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Innate lymphoid cells (ILC) are a heterogeneous group of immune cells characterized by
lymphoid morphology and cytokine profile similar to T cells but which do not express
clonally distributed diverse antigen receptors. These particular cells express transcription
factors and cytokines reflecting their similarities to T helper (Th)1, Th2, and Th17 cells and
are therefore referred to as ILC1, ILC2, and ILC3. Other members of the ILC subsets
include lymphoid tissue inducer (LTi) and regulatory ILC (ILCreg). Natural killer (NK) cells
share a common progenitor with ILC and also exhibit a lymphoid phenotype without
antigen specificity. ILC are found in low numbers in peripheral blood but are much more
abundant at barrier sites such as the skin, liver, airways, lymph nodes, and the
gastrointestinal tract. They play an important role in innate immunity due to their
capacity to respond rapidly to pathogens through the production of cytokines. Recent
evidence has shown that ILC also play a key role in autoimmunity, as alterations in their
number or function have been identified in systemic lupus erythematosus, systemic
sclerosis, and rheumatoid arthritis. Here, we review recent advances in the understanding
of the role of ILC in the pathogenesis of autoimmune diseases, with particular emphasis on
their role as a potential diagnostic biomarker and as therapeutic targets.

Keywords: innate lymphoid cell (ILC), autoimmune diseases, autoimmunity, systemic lupus erythematosus,
systemic sclerosis, rheumatoid arthritis, ANCA-associated vasculitis, NK cell
INTRODUCTION

Innate lymphoid cells (ILC) are lymphocytes that lack somatically diversified antigen receptor
expression (1). So far, different subtypes of ILC have been described, depending on their specific
functional features mirroring CD4+ T helper (Th)1, Th2, and Th17 cells. In 2013, they were
classified as group 1 (including NK cells), group 2, and group 3 ILC (1, 2); however, following
further research, a new description was proposed in 2018 which classifies ILC into five categories,
namely, NK cells, ILC1, ILC2, ILC3, and lymphoid tissue inducer (LTi) cells (Table 1) (3).

ILC in humans and mice originate from a common lymphoid precursor (CLP), which is able to
give birth to all lymphocyte subsets (37). Studies in murine models have shown that CLP initially
differentiates into the common innate lymphoid progenitor (CILP) which serves as a common
precursor for both NK cells and ILC. CILP then evolves into the common helper innate lymphoid
progenitor (CHILP), which is common to LTi and ILC (6, 38). CHILP finally differentiates into
innate lymphoid cell precursors (ILCP) that will give rise to ILC1, ILC2, and ILC3 (3, 12). Of note, in
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mice, lymphoid progenitors (which have the potential to
differentiate into all ILC lineages, including NK cells) were
identified as inhibitor of DNA binding 2 (ID2) positive (5).
ID2 is a transcription factor required for organogenesis of
lymphoid tissues, and its loss was shown to disrupt the
generation of ILC precursors (14, 15). In humans, the
differentiation steps that lead to the development of ILC are
less well known even though they are considered to be similar
(19). Similarities and differences between human and murine
ILC have been excellently reviewed elsewhere (19).

Many phenotypic markers have been used to characterize
mature ILC subsets, but no definitive marker universally defining
ILC has been identified so far. This is notably due to the fact that
their phenotype depends on the tissue they populate and that
ILC represent very heterogeneous populations (20, 21). Despite
tremendous variability in their definition, ILC can be roughly
described as CD3-negative lymphocytes that express IL-7
receptor (CD45+CD3−CD127+), although in many tissues ILC1
do not express CD127 (20, 21).

