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Low Energy Subsurface
Environments as Extraterrestrial
Analogs
Rose M. Jones, Jacqueline M. Goordial and Beth N. Orcutt*

Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States

Earth’s subsurface is often isolated from phototrophic energy sources and characterized
by chemotrophic modes of life. These environments are often oligotrophic and limited
in electron donors or electron acceptors, and include continental crust, subseafloor
oceanic crust, and marine sediment as well as subglacial lakes and the subsurface
of polar desert soils. These low energy subsurface environments are therefore
uniquely positioned for examining minimum energetic requirements and adaptations
for chemotrophic life. Current targets for astrobiology investigations of extant life
are planetary bodies with largely inhospitable surfaces, such as Mars, Europa, and
Enceladus. Subsurface environments on Earth thus serve as analogs to explore
possibilities of subsurface life on extraterrestrial bodies. The purpose of this review
is to provide an overview of subsurface environments as potential analogs, and the
features of microbial communities existing in these low energy environments, with
particular emphasis on how they inform the study of energetic limits required for life. The
thermodynamic energetic calculations presented here suggest that free energy yields
of reactions and energy density of some metabolic redox reactions on Mars, Europa,
Enceladus, and Titan could be comparable to analog environments in Earth’s low energy
subsurface habitats.

Keywords: deep biosphere, subsurface, astrobiology, low energy, energy limitation

INTRODUCTION

Astrobiology and Life Under Energy Limitation
Astrobiology includes the search for the presence of life outside the Earth (Domagal-Goldman
et al., 2016). The immensity of this challenge requires a focused search, which involves setting
constraints on where life may and may not be possible. Setting the boundaries of this habitable
zone in a meaningful way (i.e., neither too broad nor too limiting) is not trivial and can be defined
by a number of parameters (Figure 1), each with its own advantages and limitations that compete
and complement each other (Cockell et al., 2016).

Analog sites on Earth are those that share past or present characteristics with other planetary
bodies, providing natural systems for study of the limits of life, which are often quite different
from lab conditions (Arndt et al., 2013). This concept is based on the idea that laws of physics
and chemistry are universal, a principle that underlies a large proportion of astrobiology research
(Léveillé, 2010; Preston and Dartnell, 2014). Therefore, sites on Earth can provide information
on how physical and chemical conditions interact to form environments conducive to life
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FIGURE 1 | Schematic illustrating the different parameters that contribute to
habitability. This review primarily focuses on the electron donor and electron
acceptor parameters on extraterrestrial targets and Earth’s low energy
subsurface environments.

elsewhere (Lederberg, 1960; Léveillé, 2010). “Extreme”
environments [where conditions fall outside of the “standard”
of 4–40◦C, pH 5–8.5, and salinity above 37 g kg−1 water
(Kristjánsson and Hreggvidsson, 1995; Bartlett and Bidle, 1999)]
are common analog targets used as a way to identify and develop
tools to search for identifying signs that life is or was ever present
under a range of conditions (Preston and Dartnell, 2014). The
current primary targets for astrobiology investigations within the
solar system are Mars, Enceladus, Europa, and possibly Titan.
These planetary bodies have surface conditions that are largely
considered inhospitable to life, but where subsurface conditions
are potentially habitable.

To better understand life under low energy conditions for
extrapolation to extraterrestrial targets, studying environments
on Earth that experience limited energetic disequilibria is useful.
This “follow the energy” approach to evaluating whether life
is possible relies on the idea that chemical disequilibria are
important, providing differences in potential energy that can be
used to drive reactions required by life (Kappler et al., 2005; Barge
and White, 2017). The difference between equilibrium states of
a given redox couple (i.e., an electron donor and an electron
acceptor) defines this disequilibrium and how much energy could
be released, with the equilibrium tipping point dependent on
state variables like temperature and pressure. A gradient of redox
pairs is generated; those of highest yield are generally removed
preferentially and redox pairs of least energy yield persist. This
corresponds to an approximate trend for decreasing microbial
activity (Zhang et al., 2016), particularly in low disturbance
environments such as sediments. Thus, defining the habitable
zone (Figure 1) requires identifying electron donor/acceptor
pairs that supply sufficient potential energy to satisfy the energetic
limits of life under realistic state variables.

The energetic limit of life is the minimum energy (i.e.,
difference in redox potential) necessary for a cell. Electron

transport in a cell works either by having each protein along
the path at a slightly lower redox potential than the previous
protein to facilitate movement of electrons from one to the next
(Anraku, 1988) or by having an ion concentration gradient across
the membrane to drive ATP production (Müller and Hess, 2017).
Pathways and energetic requirements vary between genus and
metabolism, with some microbes able to use multiple transport
pathways (Kracke et al., 2015; Lever et al., 2015; Müller and Hess,
2017). Physical constraints such as resources required to perform
and maintain particular metabolic reactions have an effect on
which redox reactions are metabolically favorable (Amenabar
et al., 2017).

The purpose of this review is to provide an overview of Earth’s
low energy subsurface sites as potential analog environments
with particular emphasis on how they inform the study of the
energetic limits required for life to exist, which has implications
for refining the search for extraterrestrial life. These resource
limits have applications in defining the energetic aspect of
habitability, including minimum thresholds and identification
of possible electron acceptor/donor reactions. This review
compliments other recent reviews of astrobiology and analogs
(Domagal-Goldman et al., 2016; Martins et al., 2017), habitability
(Cockell et al., 2016), energetics and astrobiology (Barge and
White, 2017), forward contamination (Fairén et al., 2017),
deep marine environments (Fisher, 2005; Orcutt et al., 2013a),
deep continental environments (Fredrickson and Balkwill, 2006;
Colman et al., 2017), and energy within these (Amend and Teske,
2005; Edwards et al., 2012a; Hoehler and Jørgensen, 2013; Bach,
2016; Bradley et al., 2018). After reviewing basic features of
Earth’s subsurface environments and extraterrestrial targets, we
review current understanding of energy limitation for life, and
conclude with new assessments of possible chemotrophic energy
availability in the subsurface analogs and extraterrestrial sites.

Defining the Low Energy Subsurface
The subsurface begins below the solid surface of the earth
and includes a wide range of conditions across microscopic
and macroscopic scales, substrate age and accumulation rates.
The subsurface is classified into various continental and marine
environments (Figure 2). These terms are rarely explicitly defined
but usually refer to whether there is land or ocean above a
location (Whitman et al., 1998; McMahon and Parnell, 2014),
or to whether a location is situated in a continental or marine
tectonic plate (Cogley, 1984). The continental definition generally
includes continental shelves as continental, whereas the former
will class them as marine. Note that the term “terrestrial” is
often used in place of “continental” in the literature; however,
we avoid use of the term terrestrial in this context, as this term
encompasses the entire Earth system [i.e., “intraterrestrial” life
(Edwards et al., 2012a) and “extraterrestrial” life].

Current definitions of the boundaries of the subsurface are
somewhat imprecise, and yet highlight why the subsurface
is relevant as a source of analog sites. Classifications of
the shallowest boundary of the “deep subsurface” have
included depth (Jørgensen and Boetius, 2007; Edwards
et al., 2012a), pressure (Oger and Jebbar, 2010), water flow
(Lovley and Chapelle, 1995), and operational considerations
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FIGURE 2 | Cross-section schematic of low energy subsurface environments on Earth.

