
International  Journal  of

Environmental Research

and Public Health

Article

Spatial Association Pattern of Air Pollution and
Influencing Factors in the Beijing–Tianjin–Hebei Air
Pollution Transmission Channel: A Case Study in
Henan Province

Jianhui Qin 1, Suxian Wang 2, Linghui Guo 3,* and Jun Xu 4

1 School of Business and Administration, Henan Polytechnic University, Jiaozuo 454000, Henan, China;
qinjianhui@hpu.edu.cn

2 Emergency Management School, Henan Polytechnic University, Jiaozuo 454000, Henan, China;
2277410@163.com

3 School of Surveying and Land Information Engineering, Henan Polytechnic University,
Jiaozuo 454000, Henan, China

4 School of Business, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China; lmmxjxj@163.com
* Correspondence: guolinghui@hpu.edu.cn; Tel.: +86-1833-9112-589

Received: 5 January 2020; Accepted: 24 February 2020; Published: 2 March 2020
����������
�������

Abstract: The Beijing–Tianjin–Hebei (BTH) air pollution transmission channel and its surrounding
areas are of importance to air pollution control in China. Based on daily data of air quality index
(AQI) and air pollutants (PM2.5, PM10, SO2, NO2, CO, and O3) from 2015 to 2016, this study analyzed
the spatial and temporal characteristics of air pollution and influencing factors in Henan Province,
a key region of the BTH air pollution transmission channel. The result showed that non-attainment
days and NAQI were slightly improved at the provincial scale during the study period, whereas that
in Hebi, Puyang, and Anyang became worse. PM2.5 was the largest contributor to the air pollution
in all cities based on the number of non-attainment days, but its mean frequency decreased by
21.62%, with the mean occurrence of O3 doubled. The spatial distribution of NAQI presented a
spatial agglomeration pattern, with high-high agglomeration area varying from Jiaozuo, Xinxiang,
and Zhengzhou to Anyang and Hebi. In addition, the NAQI was negatively correlated with sunshine
duration, temperature, relative humidity, wind speed, and positively to atmospheric pressure and
relative humidity in all four clusters, whereas relationships between socioeconomic factors and
NAQI differed among them. These findings highlight the need to establish and adjust regional
joint prevention and control of air pollution as well as suggest that it is crucially important for
implementing effective strategies for O3 pollution control.

Keywords: air pollution; changing characteristic; spatial association pattern; influencing factors;
Henan Province

1. Introduction

With rapid economic growth and dramatic increase in energy consumption, China has been
experiencing serious environment problems related to air pollution, leading to adverse impacts on
human health [1,2] and socioeconomic development [3]. The air pollution issue has attracted increasing
attention of all aspects of the society [4,5]. In recent years, a number of studies have investigated the
spatial and temporal distribution of air pollution and pollutants in China [6–9]. For instance, Xu et al.
and Wang et al. addressed the variations of air quality and air pollutants in 31 provincial capital
cities [6,8]. Yan et al. analyzed the distribution of PM2.5 concentrations in the Beijing–Tianjin–Hebei
(BTH) metropolis circle and highlighted its increase from late autumn to early winter with an obvious
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spatial range from southeast to northwest [10]. However, most studies have mainly focused on the
megacity clusters such as the BTH metropolis circle [10,11], Pearl River Delta (PRD) [12], Yangtze
River Delta (YRD) [13,14], and the capital cities in China [15]. Studies have indicated that, due to
vast territories, complex air pollution emissions, and environmental conditions, regional differences
are remarkable for ambient air quality [16], composition of air pollutants [17], and spatiotemporal
processes [14]. Therefore, it is difficult to extrapolate existing findings to other regions, and advancing
our understanding of variations in air pollution in different regions is thus necessary and helpful
for supporting the establishment of region-oriented air quality control measures. Moreover, recent
studies have suggested that the degree of air pollution in a city is closely correlated with that of
surrounding cities, with the feature of “be bound together for good or ill” [9,18,19]. Hence, clarifying
the spatial association pattern and spatial spillover effects of air pollution among cities is of importance
in improving our strategies of regional air pollution prevention and control.

Numerous studies have shown that meteorological conditions a play key role in the formation
and variation of air pollution [13,16]. An increase in temperature could diffuse air pollution and dilute
pollutant concentrations [20], and a high atmospheric pressure usually restricts the dispersion and
dilution of pollutants [16]. Air quality may be better on days with more sunshine, higher wind speed,
temperature, relative humidity, and precipitation [8]. However, recent studies have suggested that
the influence of meteorological conditions on air pollution is much more complex and differs with
time and region scales [21,22]. For instance, air pollution was strongly negatively correlated with
temperature in southern China, while many cities in northeastern and northern China showed a positive
correlation [22]. On the other hand, it has been well documented that socioeconomic factors such as per
capita GDP, population density, urbanization level, proportion of secondary industry, car ownership,
and energy structure are important internal drivers of air pollution, but their influence direction
and intensity also vary geographically due to the regional development and resource environment
status [23,24]. Thus, it is necessary to quantify the spatial heterogeneity influences of meteorological
and socioeconomic factors on air pollution.