NK cells were initially included in group 1 ILC, together with
ILC1, because of important similarities such as the expression of
the transcription factor T-bet and the production of interferon g
(IFN-g) (3, 7). However, subsequent studies indicated that NK
cells and ILC1 belong to distinct lineages and represent two
separate cell types (6, 13, 17, 21). Indeed, while ILC are mainly
Frontiers in Immunology | www.frontiersin.org 2
tissue-resident cells, NK cells are principally found in blood
circulation, constituting 5%–20% of circulating lymphocytes,
and are capable of being rapidly recruited to inflammation
sites (20, 39, 40). Moreover, NK cells have an important
cytotoxic function with high expression levels of perforin and
granzyme B, whereas ILC1 are in general noncytotoxic or only
weakly cytotoxic. Interestingly, recent evidence in murine
models shows that CD160-ILC1 exhibit cytotoxicity against
YAC-1 cells (22). In addition, certain populations of splenic
ILC1-like NK cells are able to kill cells infected with murine
cytomegalovirus (3, 18, 22, 39). NK cells play a special role in
antitumor surveillance and in antimicrobial defense against
intracellular pathogens and viruses (39). In addition, compared
with ILC1, they follow a specific differentiation pathway that
requires the expression of the T-box transcription factor Eomes
for their development, and the induction of CD122 with
subsequent IL-15 responsiveness (8, 13, 16).

In addition, ILC1 also share similarities with Th1 cells, as they
react to intracellular pathogens, mainly secrete IFN-g and
depend on the transcription factor T-bet for their
differentiation (1, 3, 6). Although they can be detected in
peripheral blood or cord blood, they are primarily tissue-
resident cells (20). In humans, ILC1 are mainly found in the
tonsils, gut, lung, liver, adipose tissue, skin, lymph nodes, and
spleen (4, 9, 20, 40). They show significant differences in the
TABLE 1 | Characteristics of innate lymphoid cell (ILC) populations in humans.

ILC1 ILC2 ILC3 LTi ILCreg NK

Function Antimicrobial
defense
(intracellular
microbes) (1)

Allergies, parasite
elimination (3)

Innate immunity against fungi
and extracellular microbes (1, 3)

Mesenchymal
organizer for
SLN in
embryonic
development
(3)

Resolution of innate
intestinal inflammation (4)

Antitumor
surveillance,
antimicrobial
defense
(intracellular
pathogens and
viruses) (5)

Phenotype Variable depending
on tissue residency

CRTH2+ST2+CD161+

(6, 7)
Controversial Lin− (CD56+/−)
CD127+CRTH2−CD117+NKp44+/−

(8, 9)

Controversial
NRP1 (10)

Lin−CD45+CD127+IL10+

(11)
CD56+CD16+/−

Transcription factor T-bet (1, 3, 12) GATA3, RORa (1, 3,
13)

RORgt (1, 3) RORgt (3) – T-bet, EOMES (3,
5, 12, 14, 15)

Inducing cytokines IL-12 (16) IL-33, IL-25, TSLP (1,
7, 17)

IL-7, IL-23, IL-1b (3, 18) – – IL-15 (3, 5, 12, 14,
15)

Produced cytokines IFN-g (1, 3, 12) IL-4, IL-5, IL-13 (1, 7,
17)

IL-22, IL-17A, GM-CSF, IFN-g,
TNF-a (3, 18)

IL-22, IL-17,
GM-CSF, TNF-
a and TNF-b,
IL-8 (10)

IL-10, TGF-b (11) IFN-g, perforin
granzyme B

Regulated
tissues

Main Tonsils, gut, lung,
liver, adipose
tissue, skin, LN,
spleen (6, 19–21)

Peripheral blood, skin,
lungs, adipose tissue
(6, 7, 22)

Mucosal tissues (gut) (6, 16) Lymphoid
organs

ILCreg: intestine (11),
kidney (23); follicular
ILCreg: tonsils, LN (24)

Blood

Possible Peripheral/cord
blood (6)

Liver, LN, spleen,
adenoids (6)

Blood, spleen, LN, tonsils,
intestine, skin and lung (6)

– –

Association with
systemic
autoimmune
diseases

Increased in Ssc,
SLE, active AAV
(25–31), Increased
or decreased in RA
(32, 33)

