein-coupled receptor (GPCR) kinases (GRKs) can specifically recognize and phosphorylate
agonist-activated GPCRs that follow b-arrestin binding, leading to the uncoupling of heterotrimeric
G proteins and receptor desensitization (1). Both GRKs and b-arrestin can interact with a variety of
cellular proteins involved in signal transduction, thus promoting signal propagation upon GPCR
activation. In addition, GRKs are signaling mediators that are independent of both G protein- and
b-arrestin-mediated pathways by phosphorylating and/or interacting with other non-GPCR
proteins, including receptor tyrosine kinases (RTKs) and a large number of cytosolic or nuclear
signaling components of pathways related to multifarious physiological and physiopathological
processes (2, 3).

So far, seven GRKs (GRK1-GRK7) have been found in mammals and all GRK isoforms share
similar domains (4). However, these isoforms show differential expression patterns and functions
(5). GRK2, one of the most studied GRKs, is expressed ubiquitously throughout the body and is
emerging as a key node in multiple signal transduction pathways, displaying a very complex
interactome. GRK2 knockout mice are embryonic lethal, while knockout mice for other GRKs are
born and grow normally (6). GRK2 can affect the behavior of a variety of cells, including endothelial
cells (ECs), through diverse pathways.

Angiogenesis, which is different from vasculogenesis, refers to the formation of new blood vessels
from pre-existing blood vessel (7). In vertebrates, angiogenesis is common in various complex
org July 2021 | Volume 12 | Article 6984241
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physiological and pathological conditions. This process involves
a number of signaling cascades that can induce cell activation,
and EC activation and migration are essential components (8–
10). Excessive angiogenesis is often a key factor in the occurrence
and progression of inflammation-related diseases, such as cancer
and rheumatoid arthritis (RA). Thus, anti-angiogenic therapy
has become a promising approach for these diseases in the last 20
years (11, 12). However, there are still unresolved questions that
need further research in this field including its potential targets
and predictive biomarkers, use in different types or different
stages of disease and potential mechanisms of drug resistance
(13, 14).

In this review, we discuss the recently reported regulation
modes of GRK2 in EC activity, with emphasis on the underlying
contribution of this kinase in pathological angiogenesis and
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relevant disease progression (Figure 1). These findings suggest
that GRK2 may be a potential target for anti-angiogenic therapy.
CANONICAL ROLES OF GRK2

GRK2, a ubiquitous member of the GRK family, plays a
fundamental role in GRK family proteins (15). The GRK
family is a subfamily of AGC (protein kinase A (PKA)/G/C-
like) kinases originally defined as inhibitors of GPCR signaling
which depend on G proteins, and appear to play a
comprehensive regulatory role in signal transduction cascades
(16). Upon G proteins binding, GPCRs which constitute the
largest family of membrane receptors and are involved in a wide
variety of physiological or physiopathological regulation, activate
FIGURE 1 | Schematic of GRK2 signaling pathways regulating endothelial cell activity, angiogenesis, and related disease progression. On the one hand, GPCRs and
non-GPCRs binding with agonists can activate Smad2/3 signal and PI3K/AKT signaling pathway, resulting in downregulation of GRK2 expression level. Reduced
GRK2 expression level reduces GPCR desensitization and the inhibition of non-GPCRs. On the other hand, PGE2 activates the EP4/AC/cAMP/PKA pathway, which
mediates GRK2 translocation to the cell membrane, resulting in the reduction of ERK inhibition. In different disease conditions, the decreased GRK2 expression or
the increased GRK2 translocation may improve the activity of endothelial cells, and thus promote angiogenesis and disease progression. VEGF, vascular endothelial
growth factor; TGFb, transforming growth factor b; VEGFR2, vascular endothelial growth factor receptor 2; ALK5, TGF-b type I receptor ALK5 (activin receptor-like
kinase 5); S1P, sphingosine 1 phosphate; S1PR1, sphingosine 1 phosphate receptor 1; b2AR, b2-adrenergic receptor; CXCR2, chemokine (C-X-C motif) receptor 2;
PGE2, prostaglandin E2; EP4, prostaglandin E2 receptor 4; PI3K, phosphoinositide 3-kinase; AKT, protein kinase B; cAMP, cyclic adenosine monophosphate; PKA,
Protein Kinase A; ERK, extracellular regulated protein kinases; memb, membrane; cyt, cytoplasm.
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downstream signaling pathways through their coupled Ga
subunits. Meanwhile, G proteins activate downstream targets
by converting GDP to GTP in response to GPCR conformational
changes. GRKs, together with the cytosolic protein b-arrestin,
can participate in the regulatory processes of GPCRs by coupling
to heterotrimeric G proteins. In particular, ligand-bound GPCRs
are specifically phosphorylated by GRKs, and this process leads
to the recruitment to phosphorylated receptors of b-arrestin and
the inhibition of further G protein activation by causing
uncoupling from G proteins, a procedure known as
GPCR desensitization.