Henan Province, a crucial region of the BTH air pollution transmission channel, has been one
of the most heavily polluted areas in China [12], and its provincial capital city, Zhengzhou, was
listed among “the top ten worst cities for air quality” in China during 2013–2017 [25]. However, our
understanding of the air pollution in this region is fairly limited, which further restricts our ability to
implement effective air pollution prevention and control policies. Therefore, in this study, we analyzed
the spatiotemporal variation of urban air quality index for days that exceeded the ambient air quality
standards and major pollutants in Henan Province using newly released monitoring data. In addition,
we quantified the spatial patterns of air pollution and influencing factors to enhance our understanding
of the underlying mechanisms, which can be used as a reference for establishing region-oriented air
quality control measures.

2. Materials and Methods

2.1. Study Area

Consisting of 18 cities and covering an area of approximately 167,000 km2, Henan Province is
located in the key region of the Beijing–Tianjin–Hebei air pollution transmission channel (Figure 1).
The elevation of the province increases from east to west (from 16 m to 2130 m, respectively). This region
experiences a continental monsoon climate with annual mean rainfall of 408–1296 mm and annual
mean temperature of 10.5–16.7 ◦C. Henan Province is the most populated province, with more than
120 million people, and is one of the most polluted areas in China [26].
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Figure 1. Map of Henan Province in China including the locations of the 18 cities and 13 
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and O3) for the 18 cities in Henan Province from March 1, 2015 to February 28, 2017 were collected 
from the website of the Henan Bureau of Environmental Protection [27]. According to the newly air 
quality standard passed by the Ministry of Environmental Protection and the State General 
Administration of Quality Supervision Inspection and Quarantine of China, Henan Province has 
gradually started publishing air quality data of the six criteria pollutants for its 18 cities through its 
website since 2014. This latest database is essential for providing detailed information about the air 
pollution situation and can help citizens understand how local air quality has changed over time. In 
the data period of this study, there were three days with missing records in 2015, and two days with 
missing records in 2016. Thus, the corresponding records on these five days in each year were 
removed. As an integrated index, the AQI is defined as the maximum of the indices for the six 
criterion pollutants [26]. The pollutant with the highest index value is referred to as the “major 
pollutant”, if the AQI is above 50. Daily air quality is classified into six grades based on the AQI value: 
excellent (0–50), good (51–100), mild pollution (101–150), moderate pollution (151–200), heavy 
pollution (201–300), and serious pollution (>300). In this study, only the period of non-attainment 
days (defined as days with an AQI higher than 100) was used for analysis, and the AQI for these non-
attainment days was denoted as the NAQI. 

Daily meteorological data were obtained from the China Meteorological Data Sharing Service 
System [28]. These data included daily maximum instantaneous wind speed (MWS, m/s) and 
direction (MWD), average temperature (AT, °C), average atmospheric pressure (AAP, hPa), and 
sunshine hours (SH, h), average relative humidity (ARH, %), precipitation (P, mm), and average 
(AST, °C), and maximum surface temperature (MST, °C). The 13 meteorological stations are shown 
in Figure 1. For cities without an available meteorological station, the city’s meteorological dataset 
was substituted with a dataset from an adjacent station. For instance, the meteorological data of 
Puyang and Hebi were replaced by those of Anyang, those of Jiaouzo were replaced by those of 
Xinxiang, those of Jiyuan were replaced by those of Luoyang, and those of Luohe were replaced by 
those of Xuchang. The socioeconomic datasets, which include civil vehicle possession, energy 
consumption, the floor space of buildings, and economic development for each city were retrieved 
from the statistical yearbooks of Henan Province for 2016 and 2017 [29]. To eliminate any possible 
effects of differences in regional area, we used per unit area or per capita socioeconomic data instead 
of the total amount. To further determine the influences of specific socioeconomic activities, we 
included four additional types of socioeconomic indicators: per unit area possession of a civil vehicle 
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Figure 1. Map of Henan Province in China including the locations of the 18 cities and 13
meteorological stations.

2.2. Data Sources

Daily datasets of the air quality index (AQI) and six major pollutants (PM2.5, PM10, CO, SO2, NO2,
and O3) for the 18 cities in Henan Province from March 1, 2015 to February 28, 2017 were collected from
the website of the Henan Bureau of Environmental Protection [27]. According to the newly air quality
standard passed by the Ministry of Environmental Protection and the State General Administration
of Quality Supervision Inspection and Quarantine of China, Henan Province has gradually started
publishing air quality data of the six criteria pollutants for its 18 cities through its website since 2014.
This latest database is essential for providing detailed information about the air pollution situation and
can help citizens understand how local air quality has changed over time. In the data period of this
study, there were three days with missing records in 2015, and two days with missing records in 2016.
Thus, the corresponding records on these five days in each year were removed. As an integrated index,
the AQI is defined as the maximum of the indices for the six criterion pollutants [26]. The pollutant with
the highest index value is referred to as the “major pollutant”, if the AQI is above 50. Daily air quality
is classified into six grades based on the AQI value: excellent (0–50), good (51–100), mild pollution
(101–150), moderate pollution (151–200), heavy pollution (201–300), and serious pollution (>300).
In this study, only the period of non-attainment days (defined as days with an AQI higher than 100)
was used for analysis, and the AQI for these non-attainment days was denoted as the NAQI.

