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Abstract

Previous research has sought to quantify head impact exposure using wearable kinematic

sensors. However, many sensors suffer from poor accuracy in estimating impact kinematics

and count, motivating the need for additional independent impact exposure quantification

for comparison. Here, we equipped seven collegiate American football players with instru-

mented mouthguards, and video recorded practices and games to compare video-based

and sensor-based exposure rates and impact location distributions. Over 50 player-hours,

we identified 271 helmet contact periods in video, while the instrumented mouthguard sen-

sor recorded 2,032 discrete head impacts. Matching video and mouthguard real-time

stamps yielded 193 video-identified helmet contact periods and 217 sensor-recorded

impacts. To compare impact locations, we binned matched impacts into frontal, rear, side,

oblique, and top locations based on video observations and sensor kinematics. While both

video-based and sensor-based methods found similar location distributions, our best

method utilizing integrated linear and angular position only correctly predicted 81 of 217

impacts. Finally, based on the activity timeline from video assessment, we also developed a

new exposure metric unique to American football quantifying number of cross-verified sen-

sor impacts per player-play. We found significantly higher exposure during games (0.35,

95% CI: 0.29–0.42) than practices (0.20, 95% CI: 0.17–0.23) (p<0.05). In the traditional

impacts per player-hour metric, we observed higher exposure during practices (4.7) than

games (3.7) due to increased player activity in practices. Thus, our exposure metric

accounts for variability in on-field participation. While both video-based and sensor-based

exposure datasets have limitations, they can complement one another to provide more con-

fidence in exposure statistics.

Introduction

Concussions are a common injury in contact sports, with an estimated 300,000 sports-related

concussions in the United States annually [1]. Concussions lead to short-term neurological

deficits [2,3], and a history of concussions have been correlated with increased risk of
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developing long-term neurodegeneration [4]. Thus, to improve player safety and health, it is

imperative we understand the mechanism of concussion. One critical step towards under-

standing concussion mechanisms is to quantify the exposure of players to potentially injurious

head impacts. Many studies have found that players may be more susceptible to sustaining a

concussion depending on their exposure to head impacts [5,6], and more recent studies have

suggested that exposure to repeat subconcussive head impacts over a career could also increase

risk of long-term neurodegeneration [7,8].

To quantify head impact exposure to players on the field, previous studies have focused on

instrumenting American football players with wearable sensors [5,9–19] (Table 1). These sen-

sors have proven useful in collecting both head impact count and the kinematics of head

impacts from a large number of players. In particular, the Head Impact Telemetry System

(HITS) [20,21] has been used extensively to collect data on hundreds of thousands of impacts

over the past decade, and exposure data collected from these studies have been used to define

injury thresholds and develop helmet testing protocols [22].

However, recent studies have shown that HITS, and many other wearable sensor systems,

may suffer from poor accuracy in both classifying head impacts (impact count) [23–25], and

measuring head impact kinematics (impact severity and location) [21,26–28]. This motivates

the need to verify sensor-based measurements through comparison with other independent

exposure measurements.

Video assessment represents an option for collecting an independent dataset of head impact

exposure. Video assessment has been used extensively to review plays and sports injuries by

coaches and medical professionals [29–33]. Several sensor-based exposure papers also use

video to confirm sensor recorded impacts [11–13,16,17]. However, current methodologies

assume that sensors are capable of detecting all head impact instances and video assessment is

dependent on sensor-based recordings. Without independently analyzing video and sensor

measurements, bias could be introduced into the exposure analysis. Furthermore, previous

studies have only evaluated sensor head impact precision and do not correct for false negatives

in impact detection.

In this work, we introduce a video assessment protocol to collect an independent video-

based head impact exposure dataset from seven collegiate American football players for a sin-

gle season. We also equipped players with an instrumented mouthguard [23,27,34,35], which

collected impact kinematics. The main goal of this study was thus to compare the exposure

rates and impact location distributions determined by independent video-based and sensor-

based methodologies. This will help inform future protocols for quantifying exposure data and

using complementary analysis of sensor or video data.

In addition, we combine sensor and video information to introduce a new exposure metric

for quantifying head impact exposure unique to American football, which measures the num-

ber of head impacts sustained over a single player-play. While traditionally, exposure is quanti-

fied as the number of impacts per player exposure (defined as a player participating in a

practice or game) or per hour of play time, American football is a unique sport where every

player is expected to spend varying amounts of time on the field and in play. As an example,

statistics on National Football League games report an average of 133.6 plays per game, of

which 10.3 involve punting. Thus, specialized players such as punters are on the field, and thus

exposed, far less often than players such as linemen. Our exposure metric accounts for variabil-

ity in on-field participation, and normalizes exposure by the base unit for American football: a

single play. This metric is also a prime example for the complementary analysis of video and

sensor exposure because head impact kinematic sensors cannot measure non-impact activities

and video does not have sufficient resolution to identify discrete head impacts.

Comparison of video-based and sensor-based head impact exposure
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Methods

To collect a video-based head impact exposure dataset, we relied on a tiered video assessment

protocol. Impact exposure and kinematics were also independently measured using the instru-

mented mouthguard.