Increased in SSc and
RA (33–35),
Decreased in AAV
and SLE (27–29, 31)

Increased (29) or decreased (27,
28) in SLE, Increased (36) or
decreased (33) in RA Decreased
in AAV (31)

Decreased in
RA (32)
January 2022 | Volume
IL, interleukin; NRP1, neuropilin1; T-bet, T box expressed in T cells; GATA 3, Trans-acting T-cell-specific transcription factor GATA3; RORgT, retinoid acid-related orphan receptor g T;
RORa, retinoid acid-related orphan receptor a; LN, lymph node; CRTH2, chemoattractant-homologous receptor expressed on Th2 cells; Ssc, systemic sclerosis; SLE, systemic lupus
erythematosus; AAV, ANCA-associated vasculitis; RA, rheumatoid arthritis.
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expression of surface markers and transcription factors linked to
the microenvironment of the tissue they populate (20).

ILC2, like Th2 cells, produce high levels of interleukin (IL)-4,
IL-5, and IL-13 in response to epithelial cell-derived IL-33, IL-25,
and thymic stromal lymphopoietin (TSLP) (1, 10, 41). They
express high levels of the transcription factors GATA3 and
RORa (3, 11). Phenotypically, they are characterized, in mice,
by the expression of suppression of tumorigenicity (ST2, also
known as IL-1RL1) (23, 24), CD161, and inducible T-cell
COStimulator (ICOS), whereas in human peripheral blood,
they are described as chemoattractant-homologous receptor
expressed on Th2 cells (CRTH2+), ST2+, and/or CD161+ (20,
41). ILC2 are involved in allergies and parasite elimination (3).

In mice, they are abundant in the airways, lungs, skin, and
gut, especially in models of asthma (1, 41, 42). In humans, ILC2
represent the main population of ILC that inhabit peripheral
blood, skin, lungs, and adipose tissue, but they are little or not
present in adult gut (20, 41, 43). Furthermore, the presence of
ILC2 has also been described in liver, lymph nodes, spleen, and
adenoids (20).

ILC3 are the innate counterpart of Th17 cells. They play a role
in innate immunity against fungi and extracellular microbes and
depend on the transcription factor RORgt (1, 3). Like other ILCs,
they require IL-7 for their development. More specifically, they
secrete IL-22 and certain subsets can produce IL-17A, in response
to IL-23 and IL-1b (3, 44). In mouse models, ILC3 participate in
the secondary antibody response by promoting the survival of
CD4+ T cells through the expression of OX40 ligand and CD30
ligand (44). They are also able to express antigen-presenting
molecule major histocompatibility complex-II (MHC-II) and
present processed antigens to CD4+ T cells (44).

In humans, ILC3 and notably NKp44+ ILC3 are particularly
found in mucosal tissues such as the gut (20, 45). However, they
may also be found in blood, spleen, lymph nodes, tonsils, skin, and
lung (20). Phenotypically, in humans, they were notably described
as Lin−CD56+/−CD127+CRTH2−CD117+NKp44+/− (46) or
Lin−CD45+CD127+cKit+CRTH2−NKp44− or NKp44+/− (47).

LTiwere previously included in the group 3 ILC because of their
capacity to produce IL-17 and IL-22. They undergo differentiation
from a specific progenitor, the lymphoid tissue inducer progenitor
(LTiP) and depend onRORgt for their differentiation (3).However,
now considered a specific population, LTi have a specific role as
mesenchymal organizer cells in the formation of secondary
lymphoid structures during embryonic development (3).
According to data from studies in mice, the crosstalk between LTi
and lymphoid tissue stromal cells continues postnatally, as it has
been demonstrated that LTi cells contribute to the restoration of
lymphoid tissue architecture following infection with LCMV (48).
In humans, LTi express neuropilin-1, produce IL-17, IL-22, GM-
CSF, TNF-a, TNF-b, and IL-8, and play possibly a role in the Th1
and Th17 immune response (49, 50).