Daily meteorological data were obtained from the China Meteorological Data Sharing Service
System [28]. These data included daily maximum instantaneous wind speed (MWS, m/s) and direction
(MWD), average temperature (AT, ◦C), average atmospheric pressure (AAP, hPa), and sunshine
hours (SH, h), average relative humidity (ARH, %), precipitation (P, mm), and average (AST, ◦C),
and maximum surface temperature (MST, ◦C). The 13 meteorological stations are shown in Figure 1.
For cities without an available meteorological station, the city’s meteorological dataset was substituted
with a dataset from an adjacent station. For instance, the meteorological data of Puyang and Hebi
were replaced by those of Anyang, those of Jiaouzo were replaced by those of Xinxiang, those of
Jiyuan were replaced by those of Luoyang, and those of Luohe were replaced by those of Xuchang.
The socioeconomic datasets, which include civil vehicle possession, energy consumption, the floor space
of buildings, and economic development for each city were retrieved from the statistical yearbooks
of Henan Province for 2016 and 2017 [29]. To eliminate any possible effects of differences in regional
area, we used per unit area or per capita socioeconomic data instead of the total amount. To further
determine the influences of specific socioeconomic activities, we included four additional types of
socioeconomic indicators: per unit area possession of a civil vehicle (PCV, vehicles/km2), passenger
vehicle (PPV, vehicles/km2), large passenger vehicle (PLPV, vehicles/km2), sedan (PS, vehicles/km2),
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truck (PT, vehicles/km2), heavy truck (PHT, vehicles/km2), and ordinary truck (POT, vehicles/km2);
per unit area total energy consumption (PTEC, tons of standard coal/km2), consumption of coal (PCL,
tons of standard coal/km2), coke (PCK, tons of standard coal/km2), diesel fuel (PDF, tons of standard
coal/km2), heat (PH, kJ/km2), and electricity (PE, kWh/km2) of industrial enterprises above a designated
size; per unit area floor space under construction (PFSCI, m2/km2) and floor space under completion
(PFSCII, m2/km2); and the proportion of primary industry (PPI, %), proportion of secondary industry
(PSI, %), proportion of tertiary industry (PTI, %), per capita gross domestic product (PGDP, yuan per
capita), value-added by industry (PVAI, yuan per capita), and value-added by construction (PVAC,
yuan per capita). These indicators were selected for following reasons: first, their importance has been
addressed by the previous studies [14,19,24,30]; second, these indicators can comprehensively reflect
the regional socioeconomic situation [31].

2.3. Spatial Association Pattern

Moran’s I is a widely used indicator of spatial association pattern [32]. To measure the spatial
autocorrelation of the NAQI, the global Moran’s I ranging from −1 to 1, was calculated using the
average NAQI in 2015 and 2016. When global Moran’s I is significantly bigger than 0, it shows a
positive spatial correlation; when global Moran’s I is significantly lower than 0, it denotes a negative
spatial correlation; “0” implies perfect spatial randomness [18]. Meanwhile, the local Moran’s I of
the average NAQI in 2015 and 2016 was used for identifying local spatial cluster patterns and spatial
outliers. A high positive local Moran’s I implies that the location is a spatial cluster, high–high cluster
(H–H) or low–low cluster (L–L), while a high negative local Moran’s I indicates a potential spatial
outlier, high–low (H–L) or low–high (L–H) outlier. Moran’s I analysis was performed using ArcGIS
version 10.2. Given the importance of non-attainment days for air pollution exposure, a hierarchical
clustering analysis was conducted by combining the mean seasonal NAQI and seasonal non-attainment
days in each year of 2015 and 2016 for the 18 cities of Henan Province to investigate their spatial
association pattern. The hierarchical clustering was performed with SPSS software version 16.0 using
the Euclidean distance of the Z-score standardized variables to measure dissimilarities and Ward’s
criterion to construct the hierarchical tree [33].

2.4. Pearson Correlation Analysis

To examine factors influencing the spatiotemporal variations of the NAQI, we examined the
socioeconomic factors at the city level and the daily meteorological variables within the city level.
Relationships were estimated according to the cluster analysis result to provide insights pertaining to
the spatial heterogeneity of the influence factors. We performed this analysis using Pearson correlation
coefficients calculated with SPSS version 16.0 software.