In addition to the inhibitory role of GRKs/b-arrestin in GPCR
signaling, b-arrestin acts as a scaffold protein for several
endocytosis adaptors and signaling mediators (2, 17). b-
arrestin-bound GPCRs are targeted for endocytosis, which
leads to dephosphorylation, re-sensitization and eventual
receptor return to the plasma membrane, thus triggering
receptor internalization, recycling and the modulation of
additional signaling cascades by GPCRs (18). In other words,
GPCR desensitization regulated by GRKs can induce GPCRs to
participate in G-protein independent signaling cascades that
contribute to signal propagation at defined cellular locations
upon GPCR activation. However, the molecular mechanism of
this event has not yet been fully elucidated. GRKs are believed to
be important in b-arrestin-biased signaling, because GRKs are
able to promote high-affinity binding of b-arrestin to GPCRs.
There are also studies that suggest that different phosphorylation
patterns may directly affect b-arrestin–dependent functions, but
this still needs to be further explored (19). Therefore, GPCR
activation may promote either G-coupled proteins, b-arrestin
signaling, or both. GRK-mediated b-arrestin recruitment is
critical for triggering the regulation of multiple intracellular
signaling cascades by GPCRs, a process that controls the
balance between the G protein- and b-arrestin-dependent
GPCR signaling cascades.

As an important bridge of intra- and extracellular signal
transduction, GPCR signals participate in angiogenesis in
pathological conditions, such as ischemic and inflammatory
diseases. For instance, a variety of GPCRs and their ligands are
involved in tumor angiogenesis, such as angiotensin (Ang) II
type I receptor/AngII in breast cancer, sphingosine-1-phosphate
receptor 1 (S1PR1)/sphingosine-1-phosphate (S1P) in
lymphangiogenesis, CXCR4/CXCL12 in prostate cancer, and
CXCR7/CXCL12 in human hepatocellular carcinoma cells (20).
However, whether GRK2 participates in these GPCR signaling
pathways and angiogenesis remains to be verified.
GRK2 HAS MULTIPLE PHYSIOLOGICAL
REGULATORY FUNCTIONS BY BINDING
TO NON-GPCR SUBSTRATES

The role of GRKs in signaling transduction is not limited to the
promotion of b-arrestin binding to activated GPCRs. In addition
to the canonical roles mentioned above, GRK2, as a common
GRK isoform, can initiate noncanonical signaling pathways and
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participate in the regulation of cell behaviors (cell proliferation,
cell differentiation, cell migration, and cell cycle) and related
physiologica l and physiopathologica l processes by
phosphorylating and/or interacting with non-GPCR proteins
(2, 21–23). Non-GPCR proteins include single-transmembrane
receptors, cytosolic proteins, and nuclear proteins.

Although GRKs display kinase activity, GRKs can also
interact with intracellular proteins and modulate downstream
signaling pathways in a kinase activity-dependent and
-independent manner. In phosphorylation-dependent
processes, GRK2 can regulate signaling mediated by other
membrane receptor families, except for GPCRs, including
RTKs for epidermal growth factor receptor (EGFR) (24) or
platelet-derived growth factor receptor (PDGFR) (25). Early
evidence of GRK2 as an RTK signaling modulator was based
on the observation that the activation of EGFR ligand promotes
the translocation of GRK2 to the plasma membrane, thus
initiating the internalization of EGFR. GRK2 overexpression
can also regulate the signal transduction ability of EGFR in
promoting the activation of extracellular regulated protein kinase
(ERK)/MAPK via phosphorylation (26). The catalytic activity of
PDGFR is dependent on the inhibitory activity of GRK2 (27).
Moreover, GRK2 also phosphorylates a large number of non-
GPCRs: non-plasma membrane receptor substrates, such as p38
MAPK, AKT, histone deacetylase 6 (HDAC6), and insulin
receptor substrate (IRS)-1; transcriptional modulators, such as
Smad2/3; the calcium-binding protein, such as downstream
regulatory element antagonist modulator (DREAM); and
cytoskeletal proteins, such as tubulin or ezrin (4, 28).