(Orcutt et al., 2011). These thresholds generally follow the
principle that surface processes influence shallow sites while
deep subsurface sites are more isolated (i.e., do not interact with
surface products and processes) and less prone to disturbance.
However, this definition does not hold up when considering
all environments within continental and marine environments,
such as subglacial lakes and desert varnishes. Likewise, the
downward extent to which life penetrates is poorly constrained.
The upper temperature limit for life is generally taken as the
ultimate constraint for the lower depth limit (Takai et al., 2008),
and likely varies between environments due to the influence
of other physical and chemical characteristics (Wilhelms et al.,
2001; Head et al., 2003; LaRowe et al., 2017). The working
definition used here (as in Edwards et al., 2012a; Wu et al., 2016;
Colman et al., 2017) is of a low energy subsurface environment
with all requirements for life are sourced from surrounding
substrate. As such, the environments considered herein come
from a variety of depths as we considered the threshold at which
this definition becomes a true function of local conditions.
For example, using our definition, sites with slow deposition
rates and little disturbance such as oligotrophic sediment and
Antarctic permafrost may have a subsurface that begins only
a few cm below the actual surface. We also considered the
overlaying surface immaterial. Therefore, ice covered sites are
included within our definition.

Some characteristics are common to subsurface environments
of Earth. Light is mostly absent (Van Dover et al., 1996;
Reynolds and Lutz, 2001; White et al., 2002; Beatty et al., 2005),
generally eliminating phototrophy as a lifestyle. Chemical-based
lithotrophic reactions support a large fraction of life in Earth’s

subsurface environments, though transport of organic matter
and oxidants of photosynthetic origin (i.e., oxygen) introduces
influences from Earth’s surface. In comparison to surface
environments, deep subsurface sites on Earth are often limited
by low concentrations of electron donors, electron acceptors,
carbon and/or nutrients (D’Hondt et al., 2009, 2015; Hoehler
and Jørgensen, 2013; Lever et al., 2015). Subsurface environments
often have limited permeability and/or porosity, restricting
transport and motility and experience higher pressures compared
to the surface world, in addition to occasional extremes in pH
and elevated temperature (Lysnes et al., 2004; Kelley et al., 2005;
Prokofeva et al., 2005; Slobodkin and Slobodkina, 2014).

EARTH’S SUBSURFACE HABITAT TYPES

Marine
Beginning beneath the seafloor, there are three major habitat
types: marine sediment, oceanic crust, and seep environments
(Figure 2). Boundaries between these provide gradients and
thresholds that provide additional opportunities for life.

Marine Sediment
The marine sediment subsurface begins below the bioturbation
zone, where burrowing animals actively disturb the sediment.
Bioturbation depth varies depending on the rate of sedimentation
of particles and the organic content of the particles (Jørgensen
and Boetius, 2007; Teal et al., 2008). Generally, sedimentation
rate and organic content load is highest near continental margins
where particles and nutrients are shed from land, and lowest
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beneath the center of ocean gyres. Marine sediment composition
varies from sands to fine-grained clays, and from biologically
derived oozes to continentally derived particles and volcanic
ashes. Porosity of marine sediment, and consequently the volume
of liquid within it, decreases with depth due to compaction, and
recent estimates suggest that roughly 5% of Earth’s water is in
the form of pore water within sediment (LaRowe et al., 2017).
In locations with significant organic carbon burial, typically
on continental shelves, methane production from terminal
electron accepting processes can lead to the formation of large
quantities of dissolved and free methane gas. Some of this gas
escapes the seafloor, supporting “cold seep” environments where
methane oxidation supports chemotrophic communities, with
the majority of the gas stored as gas hydrates or clathrate ices
(Whiticar, 1990; Clennell et al., 1999; Koh, 2002; Katayama et al.,
2016).

There is vertical zonation of chemotrophic biogeochemical
processes in marine sediment as more energy-rich terminal
electron acceptors are preferentially used to oxidize organic
carbon, generally in the order of dissolved oxygen, nitrate, metal
oxides, sulfate, and carbon dioxide, followed by fermentation
(Froelich et al., 1979; Orcutt et al., 2011; Arndt et al., 2013). Labile
organic carbon is used first, with less favorable fractions persisting
for hundreds to millions of years (Arndt et al., 2013). In areas with
little organic carbon delivery, like beneath ocean gyres, the rate
of organic carbon oxidation is so slow that relatively energy rich
electron acceptors (i.e., oxygen, nitrate) penetrate throughout
the entire sediment column (D’Hondt et al., 2009, 2015; Orcutt
et al., 2013b). These low-resource sediments are not necessarily
extremely limited across all metabolisms, however, as rates of
activity for particular metabolic reactions are comparable to those
of less oligotrophic sediments (Orcutt et al., 2013a). Growth and
persistence rates in the order of <1–∼350 years are proposed
in such oligotrophic sediments (Biddle et al., 2006; Braun et al.,
2017; Volpi et al., 2017), reflecting metabolic limitations caused
by scarcity of electron donors in addition to nutrients. In such
conditions, it is necessary to consider dormancy and maintenance
(Orcutt et al., 2013a; Lever et al., 2015; Reese et al., 2018).
Yet the latest biomass estimates in sediment are ∼2.9 × 1029

cells or ∼0.6% of earth’s total biomass (Kallmeyer et al., 2012),
indicating that it is possible for communities to persist in these
environments.

Oceanic Crust
The oceanic crust begins beneath sediment cover or as
exposed seafloor where ocean crust is newly formed or not
blanketed by sediment. There are two main lithologies in
the oceanic crust: an upper mafic layer of extrusive and
intrusive basalts above intrusive gabbros, and a deeper ultramafic
layer (Karson, 2002). Mafic rocks are generally low in silica
(55–45 weight percent) and have a relatively high iron and
magnesium oxide content. Ultramafic rocks have less silica
(<45 weight percent) and more iron and magnesium. In
contrast to sediments, the ocean crust is generally scarce in
organic carbon and nitrogen-poor and includes increased trace
elements depending on the host geology (Staudigel et al.,
1998).

The oceanic crust encompasses not just the host rocks, but the
fluids that circulate through them (Furnes and Staudigel, 1999;
Edwards et al., 2005; Orcutt et al., 2011). Ocean water enters
exposed areas of crust and moves through cracks and fissures
in the crust, exiting as diffuse or focused flow due to pressure
and temperature changes driving siphon effects (Fisher, 2005).
Circulation depth is poorly constrained, extending >500 m below
the crustal surface (Furnes and Staudigel, 1999). Fluid volume in
the oceanic crust is estimated at ∼2% of the total ocean volume
(Edwards et al., 2005) and circulates the entire ocean volume
equivalent every ∼105–106 years (Becker and Fisher, 2000). It
is a complex habitat, with interactions between rocks (primarily
iron-silicates such as basalt) and fluids that vary in temperature
(cool to several hundreds of degrees Celsius), redox state (oxic to
highly reducing), and pH (acidic to basic). Variation over time
occurs with continual creation of freshly exposed rock surfaces
due to volcanic eruptions or tectonic events and closing off of
flow pathways due to alteration or deformation. Faster rates
of subseafloor flow could therefore result in a more diverse,
larger, and active community as more resources are delivered and
inhibitors removed per unit of time compared to a system with a
slower rate (Zhang et al., 2016). Where this altered fluid seeps
into the sediment above, it introduces new sources of electron
acceptors and donors (Engelen et al., 2008; Ziebis et al., 2012;
Orcutt et al., 2013b; Labonté et al., 2017).