3. Results and Discussion

3.1. Characteristics of Air Quality

3.1.1. Variations of NAQI

The NAQI in Henan Province exhibited substantial spatiotemporal variations (Figure 2). Generally,
cities with low NAQI values were located in the south (e.g., in Nanyang, Xinyang, and Zhumadian),
whereas northern and central regions had relatively high NAQI values, which is consistent with
the results of previous studies [2,25]. This gradient may have been caused by two possible reasons.
The first reason might be due to the fact that the northern part of Henan Province is more economically
dependent on mineral resources and industry than the southern part. For instance, the energy
consumption per unit GDP in some resource-based cities in northern Henan such as Anyang, Hebi,
and Jiaozuo is higher than the provincial and national average, which may result in high emissions of
air pollutants [34]. Second, this can be related to changes in the meteorological conditions from south
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to north. The cities with lower temperatures in the north have been suggested to have worse air quality
due to the vertical and horizontal turbulence [8]. Compared with 2015, the annual average NAQI
in 2016 showed a slight decline at the province scale. However, the variations of NAQI in Anyang,
Xuchang, Kaifeng, Puyang, and Hebi demonstrated obvious increases of 14.85%, 6.97%, 5.61%, 3.92%,
and 3.69%, respectively, whereas the air quality of the three southern cities with the lowest NAQI
values improved. This highlights the need to improve air quality through new effective efforts in high
pollution cities. In addition, monthly NAQI was highest in winter (December–February) and lowest in
summer (June–August), with an obvious decrease from May to October and in December, and a slight
increase in other months from 2015 to 2016. This seasonal variation in the NAQI may be mainly related
to the typical monsoon climate in Henan Province. For example, in winter and spring, the atmosphere
is steady in structure with a low temperature, which is not conducive to diffuse air pollutants [31].
Meanwhile, the amount of pollutant emissions greatly increases due to coal combustion for domestic
heating and dust weather at this time [8]. The combination of emissions and unfavorable weather
conditions inevitably results in serious air pollution.
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Figure 2. Variations in annual average air quality index (AQI) on non-attainment days at the city and
province scales in 2015–2016.

3.1.2. Features of Non-Attainment Days

The pie charts in Figure 3 show the proportions of days having a specific grade of daily air
quality in Henan Province for the two years. On average, there were 174.72 non-attainment days in
2015, representing an air quality non-attainment rate of 48.53%. In particular, the number of days
with mild and moderate pollution formed the main portion (144.05 days) and the days with heavy
and serious pollution (30.67 days) accounted for about 8.51% of the total number of days of the year.
Comparably, the number of non-attainment days showed a decline by 10.33 days in 2016, which had a
non-attainment rate of 45.66%. Although the days with mild and moderate pollution still constituted
the majority of the air pollution days, the number of these days reduced greatly to 132.17, whereas the
number of heavy pollution and serious pollution days increased slightly to 32.22.
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In contrast, although PM2.5 was the most frequent major pollutant in all cities in 2016, its mean 
frequency decreased from 75.01% to 62.49% of non-attainment days, with the highest rate of 74.25% 
occurred only in Shangqiu. Meanwhile, O3, as the second most frequent major pollutant extended 
from six cities (Jiyuan, Shangqiu, Xinyang, Zhumadian, Pingdingshan, and Luohe) to 14 of the 18 
cities (except Anyang, Hebi, Kaifeng, and Sanmenxia) during 2015–2016. The mean occurrence of O3 
as the major pollutant in Henan Province doubled, while the mean frequency of PM10 as the major 
pollutant showed a minor increase from 14.02% to 14.70% of non-attainment days. Additionally, 
occurrences of CO, NO2, and SO2 as the major pollutant were much less frequent.  

Figure 3. Proportion of days with different air quality levels at the province scale in 2015–2016.

Substantial differences in air quality non-attainment days were observed among cities (Figure 4).
Compared with the case in 2015, 12 of the 18 cities showed a decrease in non-attainment days, with the
highest reductions in Pingdingshan (58 days), Xuchang (47 days), Luohe (41 days), and Zhumadian
(39 days). In contrast, Luoyang (42 days), Hebi (30 days), Jiaozuo (17 days), Puyang (eight days),
Anyang (seven days), and Jiyuan (three days) exhibited an increase in non-attainment days. Further
analysis revealed that the increase in non-attainment days over the six cities, except Luoyang and
Jiyuan, was mainly due to the increase in heavy pollution and serious pollution days, while the decline
of non-attainment days in the other cities resulted from changes in mild and moderate pollution days.
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3.1.3. Changes in Major Pollutants

Figure 5 illustrates the major pollutants on the non-attainment days at the city scale during
the study period. As is shown, PM2.5 was the major pollutant on 66% or more of non-attainment
days in all cities in 2015, with the highest rate in Zhoukou (91.52%) and lowest rate in Zhengzhou
(66.20%). In contrast, although PM2.5 was the most frequent major pollutant in all cities in 2016, its
mean frequency decreased from 75.01% to 62.49% of non-attainment days, with the highest rate of
74.25% occurred only in Shangqiu. Meanwhile, O3, as the second most frequent major pollutant
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extended from six cities (Jiyuan, Shangqiu, Xinyang, Zhumadian, Pingdingshan, and Luohe) to 14 of
the 18 cities (except Anyang, Hebi, Kaifeng, and Sanmenxia) during 2015–2016. The mean occurrence
of O3 as the major pollutant in Henan Province doubled, while the mean frequency of PM10 as the
major pollutant showed a minor increase from 14.02% to 14.70% of non-attainment days. Additionally,
occurrences of CO, NO2, and SO2 as the major pollutant were much less frequent.
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scale in 2015–2016.