Sensor-based exposure data collection

Data were collected from the Stanford University American football team during the 2015 fall

season. Seven players were consented for study participation through the Stanford Internal

Table 1. Previous exposure studies.

Previous Study Team Seasons Sensor Additional Impact

Verification

Impact Count Impact Severity

Beckwith et. al.

[6]

NCAA Div.

1

HS Varsity

2005–2010 HITS Exclude <10g peak linear

acceleration

Exclude impacts outside event

time

Exclude non-head impacts

14.7 impacts per event for

concussed players

20.7g median, days without

concussion

22.5g median, days with

concussion

Brolinson et. al.

[10]

NCAA Div.

1

2003–2004 HITS 10g impact threshold >7.2 impacts per event� 15.3g median

Broglio et. al. [11] HS Varsity 2007 HITS 15g impact threshold

Questioned players’ severe

impacts

15.9 impacts per event 24.8g mean during games

23.3g mean during practices

Crisco et. al. [12] NCAA Div.

1

2007–2009 HITS Exclude <10g peak linear

acceleration

Rigid-body modeling

Video correlation of impacts

>125g

6.3 impacts per practice

14.3 impacts per game

20.5g median

Duma et. al. [14] NCAA Div.

1

2003 HITS 10g impact threshold

Video correlation of impacts

>15.0 impacts per game�

>7.6 impacts per practice�
32g mean

Kawara et. al. [15] NCAA Div.

1

2015 i1 Mouthguard 10g impact threshold 7.0 impacts per event 30.3g mean

Mihalik et. al. [16] NCAA Div.

1

2010 HITS Exclude <10g peak linear

acceleration

Video correlation of impacts��

14.4 impacts per game 24.7g mean in anticipated

impacts��

27.0g mean in unanticipated

impacts��

Mihalik et. al. 2

[17]

NCAA Div.

1

2005–2006 HITS Exclude <10g peak linear

acceleration

Exclude impacts outside event

time

57,024 impacts from 72

players

over two seasons

22.7g mean in full contact

practice

21.1g mean in games

Naunheim et. al.

[18]

HS Varsity Not

Reported

Linear Accels in

Helmet

10g impact threshold

Video correlation of impacts

40.5 impacts per player-

hour

during game

29.2g mean

Reynolds et. al.

[20]

NCAA Div.

1

2013 x2 Skin Patch 10g impact threshold

Proprietary false impact filter

Exclude impacts outside event

time

24.2 impacts per game

16.8 impacts per full pad

practice

28.2g mean during games

28.8 mean during full pad

practices

Shnebel et. al. [19] NCAA Div.

1

HS Varsity

2005 HITS 10g impact threshold >12.9 impacts per event,

college�

>21.7 impacts per event,

HS�

58.8g 95th percentile, college

56.2g 95th percentile, high

school

HS = high school

� Papers state impacts per event with at most some number of players equipped in an event. Impact count is calculated assuming all players equipped, but this is not

necessarily true and is not reported.

�� Mihalik et. al. [16] only performs video analysis on a subset of impacts collected and does severity statistics on the subset.

https://doi.org/10.1371/journal.pone.0199238.t001
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Review Board IRB #34943. We obtained informed consent from players in written form. Play-

ers represented a variety of positions (three offensive linemen, one running back, one fullback,

one wide receiver, and one defensive linebacker).

Players wore instrumented mouthguards [34,35] (Fig 1) for the entire fall season in all prac-

tices and games. Before the 2015 fall season, we collected upper dentition impressions from

our seven consented players. Electronic boards containing kinematic sensors, flash memory,

and processing were embedded between two layers of 3mm ethylene vinyl acetate, which were

pressure formed against the dentitions.

The electronic boards contained a tri-axial linear accelerometer (H3LIS331) and tri-axial

gyroscope (ITG3701A), both sampling at 1000Hz. The linear acceleration data were filtered at

CFC180 (300Hz fourth order Butterworth low pass filter) [36] while the angular velocity data

were filtered with a 184Hz fourth order Butterworth low pass filter (manufacturer defined

bandwidth). Impacts were identified using a 10g linear acceleration magnitude threshold, and

data were collected 10ms before and 90ms after impact trigger. Furthermore, the instrumented

mouthguard was equipped with an infrared (IR) proximity sensor (AMS TMD2771) designed

to detect the presence of teeth within the mouthguard tray [23,37]. This allowed us to only

consider impact events where the instrumented mouthguard was properly worn, as players

commonly removed the instrumented mouthguard when on the sideline. The mouthguard

was designed to last 3.5 hours and collect up to 1638 impacts. While the primary purpose of

this work was to collect an independent video-based exposure dataset for comparison against

sensor-based exposure statistics, the dataset also serves as a training dataset to design an

impact detection algorithm for the instrumented mouthguard [37].

Impacts collected on the instrumented mouthguards were time stamped based on an internal

real-time clock to within one second. Internal clocks were synchronized to the National Insti-

tute of Standards and Technology time (nist.time.gov) prior to an event. A unique “time-sync”

mouthguard not built for any players was used to synchronize mouthguard times with the cam-

era times for impact correlation. This was accomplished by having an athletic trainer apply

known impacts on the “time-sync” mouthguard in view of all cameras. The real-time stamps on

the “time-sync” mouthguard were matched with those on the cameras after the event.