It was only recently appreciated that large portions of
oceanic crust are oxic, due to seafloor hydrothermal circulation
replenishing oxygen at depth and limited drawdown of oxygen in
oligotrophic sediment above (Røy et al., 2012; Ziebis et al., 2012;
Arndt et al., 2013; Orcutt et al., 2013b; D’Hondt et al., 2015; Braun
et al., 2017). Chemolithotrophic electron donors and acceptors
such as oxidized and reduced sulfur, iron, and manganese
compounds are common in the crust (Bach and Edwards, 2003;
Edwards et al., 2012a). The majority of these metal oxides are in
solid form under near-neutral to alkaline subsurface conditions,
but there are microbes that directly transfer electrons directly
from the mineral for use in energy pathways (Lovley, 2008;
Smith et al., 2014; Badalamenti et al., 2016). Hydrogen may be
an important electron source, particularly in the lower layers
(Amend and Shock, 2001; Bach, 2016), though the generation
mechanism is as yet unclear (Chapelle et al., 2002; Brazelton et al.,
2013; Dzaugis et al., 2016). Less is known about the ocean crustal
subsurface in general, partially due to the operational challenges
of sampling this environment. Crustal estimates of biomass
and rates of activity are currently poorly constrained, though
energetic calculation suggest this environment could support up
to ∼1 × 1012 g C yr−1 of new biomass (Bach and Edwards,
2003; Edwards et al., 2005), and recent empirical measurement of
chemotrophic carbon fixation support this (Orcutt et al., 2015).

Seep Habitats
The marine environment has two types of seep habitats: cold
seeps (described above) and hydrothermal seeps (commonly
referred to as hydrothermal vents). Though not strictly deep
subsurface environments, these environments provide natural
“windows” into otherwise challenging to access environments
and are therefore considered. Fluids in these environments
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are subject to interactions with the local geology, resulting in
an altered physiochemical character such as enrichment with
dissolved minerals and metals (Staudigel et al., 1998). Marine
hydrothermal vent systems represent concentrated regions of
chemotrophic life in the otherwise oligotrophic deep-sea floor,
as warm, mineral rich subseafloor fluids mix with cold, oxic,
resource-deficient surface waters. This enrichment provides a
potentially energy rich environment, particularly where reduced
chemical species mix with oxic seawater in plume environments
(Dick et al., 2013).

Continental
The continental subsurface begins beneath the top active layers
of soil and ice or directly under exposed crust (Figure 2). There
are three main habitat types in the continental subsurface: the
crust, ores (here including hydrocarbon deposits) and aquifers.
There are also “windows into the subsurface” environments such
as hydrothermal springs and ophiolites.

Continental Crust
The continental crust has an estimated volume of approximately
2 × 108 km2 or 40% of the Earth’s solid volume, depending
on the definition (Cogley, 1984). It is primarily granitic (high
concentration of silica) and highly heterogeneous, becoming
mafic at depth (Wedepohl, 1995; Rudnick and Gao, 2003).
This contrasts with the broadly homogeneous marine crust
which has a low silica content (Rudnick and Fountain, 1995).
This heterogeneity provides a wide variety of habitats for
chemolithotrophs, as there is more substrate variability in
addition to temperature and pressure gradients. “Window”
sections of the deepest subsurface are accessible as uplifted
ophiolites (Neubeck et al., 2017; Rempfert et al., 2017). These
environments provide information on deeper geology and
interactions between these and microbial communities, though
the degree to which these sites are reflective of the true deep
subsurface varies according to local conditions.

Water in the terrestrial subsurface is primarily in channels
and pore spaces. The solid to water ratio tends to increase
with depth, causing a more constrained environment further
down (Stober and Bucher, 2004; Parnell and McMahon, 2016).
Water becomes more saline at depth, as long residence times
of thousands of years results in the accumulation of dissolved
minerals from contact with rock. Total groundwater volume in
the terrestrial subsurface crust is estimated at 2.43 × 1019 L
(Wirsen and Jannasch, 1978), with an estimated max volume
of 98% in aquifers (Gleeson et al., 2016). These aquifers are
areas of more permeable rock and sediment where groundwater
has less restricted flow (Foster and Chilton, 2003). Aquifer
conditions vary according to surrounding geology and sometimes
anthropogenic effects, but are in general oligotrophic.

Similar to the marine crust, electron acceptors and donors
include iron (Emerson et al., 2007; Heim et al., 2017), manganese
(Peng et al., 2015; Sylvan et al., 2015), sulfur species and
hydrogen (Osburn et al., 2014). Use of other metal species is
reported but their significance is often unclear (Kashefi and
Lovley, 2000; Oremland, 2003; Lee et al., 2015). Clays and
sediments are occasionally present, which can have a higher

organic carbon content than rock crust (Bagnoud et al., 2016).
Elevated concentrations of hydrogen in particular are present
in the deeper subsurface due to radiolysis, or as a product of
serpentinization, a geochemical alteration process that produces
methane, hydrogen, and abiotically produced hydrocarbons as
a result of water-ultramafic rock interactions. Similar to the
deep crustal marine subsurface, estimated rates of activity in the
continental deep subsurface are poorly constrained, due in part to
difficulties and costs involved in collecting quality samples from
deep boreholes and mine systems (Miettinen et al., 2015; Momper
et al., 2017).

Ores and Mineral Deposits
Concentrations of a particular mineral can alter local conditions
and microbiology (Lehman et al., 2001), though they are
rarely of significant volume in comparison to the total crustal
volume (Williams and Cloete, 2008; Daly et al., 2016). Ores are
mineral concentrations of economic interest, and here includes
hydrocarbon (e.g., coal) and halite deposits in addition to
metal-containing ores. These ores are sometimes the subject of
commercial exploitation, which provides opportunities for site
access though mining activity (Osburn et al., 2014; Miettinen
et al., 2015; Daly et al., 2016). However, these environments are
by definition altered by anthropogenic activity, changing local
conditions, and local microbiology. Examples include generation
of acid mine drainage (Druschel et al., 2004; Chen et al.,
2016), souring of hydrocarbon deposits (Head et al., 2014), and
alterations by explosive activity (Martins et al., 2017).

The range of electron acceptors and donors in these
environments can be very different from typical crust.
Hydrocarbon deposits such as oil and coal contain abundant
organic carbon, though this is usually not labile and often
includes toxic aromatic compounds (Larter et al., 2006; Head
et al., 2014). Depending on host geology, sulfate in particular
provides a reasonably energy rich electron acceptor (Sánchez-
Andrea et al., 2011; Dopson and Johnson, 2012; Tsesmetzis
et al., 2016). Other metals such as manganese (Spilde et al.,
2005), arsenic (Escudero et al., 2013), uranium (Beller et al.,
2013), and others (Johnson et al., 2017) are used in addition to
iron as electron sources and sinks (Hedrich et al., 2011; Toner
et al., 2016). Metal species in particular are usually present in
low dissolved concentrations in the environment regardless of
their concentration in solid mineral because of their respective
solubility under environmental conditions. There are exceptions
such as low pH environments associated with some ores and
hydrothermal fluids, where a high concentration of H+ shifts the
thermodynamics of solid/liquid/gas state equilibrium, changing
solubility so more metals stay in solution (Hedrich et al., 2011;
Johnson et al., 2012). There is evidence that iron, sulfur, and
methane oxidizing microbes use hydrogen as an electron donor
in these environments (Lau et al., 2016; Carere et al., 2017;
Hernsdorf et al., 2017).