Lately, another ILC subpopulation was described, which
harbors a regulatory phenotype, and hence named regulatory
ILC (ILCreg) (51). These cells, phenotypically defined as
Lin−CD45+CD127+IL-10+, were initially described in mouse and
human intestine secrete high amounts of IL-10 and TGF-b and are
Frontiers in Immunology | www.frontiersin.org 3
devoid of CD4 and Foxp3 expression (51). They show a distinct
gene expression profile compared with other ILC and play an
important role in the resolution of innate intestinal inflammation
through the suppression of ILC1 and ILC3 via IL-10 secretion, in a
mouse model of colitis (51). In addition, the secretion of TGF-b
acts in an autocrine way to support the expansion of ILCreg during
gut inflammation (51). Of note, the existence of IL-10-producing
ILCreg as a distinct population of ILC remains controversial. From
this point of view, in various micemodels, the main source of IL-10
in the gastrointestinal tract comes from activated populations of
ILC2, which expresses KLRG1, IL-25R, and the transcription
factor GATA-3 (52).

In another context, ILCreg were also described in mouse and
human kidney, where they play a protective role in ischemia-
reperfusion injury (53). Another regulatory population of
ILC, named follicular regulatory ILC, has been described in
human tonsils and lymph nodes and secretes high amounts of
TGF-b (54).

Interestingly, ILC have been recently shown to exhibit
plasticity, similarly to T cells. They have the ability to
coexpress lineage-determining transcription factors in response
to signal from their microenvironment (23). This is especially
true for CD127+CD117+ ILC precursors, a cell subset which
expresses CD45RA and CD62L and shows similarities to naive
CD4+ T cells (23). Their differentiation depends on cytokines
present in the tissue they populate (23). Balance between ILC1
and ILC3 changes in the presence of inflammatory stimulations,
with ILC1 numbers increasing and ILC3 decreasing in the
intestine in pathological conditions such as Crohn’s disease
(45). This process occurs through a differentiation of ILC3 to
ILC1, which depends on exposure to IL-12. In addition, this
differentiation has been shown to be reversible, as the presence of
IL-23 and IL-1b favors the differentiation of ILC1 to ILC3 (45).
Recently, ILC3–ILC1 intermediate subsets were identified in
human tonsils and intestinal mucosa, describing ILC3 and
ILC1 as the ends of a spectrum, with the cells closest to ILC1
having the maximal ability to produce IFN-g in vitro (4).
Another study showed that human ILC3 that are transferred to
humanized mice acquire ILC1-like features in the spleen more
than in the liver (5). These results support the hypothesis that
tissue specific triggers cause local transdifferentiation of ILC (23).

Since their discovery, numerous studies suggest that ILC play
a key role in the pathogenesis of systemic autoimmune
conditions such as systemic sclerosis, systemic lupus
erythematosus, rheumatoid arthritis, and antineutrophil
cytoplasm antibody (ANCA)-associated vasculitides. In this
review, we discuss the latest advances on the role of ILC in the
pathogenesis of human autoimmune diseases and their potential
use as diagnostic biomarkers and/or therapeutic targets.
ILC IN AUTOIMMUNE CONDITIONS

Systemic Sclerosis
Systemic sclerosis (Ssc) is an autoimmune connective tissue
disease characterized by vasculopathy and fibrosis in multiple
January 2022 | Volume 12 | Article 789788
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organs. Ssc prototypically causes Raynaud phenomenon,
arthralgias, fingertip lesions, skin thickening, hypertensive
renal crisis, lung fibrosis, and pulmonary arterial hypertension
(55–57). The pathophysiology of Ssc is unclear but involves
genetic and environmental factors (i.e., silica solvents, epoxy
resins, breast implants, skin microbiota), leading to chronic
inflammation, endothelial injury, vascular dysfunction,
fibroblast activation, and tissue fibrosis (58, 59). Numerous
immune cells, antibodies, and cellular pathways contribute to
the processes that lead to tissue fibrosis. In particular,
dysregulation of interferon a (IFN-a) is an important
alteration in patients with antitopoisomerase I antibodies (58,
60). This dysregulation is characterized by an IFN-a
overproduction by plasmacytoid dendritic cells in response to
the activation of toll-like receptors (TLR) 7 and 9 by immune
complexes generated by endothelial cell death (60). Constitutive
fibroblast activation driven by mediators such as tumor growth
factor b (TGF-b) also represents a key process, which leads to
tissue fibrosis (58).