Video-based exposure data collection

Our video assessment protocol utilized multi-angle video to better view players on the field,

and a tiered assessment method for both sensitive and specific identification of activities, most

notably helmet contact periods (Fig 2).

Fig 1. Instrumented mouthguard for measuring impact severity. (A) Sensor board containing tri-axial linear

accelerometer, tri-axial angular gyroscope, and infrared proximity sensor are embedded (B) inside a custom-formed

instrumented mouthguard.

https://doi.org/10.1371/journal.pone.0199238.g001
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Video was first collected during practices and games from multiple viewing angles using

1080p resolution cameras recording at 30fps. We obtained two videos per field, with one video

taken from the end-zone and another taken from the sideline. Because practices utilized multi-

ple fields, there were four videos per practice, and two videos per game.

Next, videos were trimmed to only include plays, which cut video time in half. Then, in a

first round of video assessment, several trained raters were tasked with tracking single players

in each video and tagging their activity. In this first round of video assessment review, raters

were instructed to be sensitive to Helmet Contact activities. Finally, one of the authors, who

had over three years of experience deploying wearable sensors and evaluating video footage,

performed a second round of video assessment of all identified periods of Helmet Contact.

The author viewed periods of Helmet Contact from multiple angles with the purpose of being

specific in identifying Helmet Contact activities.

Video assessment first round

During the first round of video assessment, raters were tasked with tracking single players in

all videos associated with an event and labeling their activity. A total of fourteen raters were

trained to classify player actions in the videos.

We classified player activity with six distinct labels: Helmet Contact, Body Contact, No

Contact, Obstructed View, Idle, and Not in Video (Fig 3). We defined Helmet Contact activity

as any continuous period with direct contact to the tracked player’s helmet, and Body Contact

as any continuous period with contact elsewhere on the body. While Body Contact could

induce head accelerations through whiplash effects, they were not considered head impacts in

this analysis. No Contact events were classified whenever players were observed on the field,

participating in a play, but not in contact with anyone or anything. Obstructed View labels

were used whenever a player’s helmet could not be clearly seen in video due to obstruction,

such as when a player was tackled by multiple opponents and could not be seen. Idle events

were classified whenever a tracked player was observed in video, but not on the field participat-

ing in the play. This was most commonly observed when the player was on the sideline.

Finally, Not in Video events occurred when a player was not visible.

Fig 2. Overview of tiered video assessment for collecting head impact exposure dataset. (A) Multiple video angles were collected for each

practice and game, with at least one camera capturing an end-zone view and one camera capturing a sideline view. (B) Video was trimmed by

technicians to only include play footage. (C) Trained raters performed a first round of video assessment, tracking specific players and labeling their

activity. (D) A second round of video assessment performed by one of the authors confirmed Helmet Contact activities.

https://doi.org/10.1371/journal.pone.0199238.g002

Comparison of video-based and sensor-based head impact exposure
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For the purposes of this study, we asked raters to be particularly sensitive to identifying Hel-

met Contact activities. Helmet Contact activities were tagged whenever the tracked player’s

helmet overlapped with another player or object in video. Additionally, multiple Helmet Con-

tact activities were tagged when there were potentially multiple independent helmet impacts in

quick succession. This provided an upper bound on the number of Helmet Contact activities

sustained.

Due to the large number of videos, each video was only viewed by one rater. Thus, it was

necessary to train raters to classify player actions consistently and assess rater reliability.

Because we instructed raters to be sensitive to Helmet Contact events, we assessed raters on

their reliability in identifying Helmet Contact events. First, raters were trained on a 2-minute

demonstration video that explained activity classifications. Next, raters were evaluated on a

10-minute video to ensure good rater reliability. Both training and evaluation video clips were

taken from videos collected as part of this study. Rater reliability was assessed by comparing

the number of Helmet Contact events classified by each rater in the 10-minute evaluation

video to the number of Helmet Contact events classified by the author performing a second

round assessment. The fourteen raters classified an average of 88% of the Helmet Contact

events identified by the second round assessment author.

Video assessment second round

After raters classified player actions within the videos, an author with over three years of expe-

rience deploying wearable sensors and analyzing video footage performed a more detailed

analysis for specific identification of Helmet Contact activities. Because Helmet Contact repre-

sents potential head impacts and exposure to injury, it was necessary to perform a more

detailed breakdown to confirm a Helmet Contact activity and obtain qualitative information

such as contact location and directionality.

Fig 3. Activity classifications for tracking player activity and identifying helmet contact activities with high sensitivity. Tracked player marked

with a red arrow. (A) Raters identified Helmet Contact activities whenever the tracked player’s head overlapped with an opposing player. (B) Body

Contact activities when there was contact not involving the head. (C) No Contact activities when player was in play, but not actively in contact. (D)

Obstructed View activities when there was no clear view of the player’s head. (E) Idle activities when players were observed on the sideline, or

otherwise not in play. Finally, (F) Not in Video activities when tracked player was not in the video.

https://doi.org/10.1371/journal.pone.0199238.g003
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For each rater identified Helmet Contact activity, the author reviewed all video angles to con-

firm Helmet Contact activity (Fig 4). Observed Helmet Contact activities were then further clas-

sified by contact location to the player (helmet front, side, top, rear, and front and rear oblique),

and contact location on the opponent (helmet, body, upper limb, lower limb, and ground).