Cold Subsurface Environments
Cold, hyperarid deserts are some of the closest analogs to
current extraterrestrial targets for life, such as high elevation
McMurdo Dry Valleys in Antarctica (Heldmann et al., 2013)
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and the Atacama Desert in Chile (Navarro-González et al., 2003;
Fairén et al., 2010). Temperatures in these environments rarely
reach above freezing, resulting in a soil profile almost exclusively
of permafrosts. These are oligotrophic systems, with potential
electron acceptors such as nitrates, sulfates, and perchlorates
as well as electron donors such as formate, acetate, and other
small organic acids are present in these primarily mineral soils
(Kounaves et al., 2010b; Parro et al., 2011; Jackson et al., 2016;
Faucher et al., 2017).

Subglacial lakes such as those in Greenland, Iceland, and
Antarctica (Siegert et al., 2016) are considered as ‘subsurface’
herein, as they fit the definition of an environment relatively
isolated from surface processes. These are bodies of water of
varying fluid dynamics, physiochemical properties, and residence
times that may or may not have a rocky bottom, capped by
kilometers of ice (Bell et al., 2002; Mikucki et al., 2016; Siegert
et al., 2016). Microbial studies of these sub-glacial lakes show
lithotrophic communities with unique microbial members and
metabolisms with a range of electron donors and acceptors,
with less biomass associates with the higher ice-water boundaries
(Murray et al., 2012; Bulat, 2016; Mikucki et al., 2016).

EXTRATERRESTRIAL ASTROBIOLOGICAL
TARGETS WITH SUBSURFACE
ANALOGS ON EARTH

Mars, Europa, Enceladus, and Titan have received the most
attention as the most likely to harbor signs of past or present
extraterrestrial life. These sites possess characteristics or specific
sites that share similar aspects of particular low energy subsurface
sites, in terms of physical characteristics and possible energy
sources.

Mars
Present day Mars is cold and hyper arid with low atmospheric
pressure (∼7 mbar), high ionizing radiation, and highly oxidizing
surface soil conditions (Fairén et al., 2010). Surface conditions on
Mars are currently considered inhospitable because of this and
due to the instability of liquid water on the surface. Water is
present on Mars in the near subsurface in the form of ground
ice and potentially as ground water residing in deeper crust
(Clifford and Parker, 2001; Byrne et al., 2009; Clifford et al., 2010).
Subsurface conditions such as pressure above the triple point of
water, radiogenic heating and the presence of dissolved solutes
could allow for liquid water with depth (Clifford et al., 2010).
Evidence indicates that past Mars was relatively warmer than at
present and liquid water was widespread (Fairén et al., 2010),
resulting in possible previously habitable conditions. There are
microorganisms on Earth that grow at subzero temperatures
(Mykytczuk et al., 2013) and under present Martian atmosphere
conditions (Mickol and Kral, 2017). Extant life could potentially
remain in the more clement subsurface conditions due to
protection provided from ionizing radiation and surface soil
oxidizing conditions.

Basalts, clays and ultramafic minerals are found across Mars,
and provide possible lithotrophic electron donors and acceptor

sources. Iron and sulfur in particular are abundant (Squyres
et al., 2004; Nixon et al., 2013), and there is evidence of
perchlorates (Catling et al., 2010; Navarro-González et al., 2010),
nitrogen (Stern et al., 2015), and other metal-containing minerals
(Squyres et al., 2004). Oxygen is present in the atmosphere
in extremely low concentrations of 0.1%, likely due to abiotic
formation (Kounaves et al., 2010a). Evidence that Martian
conditions have been locally extremely acidic (Horgan et al.,
2017; Peretyazhko et al., 2017), means that metal and sulfur
ions in particular could have been more bioavailable similar
to low pH environments on Earth (Fernández-Remolar et al.,
2008; Amils et al., 2014). Serpentine deposits have been identified
associated with impact craters and surface terrains by the Mars
Reconnaissance Orbiter in a number of sites on Mars (Ehlmann
et al., 2010), including Nili Fossae, a site possibly linked with
enriched methane concentrations (Mumma et al., 2009). Since
methane is thought to have a short lifespan in the Martian
atmosphere, a potential source for the variable detection of
methane on Mars (Webster et al., 2015) could be present-day
and/or past serpentinization processes in the subsurface (Oehler
and Etiope, 2017) as relevant minerals are present (Hoefen et al.,
2003; Ody et al., 2012). Some have theorized that the Martian
subsurface could be supplied with an energy source from the
oxidation of photochemically produced H2 and CO diffusing into
regolith, penetrating down to 100–1,000 meters (Weiss et al.,
2000). Microorganisms in surface cold and hyper-arid soils are
identified that utilize these substrates as a carbon and energy
source in trace atmospheric amounts (Ji et al., 2017), and CO
oxidation has been identified as a metabolism in the subsurface
on Earth (Brazelton et al., 2012; Baker et al., 2016; Hoshino and
Inagaki, 2017).

Analog environments to the cold and hyper-arid conditions
on Mars include the subsurface of the hyperarid Atacama desert
in Chile as well as polar deserts (Navarro-González et al., 2003;
Fairén et al., 2010). While the dry surface mineral soils of the
Atacama desert harbor little to no active microbial life (Navarro-
González et al., 2003; Crits-Christoph et al., 2013), there is a
“microbial oasis” at depth (∼2 m), where small films of liquid
water is formed due to deliquescence caused by hygroscopic salts
(Parro et al., 2011). In Antarctica, the McMurdo Dry Valleys
are a polar desert analog similar to observations at the Phoenix
landing site, where dry permafrost soil with negligible water
content overlays ice-cemented ground (Heldmann et al., 2013).
Life is likely constrained more by available liquid water than low
energy in these oligotrophic environments (Goordial et al., 2016)
as active microbial life in these cold, dry valleys can be observed at
lower elevations where liquid water is more prevalent seasonally
(Bakermans et al., 2014).

Considering the abundance of basalts and ultramafics on
Mars, the subsurface provides analogs for Martian minerals,
including basalts, clays, and serpentine (Stevens and Mckinley,
1995; Schulte et al., 2006) among others. Serpentinite hosted
microbial ecosystems are found in subsurface environments in
marine (e.g., Atlantis Massif) and in terrestrial settings (e.g.,
the Tablelands Ophiolite, The Ceders) (Kelley et al., 2005;
Brazelton et al., 2006; Hernsdorf et al., 2017; Rempfert et al.,
2017). Ophiolites on earth are identified as analogs for similar
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lithologies on Mars as a source of hydrogen in particular,
and depending on the host substrate, other energy sources
such as iron or manganese may also be present (Schulte
et al., 2006; Szponar et al., 2013; Dilek and Furnes, 2014).
Deeply occurring clays (Bagnoud et al., 2016; Leupin et al.,
2017) and particularly oligotrophic marine sediment (D’Hondt
et al., 2009) may be useful analogs for Martian organic-poor
clays.