GRK2 may also contribute to the modulation of cellular
responses in a phosphorylation-independent manner as a
result of its ability to interact with a plethora of proteins
involved in signaling and trafficking, including G protein
subunits, such as Gaq and Gbg; intracellular proteins, such as
phosphoinositide 3 kinase (PI3K), MEK, RalA GTPase, GRK
interacting protein-1 (GIT-1) and adenomatous polyposis coli
(APC) protein; or key players in stress response and survival as
murine double minute 2 (Mdm2) (3, 29). These proteins directly
interact with GRK2 without phosphorylation and cause various
signal cascades and physiological effects. Specifically, the
interaction of GRK2 with PI3Kgamma may facilitate PI3K
recruitment to the membrane, thus contributing to receptor
endocytosis and desensitization (30). The interaction of GRK2/
MEKmay be important for modulating the chemokine induction
of MAPK activation (31). The interaction between GRK2 and
GIT-1 may be important for the modulation of cell migration in
epithelial cells. These complex GRK2 interactions prove that
GRK2 lies at the crossroads of complex signaling pathways and
regulation of cellular behavior.
GRK2 ATTENDS THE MODULATION OF
ENDOTHELIAL CELL ACTIVITY

Recent evidence suggests that GRK2 plays an important role in
the activity of various cells by interacting with multiple proteins
July 2021 | Volume 12 | Article 698424
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such as p38 MAPK, MEK, AKT, ezrin, PI3Kgamma, GIT-1 and
type 1 insulin-like growth factor receptor (IGF1R) (21, 32).
GRK2 phosphorylates manifold chemokine receptors such as
CCR5, CCR2b, CXCR4, and CXCR2, as well as chemotactic
receptors for substance P, S1P, and formyl-peptide, which is in
charge of leukocyte trafficking to the inflammatory foci, T-cell
egression from lymphoid organs, and leukocyte activation and
proliferation (33). In addition, in epithelial cell lines/fibroblasts,
integrins promote sphingosine kinase stimulation leading to
paracrine/autocrine activation of S1P receptors, which recruit
GRK2 to the plasma membrane and interact with GIT-1. This
process can enhance tyrosine phosphorylation of GRK2 and
decrease upon phosphorylation by ERK at S670, which activates
the Rac/PAK/MEK/ERK cascade and promotes cel l
migration (34).

GRK2 can also repress the serum-, insulin-like growth factor
1 (IGF1)-, angiotensin (Ang)II-, tumor necrosis factor (TNF) a-
or PDGF-induced proliferation and migration of thyroid cancer
cell lines (35), human hepatocellular carcinoma cells (32, 36) and
smooth muscle cells (27, 28), respectively. For instance, in
human hepatocellular carcinoma cell lines (HCCLM3 and
HepG2), overexpression of GRK2 inhibits IGF1R signaling
activation, the activation of PI3K/AKT and MEK/ERK
pathways, and the expression of early growth response protein
1 (EGR1), which results in the suppression of proliferation and
migration of cells. However, most of these mechanisms require
further exploration.

Regulation of EC behaviors is similar to that of other cells, but
possesses a specific set of receptors and ligands to orchestrate
these distinct aspects of this process including proliferation,
migration, invasion, and permeability (37, 38). In sinusoidal
ECs, increased expression of GRK2 interacts with many
molecules, which inhibit NO production and further induce
portal hypertension (39). There is an increasing number of
studies showing that signaling pathways related to GRK2 are
involved in common vascular EC activity, especially proliferation
and migration, in both kinase-dependent and -independent
functions as summarized in the following sections. In this
regard, we discussed the potential influence of GRK2
endothelial expression level or localization on cell activity.