Comparison of sensor-based and video-based exposure

Using the sensor and video protocols, we were able to collect independent sensor-based and

video-based impact exposure data. Helmet Contact activities were compiled after the second

round of video assessment. For the sensor-based head impact exposure data, we took discrete

impact recordings from the instrumented mouthguard and considered only head impacts that

occurred during practice or game periods (as provided by athletic training staff) and had IR

readings indicating instrumented mouthguards were properly worn. We then cross-verified hel-

met contact periods and discrete impact events between video-based and sensor-based exposure

sets respectively by comparing the synced time-stamps. This differs from previous video confir-

mation protocols in that we identified helmet contact periods in video independently [24,25].

Comparing exposure rates

Using the independent video-based helmet contact periods, sensor-based impacts, and cross-

verified impacts, we computed a traditional exposure metric: the number of helmet contact

Fig 4. Second round video assessment for specific helmet contact activity identification. Multiple videos were used

to confirm Helmet Contact activities. Red arrows mark the tracked player, with blue arrows marking other players.

End-zone videos show helmet overlap, but sideline video showed (A) definitive head contact and (B) no helmet

contact.

https://doi.org/10.1371/journal.pone.0199238.g004
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periods or head impacts per player-hour (normalizing by number of hours recorded by both

the mouthguard and video). We then computed our new exposure metric: the number of

cross-verified sensor-based head impacts per player-play. Plays were discretized using the

video-based player activity timeline combined from all videos during an event. Helmet Con-

tact, Body Contact, and No Contact activities were associated with players in play, and the Idle

and Not in Video activities were associated with players not in play. Sequences of Helmet Con-

tact, Body Contact, and No Contact activities were represented by a single play. Finally, we

also computed the number of plays per player-hour.

Comparing impact location distributions

Next, we compared the impact location distributions from cross-verified video-based helmet

contact periods and sensor-based head impacts. We defined location vectors representing

front (1, 0, 0), rear (-1, 0, 0), side (0, ±1, 0), oblique (±1, ±1, 0), and top (0, 0, 1) impacts (Fig 5).

During second round video assessment, the author qualitatively classified cross-verified helmet

contact periods into a location bin to obtain a video-based impact location distribution. For

sensor-based impact location distribution, we explored several processing techniques of the

cross-verified head impact kinematics to bin impact locations.

First, we integrated sensor linear acceleration and angular velocity data to obtain linear

velocity, linear position, and angular position (defined using XYZ Euler angles) during each

impact. We also differentiated angular velocity data to obtain angular acceleration [27,38]. We

then found the time of peak magnitude linear and angular accelerations, velocities, and posi-

tions during each impact. Using the time of peak magnitude, we identified the 3 degree-of-

freedom peak linear and angular acceleration, velocity, and position vectors. Traditionally, the

Fig 5. Impact location vectors and mouthguard kinematics processing. (A) Locations are binned into front, front oblique, side, rear oblique, rear, and top impacts.

(B) Video-based helmet contact periods were qualitatively binned into impact locations during second round video assessment by the rating author. For sensor-based

head impacts, kinematics were processed by first integrating or differentiating sensor linear acceleration and angular velocity signals to obtain linear velocity, linear

position, angular acceleration, and angular position (represented with XYZ Euler angles). Peak motion (angular or linear acceleration, velocity, or position) vectors were

found by identifying the peak magnitude and determining the 3 degree-of-freedom components. Peak linear acceleration, velocity, and position vectors were binned

directly. We also incorporated peak angular motion vectors to correct respective peak linear motion vectors.

https://doi.org/10.1371/journal.pone.0199238.g005
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peak linear acceleration vector has been used to define impact location, with impact location

occurring in the opposite direction (an impact to the front of the head causes acceleration

towards the rear of the head) [13]. Thus, we binned impacts using linear data by separately

finding the location vector with the smallest angle with respect to the sensor-based peak linear

acceleration, velocity, and position vectors.

To utilize the peak angular data, we note that if we treat the head and neck as a simple pen-

dulum, the linear and angular motion vectors should be orthogonal. Thus, we define a cor-

rected motion vector by first taking the cross product of the peak linear acceleration, velocity,

or position vector with the respective angular acceleration, velocity, or position vector. We

then cross the result with the respective angular acceleration, velocity, or position vector to

obtain a corrected motion vector, whose location we bin by again finding the location vector

with the smallest angle.

The cross-verified discrete impacts from the instrumented mouthguard were also used to

assess impact severity exposure to compare against previously reported values. We defined

severity based on the peak linear acceleration, angular velocity, and angular acceleration mag-

nitude from each impact.

Results

Fourteen raters reviewed over 163 hours of video for the seven players spanning 11 practices

and 6 games during the 2015 fall season. This represented over 62 hours of mouthguard

recordings with over 50 hours of actual in-game or in-practice time. In that time, players par-

ticipated in 927 plays. Raters identified 1004 Helmet Contact activities after first round video

assessment, of which 271 were confirmed following second round video assessment. The

instrumented mouthguard recorded a total of 13,034 impacts, of which 10,949 occurred during

practice or game periods. 2,032 of these were determined to be in-mouth impacts based on IR

readings. When matching time stamps of video-based helmet contact periods and sensor-

based head impact events, we cross-verified 193 video-based helmet contact periods and 217

sensor-based impact events (Fig 6).