Previous study has suggested that PM2.5 was the most frequent major pollutant in north regions
of China, accounting for about 66.5% of non-attainment days in 2013 [6], and addressed that the
PM2.5 concentration in this region decreased sharply [35,36], possibly even became faster from 2015
to 2017 [37]. These findings are quite correspondent to the results from our work, which imply that
control measures for power plants, floating dusts, and industries in Henan Province have become
effective. The increased surface O3 pollution over the same time can be partly ascribed to reduced
PM2.5 pollution, because PM2.5 scavenges hydroperoxy and NOx radicals, and thus speed up O3

generation [38]. In addition, it can be caused by volatile organic compounds and NOx emissions
derived from fuel combustion and industrial sources [39], and biogenic sources in the context of global
warming. The shift in major air pollutants indicates a new challenge for urban air quality improvement,
and that additional efforts are required to control the formation of secondary pollutants.

3.2. Spatial Association Pattern

The results of the global Moran’s I and local Moran’s I analysis are illustrated in Figure 6.
Significant positive spatial autocorrelation was observed for mean NAQI in 2015 and 2016, with global
Moran’s I values of 0.42 (p = 0.003), and 0.33 (p = 0.016), respectively, indicating that air quality is
strongly affected by adjacent cities. From the local Moran’s I, a large high–high spatial cluster was
found in Jiaozuo, Xinxiang, and Zhengzhou in 2015, and in Anyang and Hebi in 2016 (Figure 6).
Similarly, based on the AQI for 338 cities in 2016, Sun et al. demonstrated that air quality had a
remarkably significant spatial agglomeration effect in China, with the high–high agglomeration area
mainly located in the north China Plain [9]. This is mainly caused by natural air flows on the flat terrain,
industrial transfers, and product trades between neighboring cities [40]. This underscores the need for
establishing and adjusting regional mechanisms for the joint prevention and control of air pollution.
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The hierarchical clustering analysis identified four clusters beyond an Euclidean distance of
10.0 (Figure 7). Cluster I, mainly located in the south-central part of Henan Province, consisted of
Xuchang, Zhumadian, Pingdingshan, Nanyang, Shangqiu, and Xinyang. This cluster had the lowest
NAQI among the four clusters, and an intermediate average number of non-attainment days (160).
In contrast, cluster II (Kaifeng, Hebi and Zhoukou) had a moderate mean NAQI value, and the
lowest average number of non-attainment days (148). Cluster III, in the north central Henan Province
(Zhengzhou, Xinxiang, Puyang, Luohe, and Anyang) had the largest mean NAQI and highest number
of non-attainment days. Finally, cluster IV, in northwestern Henan Province (Luoyang, Sanmenxia,
Jiaozuo, and Jiyuan) had a relatively high mean NAQI and 167 non-attainment days (Figure 8).

Int. J. Environ. Res. Public Health 2019, 16, x FOR PEER REVIEW 8 of 14 

 

 

Figure 6. Local spatial autocorrelation model of the mean NAQI in 2015–2016. The grey color changes 
from light to deep denote north, east, center, west and south Henan Province, respectively. 

The hierarchical clustering analysis identified four clusters beyond an Euclidean distance of 10.0 
(Figure 7). Cluster I, mainly located in the south-central part of Henan Province, consisted of 
Xuchang, Zhumadian, Pingdingshan, Nanyang, Shangqiu, and Xinyang. This cluster had the lowest 
NAQI among the four clusters, and an intermediate average number of non-attainment days (160). 
In contrast, cluster II (Kaifeng, Hebi and Zhoukou) had a moderate mean NAQI value, and the lowest 
average number of non-attainment days (148). Cluster III, in the north central Henan Province 
(Zhengzhou, Xinxiang, Puyang, Luohe, and Anyang) had the largest mean NAQI and highest 
number of non-attainment days. Finally, cluster IV, in northwestern Henan Province (Luoyang, 
Sanmenxia, Jiaozuo, and Jiyuan) had a relatively high mean NAQI and 167 non-attainment days 
(Figure 8). 

 
Figure 7. Dendrogram based on the Z-scored air quality index on non-attainment days (NAQI) and 
non-attainment days of 18 cities in 2015–2016. 

Figure 7. Dendrogram based on the Z-scored air quality index on non-attainment days (NAQI) and
non-attainment days of 18 cities in 2015–2016.