Changes in GRK2 Expression Level Impact
Endothelial Cell Activity
The AKT pathway is implicated in vascular endothelial growth
factor (VEGF)-A-dependent EC function, including cell survival,
proliferation, and generation of nitric oxide, via the VEGF receptor-
2/PI3K/AKT-PKB axis (40, 41). Interestingly, the expression level of
GRK2 in ECs may also be a crucial factor in regulating cell activity
through its inhibitory effect on AKT-related signaling pathways
upon distinct stimuli. Ex vivo data in murine lung ECs (MLECs)
show that GRK2 downregulation enhances signaling to both AKT
and ERK cascades under the stimulation of VEGF and S1P, leading
to increased EC migration activity (42). Another study that
supports the above result showed that downregulation of GRK2
with shRNAs in human umbilical vein ECs (HUVECs) was
sufficient to increase the phosphorylated AKT level (43).
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Furthermore, overexpression of GRK2 increased the amount of
GRK2-immunoprecipiated AKT and reduced the levels of activated
AKT and CXCR2 in HUVECs. In addition, EC function can be
inhibited by GRK2/AKT-dependent b2-adrenergic receptor (b2AR)
dysfunctional signaling (44). In bovine aortic ECs (BAECs), GRK2
overexpression induced a marked increase in p-b2AR levels and its
subsequent desensitization, and further induced impairment of
both cell migration and proliferation. At the molecular level, the
deleterious effects of GRK2 on EC function were suggested by the
levels of receptor phosphorylation and reduced AKT and
eNOS activation.

Thus, these observations implied that the GRK2/AKT
interaction mediates EC migration and other activities in vivo.
The GRK2 expression level may be a negatively regulating factor
of EC activity according to the above study results. However, the
effect of GRK2 on cell migration is dependent on the cell type,
and involves its dynamic interaction with a variety of cellular
proteins, leading to differential networks of interaction of GRK2
with cell migration-related signalosomes. Whether these
mechanisms apply to other cell types or conditions requires
further investigation.

Besides the AKT-related axis, the impact of the GRK2
expression level on EC function is involved in other cytokines
and pathways. Knockdown of GRK2 in MLEC results in aberrant
endothelial secretion of platelet-derived growth factor (PDGF)-
BB and chemokine (C-X-C motif) ligand 12 (CXCL12) (42).
PDGF-BB can bind to PDGFR-b on pericytes and through the
stimulation of endothelial production of the pericyte
chemoattractant CXCL12, which is responsible for the
recruitment of pericytes. This study also showed that
macrophage migration was further promoted in the
conditioned medium of MLECs isolated from Tie2Cre-Grk2fl/fl

mice compared with that in WT MLECs, likely related to the
increased basal secretion of CXCL12 and other macrophage
regulatory and chemoattractant factors such as granulocyte-
macrophage colony stimulating factor (GM-CSF) and Factor-
III. In addition, GRK2 levels in ECs can modulate TGF-b
signaling by controlling ALK1 and ALK5 receptors. GRK2
downregulation restored the ALK5/p-Smad2/3 signaling
pathway and inhibited the ALK1/p-smad1/4 signaling pathway.
This effect contributes to the imbalance in TGF-b signaling
toward the ALK5 route rather than the ALK1 route. All these
results mentioned above prove that GRK2 expression level is an
important modulator of EC activity, as GRK2 has crosstalk with
complex up- and downstream interactions in this process.

Changes in GRK2 Localization Impact
Endothelial Cell Activity
In addition to the expression level, the localization in the
membrane (memb) or cytoplasm (cyt) of GRK2 is another
critical factor that determines which proteins at a particular
location GKR2 interacts with, and eventually influences GPCR
signaling and desensitization (15). HUVEC proliferation,
migration, and tube formation in vitro can be increased by
prostaglandin E2 (PGE2)-bound PGE2 receptor 4 (EP4), which
promotes GRK2 translocation to the cell membrane (45). In this
July 2021 | Volume 12 | Article 698424
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process, constitutive phosphorylation by protein kinase A (PKA)
leads GRK2 to associate with the EP4 receptor and maintain
persistent EP4 receptor desensitization. At the molecular level,
inhibition of EP4, cyclic adenosine monophosphate (cAMP),
PKA or GRK2 significantly blocks the PGE2-dependent increase
in the expression of ERK1/2, memb GRK2 and cyt EP4;
upregulates the expression of memb EP4 and cyt GRK2; but
does not affect GRK2 mRNA expression, a process that inhibits
the association of GRK2 and EP4 and increases the association of
cyt GRK2 and ERK1/2. These results suggest that PGE2-induced
EC activation may occur through the EP4/AC/cAMP/PKA
pathway, which mediates GRK2 translocation to the cell
membrane, not the GRK2 mRNA expression level, and the
reduction of the inhibitory effect of GRK2 on ERK1/2. ERK1/2
can phosphorylate GRK2 on Ser670, inhibiting kinase
translocation and catalytic activity towards receptor membrane
substrates (34), which may help to maintain the above process.
Besides the EP4/AC/cAMP/PKA axis, CXCL12 can also improve
HUVEC function by increasing GRK2 translocation, preventing
the inhibitory effect of GRK2 on ERK1/2 in the cytoplasm, and
stimulating ERK1/2 phosphorylation (46).