Icy Moons With Liquid Oceans
There are currently two primary icy ocean world targets for
possible extraterrestrial life: Saturn’s moon Enceladus, and
Europa, a moon of Jupiter. Enceladus probably has a rocky
core covered at least partially by an approximately 10 km deep
body of probably alkaline (pH 8.0–12: Postberg et al., 2009;
Glein et al., 2015; Hsu et al., 2015) brine (Vance et al., 2016),
with a cap of 30–40 km of ice (Iess et al., 2014). There is a
geyser in the southern hemisphere (the so-called ‘tiger stripes’),
speculated to be sourced from hydrothermal activity (Glein
et al., 2015; Hsu et al., 2015; Sekine et al., 2015) or clathrate
decomposition (Kieffer et al., 2006). Information collected from
the geyser indicate the presence of carbon, nitrogen and organic
compounds (CH4, NH4), silicates (Postberg et al., 2009; Waite
et al., 2009), sodium, potassium and carbonates (Postberg et al.,
2009) and moderate salinity (Glein et al., 2015; Hsu et al.,
2015). Temperature estimates for subsurface ocean range from
<90◦C in the assumed crustal subsurface to approximately 0◦C
near the ice-water interface. There are indications of possibly
significant water-rock interactions between the liquid body and
a hypothesized solid rock core (Glein et al., 2015; Hsu et al.,
2015).

Europa is hypothesized to contain a rocky basaltic core (Vance
et al., 2016) in contact with a liquid brine ocean ∼80–100 km
deep (Kivelson et al., 2000; Lowell and DuBose, 2005), with a
∼15–25 km shell of ice (Kivelson et al., 2000) and lakes encased
within (Schmidt et al., 2011). Conditions of pH, temperature,
and composition of brines in Europa are less constrained
than Enceladus. though the presence of H2O2, O2, SO2, CO2,
carbonates, and sulfates are inferred from spectral data of surface
ice (McCord et al., 1998; Carlson et al., 1999; Hand et al., 2007),
which are theorized to enter the subsurface in some instances
(Teolis et al., 2017). Proposed possible metabolisms include
methanogenesis and sulfate reduction pathways (McCollom,
1999), though evidence of compounds involved in these pathways
have yet to be detected in the surface ice (Hand et al., 2007).
If oxygen enters the subsurface, then this may also function as
an electron acceptor, though the actual concentrations involved
may be low and localized (Teolis et al., 2017). Hydrothermal
activity and subsurface flow, are speculated based on features
of the ice surface (Lowell and DuBose, 2005; Quick and Marsh,
2016).

Considering the ultramafic, saline, and alkaline conditions
hypothesized to exist on these icy moon targets, marine
ultramafic subsurface sites such as Lost City on the Atlantis
Massif are useful to consider as they are broadly similar
(Postberg et al., 2009; Preston and Dartnell, 2014; Glein et al.,
2015; Vance et al., 2016; Lunine, 2017). The Lost City vent

system consists of a succession of alkaline (pH 9–11) vents of
∼45–90◦C fluids. The Europa site at the Mid-Cayman Ridge is
another cool, ultramafic-hosted system with elevated methane
(German et al., 2010). In these sites, seawater is entrained
within the ultramafic system and undergoes fluid-rock reactions
that remove carbonate, adds alkalinity, and enriches hydrogen,
methane, and other small weight organics that are byproducts
of serpentinization reactions. Serpentinization systems such as
these have been speculated as a possible energy source on
Enceladaus (Glein et al., 2015; Holm et al., 2015), with a possible
H2 generation value of approximately 3 mol H2 kg−1 of water
(Glein et al., 2015). This compares to 0.25–15 mmol H2 kg−1 of
water in the Lost City hydrothermal vent system (Kelley et al.,
2001, 2005; Proskurowski et al., 2008). Methane and sulfates
are a possible electron donor and acceptor (Kelley et al., 2001;
Lang et al., 2010; Brazelton et al., 2013; Schrenk et al., 2013);
however, a recent study suggests sulfate-reducers dominate this
environment despite abundant methane (Lang et al., 2018). There
is little sulfate yet detected on Enceladus, so sulfur couples may
not be a significant source of energy on this target (Glein et al.,
2015).

Basaltic oceanic crust environments also serve as useful
analogs to icy ocean worlds, given the interaction of saline
fluids with crust inferred on these targets. The best-studied
subsurface environments on Earth where fluid moves through
oceanic crust are on the flanks of mid-ocean ridges, namely the
eastern flank of the Juan de Fuca Ridge and the western flank
of the Mid-Atlantic Ridge at the “North Pond” site (Edwards
et al., 2012b; Orcutt and Edwards, 2014). Recent studies at these
sites have revealed dynamic microbial ecosystems thriving in this
subsurface environment (Jungbluth et al., 2016; Meyer et al.,
2016; Tully et al., 2018).

Considering the ice-water interface on these icy moons,
proposed analogs for ice-water interfaces include sea ice-
water channels (Martin and McMinn, 2017) and sub-glacial
lakes such as Lake Vida, an Antarctic permanently ice-
covered brine lake (Murray et al., 2012; Garcia-Lopez and
Cid, 2017). Sub-glacial lake studies show chemotrophic
communities with unique community members and evidence
of more life at substrate-water interfaces than ice-water
interface, indicating life is possible in these conditions (Murray
et al., 2012; Bulat, 2016; Mikucki et al., 2016). Identified
metabolisms include sulfate reduction, methanogenesis,
nitrate as an electron acceptor (Skidmore et al., 2000;
Michaud et al., 2017) and, at the crust-water interface,
lithotrophic sources such as manganese and iron (Murray
et al., 2012).

Considering the presence of brines in contact with crust on
icy moons, salt ores and cold seep brine pools offer additional
subsurface analogs for icy moons. Brine pools with distinct
microbial communities are present in the marine subsurface,
forming as buried salt deposits interact with upwelling subsurface
ocean fluids (Joye et al., 2009, 2010; Antunes et al., 2011). Deep
terrestrial halite ores harbor microbial communities, including
inclusions within the deposits (Lowenstein et al., 2011; Jaakkola
et al., 2016; Payler et al., 2017). Ionic strength of solution is
generally more limiting than energy in these environments,
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as there can be sulfur, methane, hydrogen and CO2 present,
depending on host lithology.

Titan
Titan is a cold, hydrocarbon-rich extraterrestrial body, so cold
subsurface environments rich in hydrocarbons are possible
analogs for this target. Titan has an atmosphere assumed to
contain primarily N2, CH4 and H2, surface temperatures of
∼90 K and a surface pressure of ∼1.46 bar (Jakosky et al.,
2003; Niemann et al., 2005; Jennings et al., 2009). It has liquid
reservoirs of N2, CH4, Ar, CO, C2H2–C4H10, and H2 (Cordier
et al., 2012, 2013) in addition to other complex C–H and
C–N chains (Desai et al., 2017) on the surface, which possibly
permeate the subsurface (Hayes et al., 2008; Mousis et al., 2014).
The temperature of Titan’s surface precludes all but the most
psychrophilic lifestyles, though there are indications that life at
these temperatures is within the realms of possibility (Price and
Sowers, 2004; Panikov and Sizova, 2007; Amato and Christner,
2009). Evidence of cryovolcanism also indicates possible areas of
warmer temperatures (Lopes et al., 2013). Conditions of Titan
are likely to increase reactivity of silicon compounds, leading to
some speculation on the possibility of silicon-based life in such
conditions (Bains, 2004).