Few studies have examined the role of ILCs in the
pathophysiology of human Ssc (Figure 1). A study published in
2015 by Wohlfahrt et al., including 69 Ssc patients, showed that
ILC2 number is elevated in the skin and peripheral blood of
patients with Ssc compared with healthy controls (34). There was
also a positive correlation between the number of ILC2 in the skin
and the modified Rodnan Skin Score. In addition, patients with
extensive pulmonary fibrosis showed the highest numbers of
circulating ILC2 (34). Of note, ILC2 were defined using two
different marker panels, both including ST2 (ICOS+

ST2+CD3−CD11b− or ST2+IL-17RB+KLRG1+), with consistent
results (34). These data suggest a potential pathogenic role of
ILC2 in Ssc, although the mechanism is still unclear. As it was
shown that type 2 cytokines such as IL-4 and IL-13 can increase
TGF-b production in bronchial epithelial cells in diseases such as
Frontiers in Immunology | www.frontiersin.org 4
asthma (61), one could hypothesize that ILC2, which secrete such
cytokines, could thus induce TGF-b secretion from fibroblasts or
other epithelial cells such as keratinocytes, and therefore, increase
fibrosis (62). Moreover, in murine models, TGF-b is required for
the development of ILC2, suggesting a potential crosstalk between
fibroblasts and ILC2 (63). However, data are still missing in Ssc,
and this hypothesis needs to be investigated.

On the other hand, a study published in 2016 by Roan et al.
showed that a subset of ILC1, defined as CD4+ ILC1, and
NKp44+ ILC3 were increased in the peripheral blood of Ssc
patients compared with healthy subjects (25, 26). An interesting
point is that the CD4+ ILC1 expressing IL-6Ra were decreased in
SSc, suggesting that these cells are overactivated and contribute
to the amplification of the inflammatory response that
characterizes SSc (25, 26). In another study, the authors
showed that KLRG1low ILC2 are increased in the fibrotic skin
from SSc patients. This population is activated by TGF-b and
produces lower levels of IL-10 compared with KLRG1high ILC2.
These KLRG1low ILC2 cells fail to negatively regulate collagen
production by dermal fibroblast, a process which is
physiologically IL-10 dependent, thus enhancing skin fibrosis
(35). Despite these interesting findings on the role of ILC1 and
ILC2 in Ssc pathogenesis and fibrosis development, data are still
missing to fully understand the importance of ILC in the
pathogenesis of Ssc.

Systemic Lupus Erythematosus
Systemic lupus erythematosus (SLE) is a multisystem
autoimmune disease affecting mainly young women of
childbearing age. Its pathophysiology is complex, involving loss
of self-tolerance with an imbalance between apoptotic cell
abundance, extracellular exposition of nuclear antigens, and
disposal of this apoptotic material. The free nuclear antigens
will activate TLR notably on plasmacytoid dendritic cells (pDC),
FIGURE 1 | Role of ILC in systemic sclerosis. ILC, innate lymphoid cell; TNF-a, tumor necrosis factor a; TGF-b, tumor growth factor b; pDC, plasmacytoid dendritic
cell; IL, interleukin; ECM, extracellular matrix.
January 2022 | Volume 12 | Article 789788
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with secretion of type I IFN (known as the “interferon
signature”) and other cytokines that drive B-cell differentiation,
and the production of autoantibodies (64). These antibodies
directed against self-antigens then form immune complexes that
deposit in the tissues, leading to chronic inflammation and tissue
damage (27, 64).