Overall, these studies suggest that changes in GRK2 expression
and/or localization taking place in ECs may alter GPCRs- or non-
GPCRs-involved signaling through a variety of mechanisms,
eventually activating or inactivating ECs. EC activation,
especially migration, is an essential component of angiogenesis
(10, 47). EC migration is regulated directionally by chemotactic,
haptotactic, and mechanotactic stimuli and further involves
degradation of the extracellular matrix to drive the progression
of migrating cells. GRK2 downregulation in ECs causes defective
tube formation onMatrigel in mice (42). Therefore, we considered
whether GRK2 has an effect on angiogenesis under pathological
conditions and further affects disease progression.
GRK2 MEDIATES THE REGULATION OF
ANGIOGENESIS IN PATHOLOGICAL
CONDITIONS

Angiogenesis is a precisely regulated biological event that
generates new blood vessels from existing vasculature (8).
Frontiers in Immunology | www.frontiersin.org 5
Under physiological conditions, this process occurs during
embryonic development (48), pregnancy, and through the
ovarian cycle, but angiogenesis can also be reactivated in a
variety of pathological conditions, including cancer (49–51),
RA (52–54), ischemia (55, 56) and wound healing (57). The
expression and function of GRK2 is tightly modulated, and its
level and functionality are altered in several pathological
situations (58–60). These changes contribute to EC activation
and further angiogenesis in some pathologies, which has been
preliminarily proven (Table 1).

GRK2 in Tumor Angiogenesis
Tumor angiogenesis is a hallmark of cancer and plays an
essential role in tumor initiation, progression, and metastasis
(63, 64). Microvascular density, architecture, and maturity are
important factors affecting tumorigenesis and progression.
Abnormal vascularization, characterized by hyperplasia,
tortuosity, and leakage, has been suggested to lead to excessive
hypoxia, which, in turn, can drive tumor cells to acquire stronger
growth and invasive capabilities (65, 66). According to the
analysis of clinical samples and in vivo experiments in mice,
GRK2 plays a key role in regulating angiogenesis in a variety
of tumors.

In different human breast cancer samples, deficiency of GRK2
staining is predominantly associated with intratumoral vessels, as
approximately 60% of vessels exhibit only low or no signals for
GRK2, while vessels in the normal tissue surrounding the tumor
core have a higher expression of GRK2 protein (42). This
indicates that GRK2 expression is suppressed during tumoral,
but not normal, angiogenesis, suggesting that GRK2
downregulation could serve as a novel marker for pathological
vasculature. Data analysis in the above studies were from
different breast carcinoma tumor samples; however, the
classification of these breast carcinoma samples was not
described in detail. In view of GRK2 upregulation in luminal
breast cancer cell lines, in spontaneous tumors in mice, and in
some patients with invasive ductal carcinoma (61), confirming
the expression levels of GRK2 in perivascular cells and ECs will
contribute to clarifying the mechanism by which GRK2 regulates
angiogenesis in different types of breast cancer.

In the B16F10 melanoma model, accelerated tumor
progression occurs upon GRK2 downregulation, along with
TABLE 1 | Correlation between GRK2 expression and translocation to pathological angiogenesis.

Diseases Samples sources GRK2
expression

GRK2
translocation

Angiogenesis process Related mechanisms

Breast cancer Patient (42) Down ND Promoted –

Cell line (61) Up ND – HDAC6/Pin1 axis
AKT/ERK cascades

Melanoma Mouse (42) Down ND Promoted Macrophage infiltration
Kaposi’s sarcoma Mouse (62) Down ND Promoted Increased expression of essential angiogenesis-related genes
Rheumatoid arthritis Patient (45) Up ND Promoted –

Rat (45) Up To cell membrane Promoted EP4/AC/cAMP/PKA-mediated
ERK1/2 activation

Limb ischemia Rat (44) Up ND Inhibited bAR-desensitization/down-regulation
ND, not determined.
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immature tumor vessel architecture, increased vessel perimeter,
and tortuosity compared with that in wild-type (WT) mice (42).
Furthermore, compared with WT animals, tumor vessels
growing in endothelial GRK2 knockdown mice were less
covered by pericytes, and the microenvironment of these
tumors also exhibited a marked increase in hypoxia,
adrenomedullin, and higher infiltration of macrophages. GRK2
is involved in T cell infiltration (67), while the results of previous
studies suggest that GRK2 may be involved in macrophage
infiltration in the tumor microenvironment. Tumor-associated
macrophages are divided into two types (M1 and M2
macrophages), which play distinct roles in tumor angiogenesis
(68–70). Thus, further studies are needed to elucidate the
potential role of GRK2 in tumor angiogenesis by regulating
macrophage infiltration.