Impact exposure

Treating sensor-based and video-based exposure data separately, we observe a large discrep-

ancy in exposure rates (Fig 6). The instrumented mouthguard identified 2,032 impacts in the

Fig 6. Comparison of video-based and sensor-based head impact exposure. (A) Exposure rates collected from independent (A) video-based and (B) sensor-based

methods differed drastically. Our instrumented mouthguard identified an order of magnitude more discrete head impacts than video-based helmet contact periods.

Cross-verifying head impacts with helmet contact periods yields a more consistent 217 discrete head impacts within 193 helmet contact periods. Delineating by event

type, we found that there was greater head impact exposure in practices than in games.

https://doi.org/10.1371/journal.pone.0199238.g006
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50 hours of recorded play-time, which gives an exposure rate of 40.5 (95% CI: 38.7–42.3)

impacts per player-hour. In video assessment, there were 271 video-based helmet contact peri-

ods, which gives an exposure rate of 5.40 (95% CI: 4.78–6.08) helmet contact periods per

player-hour. Finally, the 217 sensor-based discrete head impacts cross-verified with video hel-

met contact periods gives an exposure rate of 4.32 (95% CI: 3.77–4.94) impacts per player-

hour.

Next, we further delineate exposure based on event type (games or practices). When consid-

ering sensor-based results independently, the instrumented mouthguard had double the head

impact rate in games than in practices. For independent video-based exposure and cross-veri-

fied exposure, exposure during practices was higher. Even for cross-verified mouthguard

impacts, we found greater head impacts per player-hour exposure in practices (4.70, 95% CI:

3.98–5.52) than in games (3.68, 95% CI: 2.85–4.66), though the difference is not significant

(p = 0.105). When considering the number of cross-verified sensor-based impacts per player-

play however, we found that most players sustained more impacts per player-play during

games than during practices. Indeed overall, players experienced significantly fewer impacts

per player-play during practices (0.20, 95% CI: 0.17–0.23) than during games (0.35, 95% CI:

0.29–0.42) (p<0.05). This discrepancy is likely due to a difference in amount of play seen,

where all players participated in significantly more player-plays per player-hour in practices

(23.16, 95% CI: 21.52–24.90) than in games (10.43, 95% CI: 9.01–12.01) (p<0.05).

Impact location

We quantified the distribution of impact locations in our cross-verified video-based helmet

contact periods and sensor-based head impacts (Fig 7). In both cases, the majority of helmet

contact periods or head impacts occurred to the front, front oblique, and sides of the head

respectively. 40.5%, 23.1%, and 30.3% of impacts were observed in video assessment in the

front, front oblique, and sides of the head for a total of 93.8% of impacts. According to our pro-

cessed mouthguard kinematics, an average of 85.8% of impacts occurred to the front, front

oblique, and sides of the head.

When comparing the location determined through video with the location determined

used the processed mouthguard kinematics, we found that our best processing technique (cor-

rected linear position) only predicted impact location correctly in 81 of 217 impacts (37.3%).

The traditional peak linear acceleration process, however, was least accurate with only 61 of

Fig 7. Comparison of video-based and sensor-based impact location distributions. For both video-based and sensor-

based distributions, the majority of impacts are to the front, front oblique, and sides. Methods for processing sensor

kinematics to obtain location generally did not match well with video locations (number of matches in parentheses). Methods

using integrated (position) kinematics and incorporating angular motions (corrected) had the best match.

https://doi.org/10.1371/journal.pone.0199238.g007
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217 impacts (28.1%) correctly predicted. In general, correctly identifying impact location

improved with integration, and improved when assuming orthogonality with angular

measures.

We also quantified head impacts based on the opposing impact object (opposing helmet,

body, limb, or ground), which can only be determined from video assessment. We found 64%

were to an opponent’s helmet, 27% were to an opponent’s body, 5% were to an opponent’s

upper or lower limbs, 3% were to the ground, and 1% were to other objects such as practice

pads.

Impact severity

Impact severity was only quantified in the 217 impacts recorded by the instrumented mouth-

guard with high IR and cross-verified with video. We delineate impact severity based on event

(games or practices). Over all players, the median peak linear acceleration, angular velocity,

and angular acceleration magnitude was 18.4g (95% CI: 15.2g-19.8g), 9.4rad/s (95% CI:

8.5rad/s-10.2rad/s), and 1240.5rad/s2 (95% CI: 1109.1rad/s2-1475.9rad/s2) respectively during

practices, and 23.2g (95% CI: 18.5g-26.1g), 12.5rad/s (95% CI: 10.8rad/s-13.9rad/s), and

1435.0rad/s2 (95% CI: 1288.4rad/s2-1723.3rad/s2) respectively during games. While the medi-

ans were larger during games, only peak angular velocity magnitude had a significant differ-

ence (p<0.05).