Subsurface hydrocarbon deposits are proposed as possible
analogs for Titan (L’Haridon et al., 1995). Microbial life in
these environments metabolize hydrocarbons under challenging
conditions of temperature, pressure and oxygen limitation,
in addition to limitations imposed by the properties of
hydrocarbons as substrates. However, there is little information
on minimum temperatures in hydrocarbon deposits on earth.
Water is important in these hydrocarbon reservoirs, with a
positive correlation between cell activity and water availability
(Head et al., 2003; Larter et al., 2006); however temperatures
on Titan likely limit the availability of this solvent to warmer
areas linked to cryovolcanism (Kargel, 1994; Lopes et al., 2013).
Methane has been proposed as a possible alternative solvent
for Titan (Stofan et al., 2007), though its chemical properties
are somewhat different from water. The conditions on Titan
as currently understood allow for more extensive gas hydrate
formation, including in the subsurface and on the surface
(Osegovic and Max, 2005; Fortes et al., 2007). Methane hydrates
and associated microbial communities form on Earth in deep
sediment and permafrost (Osegovic and Max, 2005).

ENERGETICS AND THE SUBSURFACE

Growth, Activity, and Dormancy
The physiological state of microorganisms in the subsurface
can be grouped into three categories based on metabolic
activity: (1) Growth, where the energy/nutrient demands of the
cell are met, and there is sufficient energy for cell division
and biomolecule synthesis; (2) basal maintenance (alternatively
termed vegetative) in which cell division is not occurring, but
cells are carrying out essential housekeeping functions for cell
viability such as repair and replacement of biomolecules, and
maintenance of membrane integrity (Hoehler and Jørgensen,

2013); and (3) dormancy (endo-spores), a reversible state of
low to zero metabolic activity that is generally thought to be
an evolutionary strategy to overcome unfavorable conditions
for growth (Jones and Lennon, 2010; Lennon and Jones, 2011;
Bradley et al., 2018). The majority of microorganisms in most
environmental systems spend their time in non-dividing and
energy limited states (Bergkessel et al., 2016). Environmental
and energetic cues causing microorganisms to switch between
growth, activity and dormancy are unclear, though these
physiological states have important implications for the evolution
and ecology of low energy subsurface settings.

Many microorganisms on Earth are capable of temporarily
resisting stresses such as temperature, desiccation and antibiotics
by entering resting states or by forming spores (Jones and
Lennon, 2010). These dormant microorganisms act as a seed
bank, contributing to future microbial diversity when conditions
become favorable again. Dormancy might be a relevant life
strategy for considering life on planetary bodies with possible
past habitable conditions or where environmental conditions
fluctuate temporally. Due to the estimated life-span of viability
for an endospore and measured endospore abundance with depth
in subseafloor sediments, one strategy for extended longevity in
the subsurface appears to be periodic germination of spores to
carry out repair functions (Braun et al., 2017). Nonetheless, long
term survival on geological timescales through low metabolic
activity may be superior to dormancy since a minimum
metabolic activity for maintenance is required to counteract
damage to biomolecules accumulated over time caused by
background radiation, hydrolysis, oxidation, etc. (Johnson et al.,
2007).

Energy requirements of growth, maintenance activities and
dormancy are difficult to directly measure, but is estimated to
differ by orders of magnitude (106: 103: 1) (Price and Sowers,
2004). Investigations into limits of energy required for growth
in cultured microbes vary from −20 to −9 kJ mol−1 of energy
as a limiting threshold for actively growing populations (Schink,
1997; Hoehler, 2004; Schink and Stams, 2006). Values for in situ
investigations are lower again, with values of 190 zeptoWatts
(zW) per cell in ultra-oligotrophic sediments and theoretical
values as low as 1 zW per cell (LaRowe and Amend, 2015a).
For comparison, a J mol−1 is a unit of energy whereas W is
a unit of power, which is energy use over time. Therefore, 190
zW is equivalent to 1.9 × 10−22 kJ mol−1 s−1. More recent
work suggests that −20 to −10 kJ mol−1 is the minimum
energy required for ATP synthesis (Müller and Hess, 2017),
suggesting that lower values are more representative of cells
under vegetative states. However, modeling energy requirements
of in situ populations of cells requires several assumptions about
growth requirements such as cellular biomolecule content, cell
size and microbial taxa (Lever et al., 2015; Bergkessel et al., 2016;
Kempes et al., 2017). Likewise, the molecular mechanisms and
physiological characteristics associated with non-growth activity
in cultured microorganisms remains poorly understood, due
partly to the challenges associated with controlling, reproducing,
and measuring non-growing states (Bergkessel et al., 2016). It
is unclear how mechanisms (such as those reviewed in Lever
et al., 2015) and energy consumption in generally fast-growing,
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mesophilic model microorganisms relate to those employed
by extremophiles such as those of low energy subsurface
environments.

Despite low energy and nutrients, multiple lines of evidence
indicate active microbial life in the subsurface. These include
rates of metabolic sulfate reduction and methane cycling inferred
from geochemical profiles in environmental samples, and activity
measurements in microcosm experiments through radioisotope
and stable isotope labeling of compounds (Morono et al.,
2011; Wegener et al., 2012; Orcutt et al., 2013a; Glombitza
et al., 2016; Robador et al., 2016b; Trembath-Reichert et al.,
2017). Detection of bulk transcriptional activity and translational
activity has the advantage of ascribing taxonomy and function
to active microbiota (Orsi et al., 2013, 2016; Hatzenpichler
et al., 2016; Marlow et al., 2016). Calorimetry measurements
detected microbial activity in oceanic crustal fluids, measuring
cellular energy consumption ranging from 0.2 to 5.7 pW cell−1

(Robador et al., 2016a). Additionally, highly sensitive techniques
such as nanometer-scale secondary ion mass spectrometry
(nanoSIMS), and bioorthogonal non-canonical amino acid
tagging (BONCAT), have detected activity down to the single
cell level in slow growing microorganisms (Morono et al.,
2011; Hatzenpichler et al., 2016; Trembath-Reichert et al.,
2017), providing insight into individual cell-to-cell variation in
metabolism in low energy settings. Such activity measurements
have led to proposed cell turnover rates of months to 10s of
1000s of years (Phelps et al., 1994; Biddle et al., 2006; Hoehler
and Jørgensen, 2013; Braun et al., 2017; Trembath-Reichert et al.,
2017).