Int. J. Environ. Res. Public Health 2020, 17, 1598 9 of 14
Int. J. Environ. Res. Public Health 2019, 16, x FOR PEER REVIEW 9 of 14 

 

  
(a) (b) 

Figure 8. Diamond box plot of the NAQI (a) and non-attainment days (b) based on the dendrogram. 
The bottom and top of the green box represent the 25th and 75th percentile, and the bottom and top 
black line represent the minimum and maximum value, respectively. The hollow square represents 
the mean value. 

3.3. Relationships between Air Quality Index on Non-Attainment Days (NAQI) and Influencing Factors 

We found significant relationships between the daily NAQI and average temperature, sunshine 
hours, average and maximum surface temperature that were generally negative in all cities 
throughout the study period, but positive relationships between the daily NAQI and average relative 
humidity, and average atmospheric pressure (Table 1). More sunshine and higher temperature are 
linked with vertical and horizontal turbulence, which results in greater dispersion and dilution of air 
pollutants [8]. Air is usually still when high-pressure systems are in place, which allows pollutants 
to accumulate. However, under low-pressure systems, the weather is often wet and air is moving, 
causing the dispersion and deposition of pollutants [20]. In terms of relative humidity, some studies 
have reported that high humidity conditions can promote the formation of nitrate and secondary 
organic aerosols [41], and that relative humidity is positively related to air pollution [36]. However, 
others have argued that pollutant particles can absorb more water, agglomerate, and fall to the 
ground more easily at a higher relative humidity [16,20]. There may be a threshold point in the 
relationship between relative humidity and air pollution. With a gradual increase in daily relative 
humidity, air pollution appears to first increase and then decrease [22]. In addition, we demonstrated 
that the maximum instantaneous wind speed contributed to the dispersion of air pollution in most 
cities of clusters I–III, which was in accordance with the results of Xu et al. [8] and Sun et al. [9]. No 
significant correlation occurred for most cities of cluster IV, probably due to the low wind speed 
influenced by topographic constraints. In contrast, air pollution was negatively related to maximum 
instantaneous wind direction for several cities across the central and northern regions, suggesting 
that the contribution of regional transport under the north wind cannot be ignored. Such results are 
consistent with expectation, given the serious pollution in the northern region [40]. These findings 
have important implications for air quality forecasting and control. No significant correlation was 
found between daily precipitation and the NAQI for all cities (Table 1). 

Table 2 shows the effects of selected social and economic factors on the NAQI at the city level in 
Henan Province. The NAQI in Henan Province from 2015 to 2016 was significantly correlated with 
the gross domestic product per capita (correlation coefficient (R) = 0.43; p < 0.05). In the industry 
structure category, the proportion of primary industry was a significant determinant of NAQI, but 
the effects of proportion of secondary industry and tertiary industry were not obvious (p = 0.061, 
0.373). Economic development has a strong effect on air pollution [9,14]. A higher proportion of 
primary industries and a lower proportion of secondary industries are favorable for improving air 
quality [8]. Compared with the value-added by construction per capita, value-added by industry per 
capita had a significantly positive relationship with the NAQI (R = 0.42; p < 0.05), which could be 
attributed to the fact that the added value by industry was about 10 times higher than that added by 
construction during the two years. 

Figure 8. Diamond box plot of the NAQI (a) and non-attainment days (b) based on the dendrogram.
The bottom and top of the green box represent the 25th and 75th percentile, and the bottom and top
black line represent the minimum and maximum value, respectively. The hollow square represents the
mean value.

3.3. Relationships between Air Quality Index on Non-Attainment Days (NAQI) and Influencing Factors

We found significant relationships between the daily NAQI and average temperature, sunshine
hours, average and maximum surface temperature that were generally negative in all cities throughout
the study period, but positive relationships between the daily NAQI and average relative humidity,
and average atmospheric pressure (Table 1). More sunshine and higher temperature are linked with
vertical and horizontal turbulence, which results in greater dispersion and dilution of air pollutants [8].
Air is usually still when high-pressure systems are in place, which allows pollutants to accumulate.
However, under low-pressure systems, the weather is often wet and air is moving, causing the
dispersion and deposition of pollutants [20]. In terms of relative humidity, some studies have reported
that high humidity conditions can promote the formation of nitrate and secondary organic aerosols [41],
and that relative humidity is positively related to air pollution [36]. However, others have argued
that pollutant particles can absorb more water, agglomerate, and fall to the ground more easily at a
higher relative humidity [16,20]. There may be a threshold point in the relationship between relative
humidity and air pollution. With a gradual increase in daily relative humidity, air pollution appears to
first increase and then decrease [22]. In addition, we demonstrated that the maximum instantaneous
wind speed contributed to the dispersion of air pollution in most cities of clusters I–III, which was in
accordance with the results of Xu et al. [8] and Sun et al. [9]. No significant correlation occurred for
most cities of cluster IV, probably due to the low wind speed influenced by topographic constraints.
In contrast, air pollution was negatively related to maximum instantaneous wind direction for several
cities across the central and northern regions, suggesting that the contribution of regional transport
under the north wind cannot be ignored. Such results are consistent with expectation, given the
serious pollution in the northern region [40]. These findings have important implications for air quality
forecasting and control. No significant correlation was found between daily precipitation and the
NAQI for all cities (Table 1).