The role of ILC in SLE pathogenesis is poorly understood,
particularly in humans (Figure 2). In 2019, a study by Guo et al.
examined circulating ILC in the peripheral blood of 49 SLE
patients and showed an increase in ILC1 (defined as
Lin−CD127+CRTH2−CD117−) compared with healthy controls,
while ILC2 (Lin−CD127+CRTH2+) and ILC3 (including 2
subpopulations, defined as Lin−CD127+CRTH2−CD117+NKp44+

or NKp44−) were decreased (28). Moreover, the greatest increase
in ILC1 and decrease in ILC2 and ILC3 were observed in patients
with moderate and severe disease activity, with a positive
correlation of ILC1 numbers to systemic lupus erythematosus
disease activity index (SLEDAI) (28). This altered distribution of
ILC in active SLE with lupus nephritis was reversed after initiation
of treatment (steroids and cyclophosphamide), suggesting that
ILC1 may represent a biomarker of disease activity (28). Recently,
Frontiers in Immunology | www.frontiersin.org 5
a study by Jiang et al. examined the number of ILC in the
peripheral blood of SLE patients (29). They also found an
increase in ILC1 and a decrease in ILC2 in patients with active
SLE, but, in contrast to Guo et al., they found an increase of ILC3
in the blood of patients with active SLE compared with inactive
(SLEDAI<5). Interestingly, there was a positive correlation
between ILC3 absolute numbers in the peripheral blood and the
SLEDAI score. This discrepancy between the two studies might be
due to differences in gating used to define ILC subsets, as the
markers used to distinguish between ILC1 and ILC3 were similar.
Heterogeneity of SLE patients might also contribute to such
differences. An interesting point in the research by Jiang et al. is
a positive correlation between ILC3 and serum anti-dsDNA titers,
and a decrease in ILC1/ILC3 and ILC2/ILC3 ratio in SLE patients
with arthritis compared with patients without arthritis (29).

In a study by Blokland et al., which also included patients
with primary Sjögren’s syndrome (pSS) patients, ILC1 were
increased in the peripheral blood of SLE patients (27). In pSS,
the abundance of total ILC did not differ from healthy donors but
was associated with disease activity as measured by the EULAR
Sjögren’s syndrome disease activity index (ESSDAI). The
FIGURE 2 | Role of ILC in systemic lupus erythematosus. PMN, polymorphonuclear cell; ILC, innate lymphoid cell; NETosis, process of neutrophil extracellular traps;
IL, interleukin; DC, dendritic cell; pDC, plasmacytoid dendritic cell; Th17, T helper 17 cell; IFN-g, interferon g.
January 2022 | Volume 12 | Article 789788
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patients (SLE and pSS) showing an interferon (IFN) signature
(defined by an elevated IFN score) had an increased FAS
expression, with a decrease in ILC2 and ILC3 frequency (27).

Finally, a study including 51 SLE patients also showed an
increase in ILC1 in the peripheral blood. They also identified a
positive correlation between increased ILC1/ILC3 count and
disease activity (30). These data suggest that ILC1 may
participate in/constitute a response to the inflammatory
process, while ILC3 may play a role in the development of the
autoantibody response in SLE. However, further studies are
warranted to explore these hypotheses and understand the role
of the altered abundance of ILC in the peripheral blood of SLE
patients. Moreover, in humans, ILC1 definition is still
controversial (65), and no data are currently available on ILC
phenotype in the organs and tissue from SLE patients. This
would be of paramount importance to shed light on the role of
these cells at the epithelial barrier sites in SLE.

Antineutrophil Cytoplasm Antibody-
Associated Vasculitis
ANCA-associated vasculitis (AAV) encompasses three distinct
entities: granulomatosis with polyangiitis (GPA), microscopic
polyangiitis (MPA), and eosinophilic granulomatosis with
polyangiitis (EGPA) (66).