Energy Yield of Various Redox Reactions
in the Low Energy Subsurface and on
Extraterrestrial Environments
According to the “follow the energy” approach to identifying
habitable zones (Hoehler, 2007), electron acceptors and
donors must be present in large enough quantities, and
the energy released needs to be sufficient for life to make
use of it (Nixon et al., 2012). The energy of a reaction
differs according to environmental conditions, particularly
in “extreme” environments such as the subsurface and current
potential extraterrestrial targets, where temperature, pressure,
pH and concentration of available reactants and products
deviate significantly from standard conditions of 25◦C, 1
atm, 1 M substrate concentration (D’Hondt, 2002; Hoehler,
2004, 2007; LaRowe and Van Cappellen, 2011; Bradley et al.,
2018). Additionally, Gibbs free energy yield calculations for
various reactions give only the maximum theoretical available
energy at a given set of conditions. Calculations of the energy
yield of a reaction (i.e., kJ per mole of substrate) should be
considered against the availability of the substrate to consider
energy yield in a given volume of the environment (i.e.,
kJ per liter) (LaRowe and Van Cappellen, 2011; LaRowe
and Amend, 2015b; Orcutt et al., 2015). This volumetric
energy yield is particularly relevant in subsurface sites,
where certain electron acceptors and donors can be in short
supply.

To evaluate the feasibility of various redox reactions in
low energy subsurface analog sites and extraterrestrial targets
(Table 1), we calculated the Gibbs free energy yield of reactions
under in situ conditions for a suite of reactions (Table 2),

TABLE 1 | Extraterrestrial and Earth low energy subsurface analog sites
considered in energy calculations.

Site Overview of site characteristics

Extraterrestrial

Mars Low estimate

High estimate

Enceladus Hypothesized crustal seafloor-liquid interface

Europa Hypothesized crustal seafloor-liquid interface

Titan Surface

Marine

North Pond Basaltic crust, cool, and oxic

Juan de Fuca Basaltic crust, warm, and anoxic

Lost City Ultramafic crust, warm hydrothermal vents

South Pacific Gyre Extremely oligotrophic, oxic sediment

Gulf of Mexico Cold anoxic brine seeps

Continental

Sanford Underground Research
Facility

Metamorphic crust

Mont Terri Opalinus clay

Rio Tinto Massive pyrite ore deposit

University Valley Polar desert permafrost, low estimate

Polar desert permafrost, high estimate

Atacama Hyperarid desert, low temperature, high pH

Hyperarid desert, high temperature, low pH

Lake Vida Ice-enclosed hypersaline lake

Environmental concentrations (listed in Supplementary Table S1) from references
listed in Supplementary Table S2.

TABLE 2 | Reactions considered in Gibbs free energy and energy density
calculations.

Redox pair Equation

H2/O2 H2(aq) + 0.5O2(aq) → H2O(l)

H2/NO−3 (NO−2 ) H2(aq) + NO−3 → NO−2 + H2O(l)

H2/NO−3 (NH3) 4H2(aq) + NO−3 + H+ → NH3(aq) + 3H2O(l)

H2/SO2
4 4H2(aq) + SO2−

4 + 2H+ → H2S(aq) + 4H2O(l)

H2/CO2 4H2(aq) + CO2 (aq) → CH4(aq) + 2H2O(l)

H2S/O2 H2S(aq) + 2O2(aq) → SO2−
4 + 2H+

H2S/NO−3 5H2S(aq) + 8NO−3 → 4N2(aq) + 5SO2−
4 + 4H2O(l) + 2H+

Fe2+/O2 2Fe2+
+ 0.5O2(aq) + 2H+ → 2Fe3+

+ H2O(l)

FeS2/O2 FeS2(s) + 3.5O2(aq) + H2O(l) → Fe2+
+ 2SO2−

4 + 2H+

NH3/O2 NH3(aq) + 1.5O2(aq) → NO−2 + H2O(l) + H+

NH3/NO−2 NH3(aq) + NO−2 + H+→ N2(aq) + 2H2O(l)

NH3/SO2−
4 NH3(aq) + SO2−

4 + H+ → NO−3 + H2S(aq) + H2O(l)

CH4/O2 CH4(aq) + 2O2(aq) → CO2(aq) + 2H2O(l)

CH4/NO−3 CH4(aq) + 4NO−3 → 4NO−2 + CO2(aq) + H2O(l)

CH4/SO2−
4 CH4(aq) + SO2−

4 + 2H+ → H2S(aq) + CO2(aq) + 2H2O(l)

Note that redox pairs of Fe2+ with NO−3 or SO2-
4 were also considered, but as

the reactions were always endergonic (see Supplementary Table S1), they were
excluded from further presentation.
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following approaches outlined in detail elsewhere (Amend and
Shock, 2001; Osburn et al., 2014). We scaled the activity
coefficients in the Gibbs free energy equations to account
for ionic strength in the various environments, as well as
temperature effects on standard conditions; pressure effects
were not included as these have far less of an impact than
temperature (Amend and Shock, 2001). Where available, we used
measured or interpreted in situ concentrations of reactants and
products available from the primary literature (Supplementary
Table S1). Care was taken to select subsurface values wherever
possible, particularly for sites such as Rio Tinto that have surface
components. Where concentrations were unknown, we assumed
an end-member limiting concentration of 1 nmol substrate per
liter (Supplementary Table S1). Gibbs free energy yields were
normalized to the number of electrons exchanged in the reaction,
to calculate energy yields as kJ per mole of electrons for cross
comparison of reactions. The energy density of the selected
reactions in an environment were calculated by scaling the
reactions to a mole of the limiting reactant, which was assumed
to be the electron donor in all cases. While this assumption is
not always true, such as in organic rich marine sediment where
electron acceptors become limiting (Orcutt et al., 2011), its use
allows more direct comparison within the presented dataset and
other work (Osburn et al., 2014). Finally, we summed the free
energy available from all calculated reactions together to compare
sites to one another, although this presents an overestimate as
there would be competing reactions for some substrates.

Despite the large variation in environmental conditions –
such as temperature, ionic strength, and concentrations – our
calculations show that there is remarkable consistency in the
energy yields per electron transferred across all subsurface and
extraterrestrial sites considered (Table 1), with most reactions
varying by less than 100 kJ mol electron−1 (Figure 3 and
Supplementary Table S1). The most variable reaction energetic
yield is the CH4/O2 redox pair, whereas the least variable is

FIGURE 3 | Range and mean of Gibbs Free energy yields, normalized to kJ
per mole electron transferred per reaction, across all sites for the redox pairs
listed in Table 1. Negative values indicate exergonic reactions. See
Supplementary Table S1 for all values. Reactions grouped by electron
donor and color (pink, CH4; blue, NH3; gray, FeS2; red, Fe2+; orange,
H2S; black, H2).

the H2/CO2 pair. Only the CH4/SO4 redox pair is expected
to be endergonic under some conditions (though just barely
exergonic and at or below the theoretical minimum energy limit
in others); all other reactions are estimated to be exergonic under
all conditions considered (note that calculations for Fe2+ paired
with either NO−3 or SO2−

4 was endergonic under all conditions
and was excluded from further analysis). This indicates that a
wide range of redox reactions could theoretically be supported
on the extraterrestrial targets, and that the energy yields can be
similar to what can be found in Earth’s subsurface environments.
However, given that the presence of some electron donors and
acceptors in extraterrestrial targets are poorly constrained [e.g.,
unknown electron acceptors on Enceladus, despite confirmation
of electron donors methane, ammonium, and possibly hydrogen
(Postberg et al., 2009; Waite et al., 2009)], theoretical feasibility
needs to be constrained by probability of both electron donors
and acceptors being present.