Kaposi’s sarcoma (KS), the most common tumor type in
patients with acquired immune deficiency syndrome, is a highly
disseminated angiogenic tumor of ECs linked to infection by KS-
associated herpesvirus (KSHV) (71). KS is histologically
characterized by an excessively dense and abnormal
morphology of blood vessels and vast inflammatory infiltration
(72). In a KS mouse model, knockdown of GRK2 not only
markedly enhanced KSHV-induced angiogenesis, but also
increased the transcriptional expression levels of essential
angiogenesis-related genes (43). In contrast, overexpression of
GRK2 in BC3 cells impaired the angiogenic capability of KSHV
in an in vivoMatrigel plug assay (62). In general, studies relating
to these three types of tumors suggest that the downregulation of
GRK2 is closely related to abnormal angiogenesis in the
tumor microenvironment.

GRK2 in Pannus of Rheumatoid Arthritis
Pannus is the key event and characteristic pathological feature
of RA causing joint destruction, and angiogenesis is a critical
factor in the development of pannus, and is considered
to facilitate hypoxia and extravasation of inflammatory
leukocytes, responsible for maintaining the inflammatory
condition (53, 73). Based on in vivo trials in collagen-induced
arthritis (CIA) rats, EP4/AC/cAMP/PKA-mediated GRK2
translocation to the cell membrane and the inhibition of
GRK2 by ERK1/2 has been shown to be involved in the
regulation of PGE2-dependent proangiogenic processes (45).
Moreover, compared with normal synovial tissues (STs),
abundant GRK2 protein expression levels, vascular branches,
and pannus formation were increased in the STs of patients
with RA and in CIA rats. Accordingly, GRK2 upregulation and
localization towards the cell membrane may both play a crucial
role in the mediation of pathological angiogenesis in
RA. Although a suppression of GRK2 protein expression
(~55%) and kinase activity was found in peripheral blood
mononuclear cells (PBMCs) in patients with RA compared
with healthy subjects (74), the translocation of GRK2
in PBMCs and the expression pattern of GRK2 in the
pathological areas of joints are of great significance to elucidate
the mechanism by which GRK2 regulates angiogenesis and needs
further study.
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GRK2 in Limb Ischemia
Pathological ischemia leads to increased sympathetic
catecholamine levels, which can further cause b2AR signaling
dysfunction in ECs, resulting in an insufficient angiogenesis
response and loss of vascular tissue integrity and/or function
(75, 76). In a rat hind limb ischemia model, ischemia induces the
upregulation of GRK2 protein levels in skeletal muscle. This
event appears to be critical in the process of revascularization of
the ischemic hind limbs as it is closely associated with bAR-
desensitization/down-regulation, while bARKct gene therapy
and subsequent GRK2 inhibition promote angiogenesis in this
model (44). These results suggest that GRK2 expression level
may negatively regulate angiogenesis in ischemic limb models.

GRK2 as a Target for
Anti-Angiogenesis Therapy
The above results suggest that regulating the GRK2-involved
pathway in pathophysiological contexts characterized by
abnormal angiogenesis leads to promising anti-angiogenesis
therapy. Paeoniflorin-6’-O-benzene sulfonate (CP-25), a
chemical modification derivative of paeoniflorin, has
outstanding anti-inflammatory and soft regulation of
inflammatory immune response (SRIIR) activities (77–80). As
CP-25 can attenuate pannus formation in CIA and adjuvant
arthritis (AA) models (81, 82), further studies have confirmed
that the mechanism is closely related to GRK2. CP-25 inhibits
PGE2-induced angiogenesis by downregulating EP4-AC-cAMP-
PKA-mediated GRK2 translocation to the cell membrane, in
parallel with reducing the inhibition of GRK2 by ERK1/2 (45).
Furthermore, CP−25 inhibited pannus formation in the
synovium of rats with AA, which may be associated with the
downregulation of CXCL12/CXCR4 expression in the synovium
(46). These findings provide a potential new mechanism for anti-
angiogenic therapy with CP-25 in RA. Moreover, bARKct gene
therapy in a hindlimb ischemia (HI) model induced GRK2
inhibition and promoted subsequent angiogenesis by
suppressing ischemia-induced b2AR downregulation, but the
detailed mechanism remains to be explored (44). Although
these results suggest that GRK2 may be an effective target for
antiangiogenic therapy in special disease models, whether this
approach is still effective in tumors remains unknown.