Discussion

In this work, we present a tiered video assessment protocol for obtaining an independent

video-based dataset for head impact exposure in American football to compare against sensor-

based impact exposure and impact location distributions. This work differs from previous

head impact exposure datasets that rely primarily on imperfect head impact sensors, with a

few datasets further confirming true positive vs. false positive head impacts in video. Instead,

we treat the video assessment as an independent exposure dataset. Exposure datasets collected

with impact sensors alone are limited by a high occurrence of false positives due to the sensitiv-

ity of motion sensors, and known innaccuracies of many sensor systems. Video assessment of

exposure data are limited by the qualitative nature of analyzing video and the inability to quan-

tify impact kinematics. However, in this study, we demonstrate that the two methods can com-

plement one another and reveal directions for improvement in sensor-based and video-based

data collection. Combining these information, we also introduce a new American football spe-

cific exposure metric based on the number of sensor-based discrete head impacts per video-

observed player-play, which account for players varied involvement during events.

Comparing independent exposure data

To demonstrate the limitations of independent video-based and sensor-based head impact

exposure, we highlight key differences between between the independent exposure sets and

the exposure set determined with impacts cross-verified in both video and sensors.

First, we note that the instrumented mouthguard only detected 71.2% of the video classified

Helmet Contact events, missing 76 of 271 events. One possible reason for this is that the instru-

mented mouthguard was set to record an impact event when the linear acceleration magnitude

exceeded 10g, which is similar to impact thresholds employed in previous work (Table 1). In

video assessment however, Helmet Contact events were identified by observing physical con-

tact of the helmet with another object, not accounting for the severity of the contact. Thus,

observed Helmet Contact events could have linear accelerations below the 10g sensor

Comparison of video-based and sensor-based head impact exposure
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threshold. In fact, 81% of unrecorded impacts were noted as “light severity” or involved body

or facemask impacts.

Previously, the 10g sensor threshold was chosen to differentiate head impacts from other

events resulting in head motion, such as jumping or running [39]. But, as researchers are sug-

gesting multiple mild impacts could have implications on brain injury risk and long-term

degeneration, it is becoming increasingly important to identify any head impact, regardless of

severity. Moving to a 20g threshold would result in a loss of an additional 103 head impacts

from our dataset, resulting in a sensitivity of 34.0%. This agrees with previous literature inves-

tigating the importance of the linear acceleration threshold in identifying impacts [39].

Second, the instrumented mouthguard alone detected 2,032 impacts, which was an order of

magnitude greater than the number of cross-verified impacts. This demonstrates the relatively

high rate of false positives that have plagued similar impact sensors in the past, and are com-

monly mitigated using video confirmation (Table 1). On the other hand, we note that it is diffi-

cult to observe discrete impact events in video, and that video can only identify contact

periods during which multiple discrete impact events could occur. In our cross-verified data-

set, we matched 217 discrete sensor-based impacts with 193 video-based helmet contact peri-

ods, meaning that up to 13% of video-based helmet contact periods contained multiple

discrete impact events.

In addition to differences in exposure, we also discuss discrepancies in impact location dis-

tributions between video-based and sensor-based data. In video, we found that 93.8% of

impacts occurred to the front, front oblique, and side of the head after the second round of

video assessment. Processing instrumented mouthguard kinematics found similar trends for

impact location with an average of 85.8% of impacts occurring in the front, front oblique, and

side locations; however, the mouthguard impact location matched video identified location in

only 37.3% of the impacts using the best corrected position process. Current methods for pre-

dicting impact location from impact kinematics are relatively primitive, with peak linear accel-

eration being the most common method [13]. Peak linear acceleration was the worst at

predicting video-based impact location in our dataset. Instead, integrated measures (linear

velocity and position) performed better as they account for holistic motion of the head over

the entire impact period. Furthermore, incorporating angular measures also improved predic-

tion of video-based impact location, as angular motion provided another source of kinematic

information consistent with expected head and neck biomechanics.

Despite some improvements using integrated signals and angular kinematics, matching

between video-based and sensor-based impact location was still relatively poor. This could be

the result of decoupling between helmet impact location observed in video, and head motion

as measured by the mouthguard. In a direct impact, the impact location is expected to corre-

spond with the direction of motion, however we note that in some cases, our raters observed

impacts in which helmets “slid past one another”, resulting in impact locations that do not nec-

essarily correspond to the measured direction of motion. Furthermore, identifying impact

locations in video is subjective in nature. When relaxing the criteria for matching video-based

and sensor-based impact locations to allow for neighboring impact locations (e.g. frontal and

frontal oblique), all sensor processing methods were able to predict similar video-based impact

locations in 140–150 of 271 impacts.

In addition to discrepancies in head impact location between video-based and sensor-based

datasets, our observed distribution of head impact locations differs with previously reported

impact location distributions, which report up to 31.9% of impacts to the rear of the head [40].

The discrepancy in impact location distributions may be a result of inaccuracies of previous

head impact sensors. From Table 1, we see that the majority of previous exposure studies rely

on HITS, which has been shown in the laboratory to have kinematic inaccuracies. Of note,
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HITS has also been shown to misclassify impacts to the facemask as rear impacts, which may

skew impact location distributions [41].