Table 2 shows the effects of selected social and economic factors on the NAQI at the city level in
Henan Province. The NAQI in Henan Province from 2015 to 2016 was significantly correlated with the
gross domestic product per capita (correlation coefficient (R) = 0.43; p < 0.05). In the industry structure
category, the proportion of primary industry was a significant determinant of NAQI, but the effects of
proportion of secondary industry and tertiary industry were not obvious (p = 0.061, 0.373). Economic
development has a strong effect on air pollution [9,14]. A higher proportion of primary industries and
a lower proportion of secondary industries are favorable for improving air quality [8]. Compared with
the value-added by construction per capita, value-added by industry per capita had a significantly
positive relationship with the NAQI (R = 0.42; p < 0.05), which could be attributed to the fact that
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the added value by industry was about 10 times higher than that added by construction during the
two years.

Table 1. Meteorological factors associated with the air quality index on non-attainment days (NAQI) at
the city level during 2015–2016. MWS, MWD, SH, AAP, AT, ARH, P, AST and MST denotes the daily
maximum instantaneous wind speed and direction, sunshine hours, average atmospheric pressure,
average temperature, and average relative humidity, precipitation, average and maximum surface
temperature, respectively.

Cluster City
Correlation Coefficient

MWS MWD SH AAP AT ARH P AST MST

I

Xuchang −0.17 ** −0.19 ** −0.38 ** 0.33 ** −0.43 ** 0.26 ** −0.06 −0.44 ** −0.45 **
Zhumadian −0.17 ** 0.06 −0.35 ** 0.28 ** −0.37 ** 0.30 ** 0.02 −0.39 ** −0.42 **
Pingdingshan −0.18 ** −0.05 −0.36 ** 0.25 ** −0.34 ** 0.20 ** −0.06 −0.36 ** −0.35 **
Nanyang −0.15 ** −0.05 −0.30 ** 0.33 ** −0.42 ** 0.17 ** −0.08 −0.43 ** −0.41 **
Shangqiu −0.16 ** 0.01 −0.28 ** 0.28 ** −0.40 ** 0.23 ** −0.04 −0.41 ** −0.41 **
Xinyang −0.17 ** 0.07 −0.39 ** 0.19 ** −0.32 ** 0.33 ** 0.04 −0.33 ** −0.39 **

II
Kaifeng −0.21 ** −0.22 ** −0.43 ** 0.30 ** −0.42 ** 0.36 ** −0.04 −0.44 ** −0.47 **

Hebi −0.39 ** −0.07 −0.45 ** 0.30 ** −0.42 ** 0.36 ** −0.06 −0.44 ** −0.48 **
Zhoukou −0.04 −0.03 −0.29 ** 0.26 ** −0.33 ** 0.20 ** 0.04 −0.35 ** −0.37 **

III

Zhengzhou −0.28 ** −0.12 ** −0.37 ** 0.33 ** −0.47 ** 0.35 ** −0.06 −0.47 ** −0.46 **
Xinxiang −0.29 ** −0.04 −0.45 ** 0.35 ** −0.48 ** 0.34 ** −0.01 −0.50 ** −0.52 **
Puyang −0.37 ** −0.10 −0.37 ** 0.34 ** −0.43 ** 0.28 ** −0.05 −0.44 ** −0.46 **
Luohe −0.09 * −0.09 * −0.34 ** 0.31 ** −0.42 ** 0.17 ** −0.08 −0.42 ** −0.41 **

Anyang −0.34 ** −0.10 * −0.43 ** 0.38 ** −0.50 ** 0.32 ** −0.04 −0.51 ** −0.54 **

IV

Luoyang −0.06 −0.16 * −0.37 ** 0.34 ** −0.46 ** 0.17 ** −0.07 −0.45 ** −0.44 **
Sanmenxia −0.04 0.07 −0.36 ** 0.39 ** −0.48 ** 0.08 −0.07 −0.49 ** −0.49 **

Jiaozuo −0.27 ** −0.06 −0.44 ** 0.34 ** −0.48 ** 0.38 ** −0.08 −0.48 ** −0.50 **
Jiyuan −0.04 −0.22 ** −0.33 ** 0.24 ** −0.37 ** 0.19 ** −0.08 −0.36 ** −0.36 **

** p < 0.01, * p < 0.05.

Table 2. Socioeconomic factors associated with the NAQI at the city level during 2015–2016. PCV, PPV,
PLPV, PS, PT, PHT, POT means per unit area civil vehicle possession, passenger vehicle, large passenger
vehicle, sedan, truck, heavy truck, and ordinary truck; PTEC, PCL, PCK, PDF, PH, PE denotes per
unit area total energy consumption, coal, coke, diesel fuel, heat and electricity of industrial enterprises
above a designated size; PFSCI and PFSCII shows per unit area floor space under construction and
floor space under completion; PPI, PSI, PTI, PGDP, PVAI, and PVAC means the proportion of primary
industry, secondary industry, tertiary industry, per capita gross domestic product, value-added by
industry, and value-added by construction.