Manipulation of tumor-associated angiogenesis represents a
promising strategy to limit cancer progression; however, most of
clinical tumor anti-angiogenesis drugs can easily cause drug
resistance in patients (83–85). The main reason for drug
resistance is that these drugs completely inhibit angiogenesis,
which leads to an imbalance state that induces more severe
angiogenesis. The results mentioned in this review suggest that
either the low expression level of GRK2 or the excessive
translocation activity of GRK2 can cause pathological
angiogenesis. This may indicate that the imbalance and
abnormal state of GRK2 expression and activity are the causes
of pathological angiogenesis. Therefore, it is important to restore
GRK2 to its normal state via soft regulation.

In this regard, we hope that GRK2 can be realized in the
future as a new potential anti-angiogenesis therapeutic target in
July 2021 | Volume 12 | Article 698424

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Kuai et al. GRK2 Regulates Pathological Angiogenesis
tumor therapy for tumor vascular normalization, which means a
decrease in the number of vessels and an increase in perfusion
(66, 86, 87). The tumor microenvironment is a complex network
of multiple chemokines, metabolic reactions, and signaling
cascades (88, 89). This requires in-depth exploration of the
complex mechanism of GRK2 and various molecules in
the tumor microenvironment in different tumor types in the
future. The pathogenesis of different diseases is distinct and
complex. Thus, it is important to study the relationship between
GRK2 expression levels in specific cell types or in specific
intracellular locations and angiogenesis for specific disease types.
CONCLUSIONS AND PERSPECTIVES

It has become clear that GRKs are multifunctional proteins that
can interact not only with GPCRs but also with intracellular
multiple non-GPCR proteins. The findings summarized in this
review strongly suggest that changes in GRK2 expression levels
and localization in ECs induced by distinct stimuli, may
modulate GPCRs- and/or non-GPCRs-involved signaling
through a variety of mechanisms, and further influence on cell
proliferation, migration, and other behaviors. Moreover, these
changes related to GRK2 may eventually lead to pathological
angiogenesis in organisms. Under different disease conditions (in
tumors or in RA), the GRK2 activity leading to EC activation and
angiogenesis show opposite trends. Decreased GRK2 expression
or the increased GRK2 translocation can both improve the
activity of ECs, thus, promoting angiogenesis and disease
progression. This suggests that the imbalance and abnormal
activity of GRK2 may be the main cause of pathological
angiogenesis. Therefore, when GRK2 is used as the target of
anti-angiogenesis therapy, we should aim to restore the normal
state of GRK2 activity, rather than completely inhibit or
promote it.

However, there are still several issues remain to be resolved in
the future. An increasing number of studies have shown that
GRK2 expression levels, localization, and functional status are
Frontiers in Immunology | www.frontiersin.org 7
closely related to inflammation and inflammation-related
diseases (3, 33, 90, 91). The network of inflammatory
microenvironment components is complex. A better
understanding of GRK2 specificity of expression and
translocation mode in specific inflammation/pathological
conditions will be pivotal to reveal the roles of this kinase in
progression and other processes related to inflammation and
diseases. Moreover, in view of existing research results, GRK2
may be a potential anti-angiogenesis therapy target in a variety of
pathological conditions. However, there is a problem in that the
activity of GRK2 affects angiogenesis in various ways in different
diseases, including in different subtypes and different stages of
progression of the same disease, such as in cancers (3, 42, 61).
Thus, the specific contributions of GRK2 in angiogenesis and
potential mechanisms therein, its integration in ECs and other
cell types related to angiogenesis, and the expression and/or
translocation changes that occur during disease development,
need to be further confirmed. The above key issues should be
addressed in future research to gain further insight into the roles
of GRK2 and help in the design of GRK2-related therapeutic
strategies for different diseases.
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