Head impacts exposure per play

To take advantage of both our sensor-based and video-based exposure data, we present a novel

head impact exposure metric specific to American football. For our exposure metric, we look

specifically at the number of sensor-based head impacts normalized by the number of video-

based player-plays, to account for variability in on field activity between different player posi-

tions. Schnebel et. al. alluded to head impact exposure per player-play, stating that linemen

tend to have head impacts every play whereas skill players have head impacts more rarely [18].

We have utilized this new metric because of the unique way in which American football is

played, where players are not on the field for the entire game.

Table 2 demonstrates the power of reporting head impact exposure using the metric. First,

we compare the head impact exposure of a linebacker in two separate games, in which he was

observed for 90–120 minutes. In the first game, the linebacker had only 3 head impacts in 6

plays, whereas in the second game, the linebacker had 14 head impacts in 35 plays. In this

example, we see that the linebacker had a near 4-fold increase in head impacts per player-hour.

However, the per play exposure was more consistent across the two games.

In the second example, we observe two different linemen participating in the same game.

The first lineman is a starting lineman, whereas the second lineman is only used in special

packages. We see that while both players were recorded for 75–95 minutes, the starting line-

man sustained many more head impacts. In terms of head impacts per player-hour, the start-

ing lineman had a more than eight-fold increase compared with the second lineman. Again,

the per play exposure is more consistent across the two linemen. We believe this metric of

defining head impact exposure in American football prevents skewing from variable on-field

participation. We note that while plays are well-defined during games, they are not as clear

during practices. Delineating plays in the video activity timeline was done automatically based

on video assessment datasheets and may over-estimate the number of plays in practice due to

the use of fast and short individual drills which were commonly counted as a single play. The

metric can be further refined to properly count practice drills, though we note that practice

drill time is currently counted in per-hour or per-event exposure statistics. Similar metrics

accounting for player participation may also be useful for sports like ice hockey and basketball

where players also spend varying amounts of time in play.

With this exposure metric, we found that there were significantly more head impacts per

player-play during games (0.35, 95% CI: 0.29–0.42) than during practices (0.20, 95% CI: 0.17–

Table 2. Head impacts per play exposure metric.

Player ID Game Date Time Observed # of Plays # of Impacts Impacts per Player-Hour Impacts per Player-Play

Same Player, Different Games

411

Linebacker

11/07/2015 1:28:52 6 3 2.0 0.50

411

Linebacker

11/21/2015 1:50:39 35 14 7.6 0.40

Different Players, Same Game

237

Lineman

11/28/2015 1:14:00 30 20 16.2 0.67

751

Lineman

11/28/2015 1:34:25 5 3 1.9 0.60

https://doi.org/10.1371/journal.pone.0199238.t002
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0.23). From instrumented mouthguard kinematic measurements, we found median head

impact linear acceleration, angular velocity, and angular acceleration magnitude was 18.4g

(95% CI: 15.2g-19.8g), 9.4rad/s (95% CI: 8.5rad/s-10.2rad/s), and 1240.5rad/s2 (95% CI:

1109.1rad/s2-1475.9rad/s2) respectively during practices, and 23.2g (95% CI: 18.5–26.1g),

12.5rad/s (95% CI: 10.8rad/s-13.9rad/s), and 1435.0rad/s2 (95% CI: 1288.4rad/s2-1723.3rad/s2)

respectively during games. Together, these results suggest that head impacts are both more fre-

quent and more severe in games than in practices, which agrees with previous exposure data.

Limitations

While we successfully collected an independent video-based exposure dataset utilizing a tiered

video assessment protocol, this study has several limitations. First, video assessment takes a

substantial amount of time. Analyzing 160 hours of video required 1000 man-hours, primarily

due to the rigor and detail required. This prevents manual video assessment from being viable

for everyday use. However, this protocol can be used to collect datasets with which to improve

sensor processing algorithms for head impact detection and location identification, and auto-

mated video assessment based on these protocols can be developed for a more streamlined

post-event analysis [42,43]. In fact, the dataset collected here is being used to develop an

impact detection algorithm for the instrumented mouthguard [23].

Second, video quality (1080p at 30fps) and quantity (two views per field) also affected the

subjectivity of video classification. To account for uncertainty due to poor video quality, we

had instructed raters to be sensitive to any potential instance of Helmet Contact, and labeled

any helmet overlap with another object as a Contact event. Multiple views were only consid-

ered in second round of video review, which accounted for the substantial loss of Helmet Con-

tact events between the first and second round of video assessment (1004 Helmet Contact

events following first round, 271 Helmet Contact events following second round). Improved

video quality and quantity would increase certainty in video labels. While some institutions

can afford superior video quality and quantity, we believe our equipment is a reasonable repre-

sentation of what many collegiate and lower-level institutions currently use.

Third, we have shown previously that the instrumented mouthguard design can be susceptible

to lower mandible disturbances, resulting in overestimation of the measured kinematics [35].

Despite this, impact severity trends agree with previously reported values. Future studies will use

an updated instrumented mouthguard design that mitigates these disturbances to obtain more

accurate impact kinematics. The impact count data reported in this study does not rely on instru-

mented mouthguard kinematics, and thus are not affected by measurement errors.