These inflammatory diseases are all characterized by small-
and medium-vessel inflammation, but with relatively distinct
clinical presentations, specific biologic features, and ANCA
serotype. Anti-PR3 are mainly associated with GPA, while
Frontiers in Immunology | www.frontiersin.org 6
anti-MPO are more frequently associated with EGPA and
MPA (67). GPA often manifests as granulomatous
inflammation of the upper and lower airways and ear/nose
granulomatous inflammation and kidney damage. MPA is
characterized by necrotizing glomerulonephritis and
pulmonary capillaritis. EGPA is prototypically associated to
eosinophilia, pulmonary infiltrates, and asthma (68).

The pathogenesis of AAV relies on the production of
antibodies that target myeloperoxydase and proteinase 3 (67).
These two proteins are abnormally overexpressed on the surface
of neutrophils, and, subsequently to antibody binding,
neutrophils are activated and produce cytokines, reactive
oxygen species, and neutrophil extracellular traps (NETosis)
(67). Overactivation of B and T cells is also involved in the
pathogenesis of AAV and leads to the production of ANCA (67).

As ILC have been shown to play particularly a role in tissue
homeostasis at mucosal sites, and especially at the level of
airways epithelia, examination of their role in AAV is of
particular interest (Figure 3). From this point of view, one
study examined the frequencies of ILCs in the peripheral blood
of AAV patients (26 GPA and 15 MPA subjects) compared with
healthy controls (31). Samples were collected during acute phase,
defined by Birmingham vasculitis activity (BVAS) score >3,
before any treatment, or during remission phase, defined as
BVAS 0. Total ILCs, defined as Lin−CD127+, were decreased
during acute phase in AAV patients compared with controls.
More precisely, ILC2 and ILC3 were decreased while ILC1 were
increased when compared with healthy controls or AAV patients
FIGURE 3 | Role of ILC in antineutrophil cytoplasm antibodies (ANCA)-associated vasculitis. PMN, polymorphonuclear cell; ILC, innate lymphoid cell; DC, dendritic
cell; MPO, myeloperoxidase; PR3, proteinase 3; NETosis, neutrophil extracellular traps; IL, interleukin.
January 2022 | Volume 12 | Article 789788
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in remission (31). Even if these data are of interest, it remains
difficult to draw any definitive conclusion on the role of ILC in
the pathogenesis of AAV. Further studies are warranted to
address this point.

Rheumatoid Arthritis
Rheumatoid arthritis (RA) is an autoimmune disease affecting
the joints with synovial inflammation and cartilage/bone
destruction (69). The pathogenesis is complex and involves the
development of auto-antibodies such as rheumatoid factor (RF)
and anti-citrullinated protein antibodies (ACPA), which can be
detected years before the onset of clinical disease (70).
Development of ACPA and/or RF is triggered by a complex
interplay between genetic, epigenetic, and environmental factors
(smoking, pathogens, obesity, dysbiosis, toxic substances)
(69, 71, 72). Innate immunity is central to the pathogenesis of
RA, with the presence of macrophages, mast cells, and NK cells
in the synovial membrane, and neutrophils in the synovial fluid
(69). NK cells are also increased in the synovial fluid of RA
patients (73).

The humoral immune response plays also an essential role in
the pathogenesis of RA, and B cells, plasmablasts, and plasma
cells are very abundant in the inflamed synovium (69). ACPA
promote the production of TNF-a by macrophages, a cytokine
that is the cornerstone of RA joint damage, by activating
Frontiers in Immunology | www.frontiersin.org 7
fibroblasts and chondrocytes (69). Additionally, cytokines
involved in the Th17 response, including IL-6, IL-21, IL-17,
IL-23, and IL-1b, are also elevated in the peripheral blood and
synovial fluid of patients with RA (71, 74).