Strikingly, extraterrestrial sites are predicted to have similar
cumulative energy densities as Earth’s subsurface habitats (with
conservative assumptions about electron donor and acceptor
concentrations), although the dominant energy-rich processes
vary (Figure 4 and Supplementary Table S1). For example,
cumulative volumetric energy densities on Mars are estimated to
range from 0.03 to 3 kJ L−1, supported primarily by the electron
donors NH3, H2S, or hydrogen reacting with sulfate, nitrate, or
oxygen, depending on the scenario chosen for electron donor
concentration, pH, and temperature. Under the scenario of low
electron donor concentration, low pH, and low temperature, the
predicted Martian energy density and dominant reactions are
similar to those observed at the Earth analog site at the Juan de
Fuca Ridge flank subsurface oceanic crust. Under the scenario of
higher electron donor concentrations, pH, and temperature, the
cumulative volumetric energy density and dominant reactions
estimate is more similar to what is estimated from the Earth
analog sites in the Rio Tinto. The base of the presumed Europan
ocean has an estimated energy density of 400 kJ L−1 fueled
primarily by iron oxidation, if dissolved oxygen is present (Teolis
et al., 2017) and penetrates to the water-rock interface and if iron
is released from water-rock reactions. This volumetric energy
density and dominant reaction pattern is similar to that estimated
for the Earth analog site at University Valley. By contrast, the
ocean on Enceladus is estimated to have an energy density of
100 kJ L−1 fueled by ammonia oxidation with nitrate; none of
our comparison Earth analog sites had similar energy density
estimates from this reaction. The cumulative volumetric energy
density estimates for Titan are the highest we estimate in this
exercise, fueled by ammonia oxidation with sulfate or nitrate in
a similar pattern as estimated for the Juan de Fuca analog system,
but we highlight that this is the least well constrained system.
Overall, although based on poorly constrained concentrations,
these projections indicate that extraterrestrial sites could have
sufficient overall energy to host chemolithotrophic communities.

The predicted relative contribution of each redox pair to each
site is applicable information for the “follow the energy” approach
to habitability (Hoehler, 2007), and can further be constrained by
comparison studies of microbial metabolic processes in the Earth
analog systems, to see if the predicted energy rich metabolisms
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FIGURE 4 | Cumulative volumetric energy densities of redox reactions per site based on environmental concentrations of variables in each reaction (Table 1). (Left)
Shows the percent contribution of various reactions as shown in the color legend. (Right) Shows combined absolute energy density (as kJ per liter) for all reactions,
with gray scale reflecting habitat type. All calculations assumed that the electron donor was the limiting substrate. See Supplementary Table S1 for all values and
formulas.

are indeed those that occur. This approach of comparing energy
density to microbial community function has recently been
shown for some subsurface sites (Osburn et al., 2014; Reveillaud
et al., 2016; Momper et al., 2017), demonstrating the power of
this energy density approach to be a useful predictor of metabolic
function. For example, North Pond energy is primarily from
the FeS2/O2 couple (Figure 4), indicating that solid mineral
substrates may be significant in this environment. Oxidation of
hydrogen sulfide is also predicted to yield more energy than other
electron donors (Figure 4), which agrees well with information
on metabolic function in the community indicating that sulfur
oxidizers are present in greater relative abundance as compared
to hydrogen, ammonia and nitrite metabolisms (Jørgensen and
Zhao, 2016; Meyer et al., 2016). Lost City estimates showmethane
and hydrogen oxidation reactions as significant sources of energy
(Figure 4), which agrees with work indicating methane oxidizers
are common in this system but contrasts with other recent work
pointing to sulfate metabolisms as being more important than
hydrogen metabolisms in this environment (Lang et al., 2018). At
this site, the Gibbs free energy of the H2/CO2 couple is relatively
high but the energy density low (Figures 3, 4), as dissolved
CO2 concentration is scarce because it rapidly precipitates as
carbonates in the high pH environment. As shown previously,
sulfide oxidizing metabolisms are energy rich in the continental
subsurface at the Sanford Underground Research Facility, and
sulfide oxidizers are dominant in the microbial community
(Osburn et al., 2014; Momper et al., 2017). In the subsurface
portion of Rio Tinto, observation of iron and sulfur metabolisms
matches with estimates of energy density (García-Moyano et al.,
2012; Sánchez-Andrea et al., 2012; Amils et al., 2014). The
Atacama analog site has a very low predicted energy availability,

although we note that factors like water availability may be more
important than energy availability in structuring the microbial
community at the hyperarid and polar desert environments
(Goordial et al., 2016). It is notable that the range of pH and
temperature scenarios at the Atacama and University Valley sites
did not particularly affect the predicted dominant reactions or
volumetric energy densities at the hyper-arid sites, unlike the
Mars sites, which notably changed, highlighting that the ion
concentrations are key for determining dominant reactions and
energy densities. Overall, this “follow the energy” approach of
matching predicting energy density to microbial community
structure and function may inform the likely metabolisms that
might be found on extraterrestrial targets.

As with all such calculations however, there are caveats to
the estimates presented. Many of these values are estimates, due
to missing information for many of the extraterrestrial targets
(Supplementary Table S1). The calculations assume steady
state concentrations, whereas in Earth analog environments,
current concentrations do not reflect the energy available
from biogeochemical reactions that may have already occurred.
Likewise, these steady state calculations do not consider the fluxes
of electron donors or acceptors, which will also have strong
influence on energetics. The calculations assume a cumulative
energy from many different reactions that would consume the
same electron donors and acceptors and do not take into
account competition for these substrates between the reactions,
nor the possible variabilities in reaction kinetics, which is
beyond the scope of this paper. The extraterrestrial calculations
were generalized across the entire target and not modified
for variations in possible habitat type. These calculations also
do not take any other habitability factor (i.e., Figure 1) such
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as water, carbon availability and toxicity into consideration,
though these also affect microbial communities in subsurface
analog sites (Goordial et al., 2016; Purkamo et al., 2017).
These speculations assume that limits of energy of life in
earth systems would be applicable elsewhere. This is a rather
significant assumption, but a key part of extraterrestrial-
analog investigation in general. Finally, it must be noted that
habitability does not necessarily mean a set of conditions will
be inhabited (Cockell et al., 2016). With these limitations in
mind, these figures nevertheless serve to refine the question
of habitability in combination with other factors (Figure 1)
by giving a rough indication of which microbial metabolic
redox reactions in various deep subsurface sites and potential
extraterrestrial targets potentially provide sufficient energy for
life.

In conclusion, the low energy subsurface is a collective
term for environments that are relatively isolated from surface
processes, though the exact habitable range is yet largely
unconstrained. The largely prokaryotic life in these environments
survive a range of “extreme” conditions such as temperature
and availability of electron donors or acceptors. These factors
have a direct effect on the available energy of a redox reaction,
which in turn affects the viability of a particular metabolism in
a given set of environmental conditions. These characteristics
make the low energy subsurface a source of potential analogs in
the search for life elsewhere, as this combination of conditions
and resource scarcity are useful in the search for the boundaries
of where life is possible across a broad spectrum of possible
extreme environments. Therefore, studying the subsurface in
the context of analogs contributes to constraining the energetic
boundaries of “following the energy” as an approach to the search
for life.
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