Fourth, we note that our sample population of seven players from a single team during a

subset of practices and games in a single season is relatively small. Thus, the purpose of this

study was not to generalize exposure data but describe differences in video-based and sensor-

based datasets. Despite the small sample size, exposure rates and kinematic magnitudes fall

within the range of previously reported American football exposure. Because of the small sam-

ple population, we did not include delineation of exposure by player position in the main man-

uscript, but have included it as supporting information (S1, S2, and S3 Figs) with the caveat

that most positions were represented by a single player.

Finally, we do not consider Obstructed View activities as head impacts. In some activities

labeled as Obstructed View, the tracked player is taking part in a large tackle on the field and is

hidden beneath other players. This is particularly true of linemen. It is possible that we miss

head impacts during these plays, and it is possible that these plays produce more impacts in

under-represented locations (rear, rear oblique, and top). In our analysis, there were 29

observed instances of an Obstructed View.

Comparison of video-based and sensor-based head impact exposure
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Implications for head injury research

In this paper, we have demonstrated through a small field study, the comparison and combina-

tion of independent sensor-based and video-based measurements of head impact exposure.

Currently in head injury research, many sensor-based approaches are being developed for

impact exposure studies. While many sensors have demonstrated promise in enabling on-field

measurements of head kinematics, some remaining limitations in kinematic accuracy and

impact detection accuracy lower the confidence in estimating impact exposure using a single

sensor. As such, many researchers have begun using additional information, such as video ver-

ification, to improve the quality of sensor-based measurements, and a working group in the

National Institutes of Health are recommending video verification as a component in field

deployments [44]. As shown in the current study, video-based measurements or sensor-based

measurements alone each have their own limitations, but combining and comparing informa-

tion from these independent measurements helps to overcome these limitations and increase

confidence on the exposure dataset. While video-based analyses are currently too time-con-

suming and require substantial manpower to be a practical long-term solution in head injury

research, high quality exposure datasets generated using combined information from multiple

independent sources can serve as training datasets to improve sensor algorithms in their accu-

racy to estimate exposure. Furthermore, as an extension of the current study, adding addi-

tional independent sensor measurements (e.g. having multiple sensors at different locations

on the head) in field studies may further help increase confidence on the kinematics measure-

ments of the sensor. As such, it is our suggestion that future field studies of head impact expo-

sure should 1) employ multiple sources of measurements to ensure data quality, especially

when individual sensors have not been fully validated or have limited accuracy, and 2) utilize

high quality, high confidence exposure datasets to help further validate head impact sensors as

a longer term solution in impact exposure measurement.

Conclusions

In conclusion, we have developed a tiered video assessment protocol for collecting an indepen-

dent impact exposure dataset in American football. This video assessment protocol can be

implemented in other contact sports. We have also developed a new head impact exposure

metric for American football based on the number of head impacts occurring per player-play.

We have found players sustain significantly more impacts per player-play in practices (0.20)

than in games (0.35) (p<0.05). This method can provide additional independent exposure

information to verify exposure data gathered using wearable sensors that are not fully vali-

dated. The verified exposure information can be used to better manage players so that they are

not over-exposed to potentially dangerous head impact events.

Research involving human participants

All procedures performed in studies involving human participants were in accordance with

the ethical standards of the institutional research committee and with the 1964 Helsinki decla-

ration and its later amendments or comparable ethical standards. This study was approved by

the Stanford University Internal Review Board IRB #34943. Informed consent was obtained

from all individual participants included in the study in written form.

Supporting information

S1 Fig. Impact exposure by player position. First, we compare exposure across player posi-

tions. We compared the exposure data defined by (A) cross-verified sensor-based head
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impacts per hour and (B) cross-verified sensor-based head impacts per play. We use cross-ver-

ified sensor-based head impacts as we believe sensor-based head impacts are the best represen-

tation of discrete head impacts and cross-verification gives us high confidence for these

impacts. We note that linemen experienced higher exposure than other positions. We also

note that, as with the aggregated statistics presented in the main manuscript, players generally

experienced more impacts per hour in practices, but more impacts per play in games. (C) This

is likely because players participated in more plays per hour during practices than games (�

p< 0.05, �� p< 0.01).

(TIF)

S2 Fig. Impact location distribution by player position. We delineated impact location dis-

tributions by player position for both cross-verified (A) video-based helmet contact periods

and (B) sensor-based head impacts. We used the most common peak linear acceleration vector

method for sensor-based head impact location distribution for comparison to previously

reported distributions. Players generally have similar impact location distributions in both

datasets, though we note that all positions except the linemen are represented by a single

player, and some positions observed relatively low exposure.

(TIF)

S3 Fig. Impact severity by player position. Finally, we delineated impact severity by player

position. Impact severity were determined from cross-verified sensor-based impacts and were

defined with the impact kinematics: (A) peak linear acceleration magnitude, (B) peak angular

velocity magnitude, and (C) peak angular acceleration magnitude. The violin plots represent

the kinematics distribution observed and were fit using a log-normal distribution. In general,

impact severities were higher during games than during practices for all players. Furthermore,

while linemen experienced higher exposure rates, they experienced relatively low impact sever-

ities.

(TIF)
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