Some recent studies evaluated the role of ILC in RA patients
(Figure 4). In 2017, Rodriguez-Carrio et al. showed that ILC
distribution differed in lymph nodes (LN) of RA patients
compared with at-risk patients (defined as patients with RF
and/or ACPA positivity, and arthralgia without arthritis) or
healthy controls (32). LTi cells were shown to be decreased in
RA patients, while ILC1 were increased in RA and at-risk
patients. ILC3 were increased in RA patients compared with
healthy controls and at-risk patients. A positive association of
LTi frequency with VCAM expression on LN endothelial cells
was also shown, suggesting a potential crosstalk between ILC and
the stromal cell compartment (32). In 2019, Takaki-Kuwara et al.
found that a subset of CCR6+ ILC3 was increased in the synovial
fluid of RA patients compared with osteoarthritis controls, and
positively correlated with RA clinical activity (36). Moreover, a
positive correlation was established between the number of
CCR6+ ILC3 cells and CCL20 concentration in synovial fluid
of RA patients, suggesting that CCR6+ILC3may play a role in RA
pathogenesis through the production of Th17 cytokines such as
IL-17 and IL-22 (36). Finally, Yang et al. described that RA
patients with stable disease depicted decreased ILC1 and
FIGURE 4 | Role of ILC in rheumatoid arthritis (RA). ACPA, anticitrullinated protein antibodies; TNF-a, tumor necrosis factor a; IL, interleukin; DC, dendritic cell; MMP,
metalloproteinase; ILC, innate lymphoid cell; IL, interleukin; GM-CSF, granulocyte-macrophage colony stimulating factor; IFN, interferon; Th, T helper CD4+ T cell.
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increased ILC2 proportion in the peripheral blood compared
with healthy controls and with patients with active disease, while
both active and stable RA patients had a decreased percentage of
ILC3 (33). A positive correlation between disease activity and
ILC1 proportion was also found, while there was a negative
correlation between ILC2 percentage and disease activity (33).
Thi s sugges t s tha t ILC2 may counterba lance the
proinflammatory effect of ILC1 through the production of IL-
13 (75, 76), which has been shown to have anti-inflammatory
effect on synovitis in rheumatoid arthritis (77).
DISCUSSION

Since their initial description 10 years ago, ILC have been
increasingly recognized as important players in the immune
response, but their role in human autoimmune diseases
remains controversial. Currently available data suggest that
they could be useful as biomarkers of disease severity or
response to treatment.

A major limitation to identify the role of ILC in human
diseases is related to the fact that ILC are tissue-resident cells.
Access to barrier site requests invasive biopsies, which are not
easy to be routinely performed. Therefore, most studies are
limited to the examination of cells from the peripheral blood,
where ILC are only present at low abundance and where they
display a phenotype that might differ from their tissue-resident
counterpart . Technical ly, examination of restricted
subpopulations of ILC may be difficult due to the important
number of markers needed to identify these populations. Recent
advances in single cell mass cytometry and flow cytometry that
allow the examination of high amount of parameters in limited
biological samples should facilitate future studies on the subject.

Therapeutic approaches targeting ILC are challenging,
because ILC are highly heterogeneous. Moreover, no specific
markers for ILC have been identified to date, making it difficult
to develop a drug that specifically targets ILC or ILC subsets.
Accordingly, the border between pathogenic versus beneficial
role of ILC is not always obvious. ILC2, for example, seem to be
Frontiers in Immunology | www.frontiersin.org 8
pathogenic in atopic dermatitis, but in a mouse model of RA,
they foster the resolution of inflammation (1, 78). Since ILC
exhibit an important plasticity that depends on their
microenvironment, targeting cytokines or soluble factors
involved in their differentiation and maintenance would likely
affect ILC subpopulation distribution and alter diseases course.
Recent evidence, for example, showed that patients with
inflammatory bowel disease exhibit an altered distribution of
ILC subsets in the gut and blood during active disease. This
anomaly is partly restored after treatment with the anti-IL12/23
monoclonal antibody ustekinumab (79). Overall, future studies
are warranted to explore the role of ILC in human diseases,
because currently available data remain largely descriptive and
functional data are lacking.
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