Factor Variable
Correlation Coefficient

I II III IV Total

Economic structure

PGDP 0.66 0.97 0.01 −0.43 0.43 *
PPI −0.70 −0.86 −0.06 −0.16 −0.60 **
PSI 0.70 0.49 −0.78 −0.19 0.38
PTI −0.31 −0.11 0.58 0.26 0.08

PVAI 0.70 0.79 −0.31 −0.29 0.42 *
PVAC 0.02 0.71 0.33 −0.57 0.35
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Table 2. Cont.

Factor Variable
Correlation Coefficient

I II III IV Total

Possession of civil
vehicle

PCV 0.79 * 0.91 −0.03 0.85 0.40
PPV 0.80 * 0.95 −0.01 0.83 0.39

PLPV 0.60 0.94 −0.02 0.96 * 0.34
PS 0.78 * 0.93 −0.01 0.78 0.39
PT 0.67 -0.94 −0.35 0.95 * 0.43 *

PHT 0.61 -0.88 −0.39 0.89 0.51 *
POT 0.68 -0.92 −0.39 0.89 0.30

Energy consumption of
industrial enterprises

above a designated size

PTEC 0.87 * 0.93 0.72 0.11 0.60 **
PCL 0.67 0.74 0.39 0.24 0.39
PCK 0.30 0.32 0.88 * −0.40 0.32
PDF 0.79 * 1 * −0.43 −0.81 0.13
PH 0.64 0.61 −0.59 0.76 0.41 *
PE 0.78 * 0.96 0.39 0.67 0.64 **

Floor space of buildings PFSCI 0.89 ** 1 ** 0.02 0.94 * 0.38
PFSCII 0.23 −0.03 −0.16 1 ** 0.25

** p < 0.01, * p < 0.05.

Economic growth is associated with an increase in energy consumption and the number of
vehicles [8,25,30]. Total energy consumption per unit area was significantly related to NAQI (p < 0.01),
especially coal, heat, and electricity consumption (p = 0.054, 0.045, 0.002). In Henan Province, coal
consumption is enormous, accounting for 80.2% of the total energy consumption, causing serious coal
smoke pollution [34]. Meanwhile, civil vehicles possession per unit area played an important role in
air quality inequities. Cities with higher sedan and heavy truck per unit area values experienced more
serious air pollution (p = 0.053, 0.014). Vehicle emissions have become one of the major sources of air
pollution in Henan Province, with annual total emissions reaching 3.927 million tons in 2016, accounting
for about 10% of the country’s total emissions [42]. Among vehicles, the light-duty gasoline-powered
vehicles and heavy-duty diesel-powered vehicles may be the largest contributors [43].

Complex relationships among socioeconomic factors and NAQI were demonstrated among
cluster types. NAQI was significantly correlated with civil vehicles possession (p < 0.05), total energy
consumption (p < 0.05), and floor space under construction per unit area (p < 0.01) for cities of cluster I,
but such a relationship was obvious for only floor space under construction (p < 0.01) and diesel fuel per
unit area (p < 0.05) for cluster II. For cluster III, there was a significant relationship between the NAQI
and coke per unit area. Additionally, cities in cluster IV, with more trucks, large passenger vehicles,
and floor space under construction and floor space under completion per unit area experienced more
severe air pollution. However, there were some degrees of uncertainty. For instance, in clusters III and
IV, the mean proportions of secondary industry and energy usage per unit of gross domestic product
were obviously higher than that for other cluster types. However, the relationships between the NAQI
and proportion of secondary industry, and total energy consumption per unit area were not evident,
probably due to the limitations of sample size and the diversity of emission characteristics in each
cluster. These limitations are expected to be overcome in the future.

4. Conclusions

We investigated the spatial and temporal variations of air pollution and its influencing factors
for 18 cities in Henan Province from April 2015 to February 2017, with the goal of enhancing our
understanding of the spatiotemporal characteristics and underlying mechanisms. Our results showed
that ambient air pollution has become more serious in some cities, although various policies and
actions have recently been implemented to control air pollution in Henan. Cities such as Hebi, Puyang,
and Anyang experienced marked increases in both the NAQI and non-attainment days. The spatial
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autocorrelation analysis placed Anyang and Hebi in a high–high spatial cluster in 2016, indicating that
air pollution in these cities could continue to be reduced by implementing joint measures. In addition,
although PM2.5 remained the most frequent major pollutant in all cities, the major air pollutant
structure changed greatly during the study period, posing a new challenge to urban air quality
improvement. The meteorological factors including mean temperature, sunshine hours, average and
maximum surface temperature were negatively related to the NAQI, while relative humidity and
mean atmospheric pressure had positive impacts on the NAQI. Air pollution was greatly affected
by socioeconomic factors. Generally, primary industry has a significant negative correlation with
the NAQI, while secondary industry showed a positive correlation with the NAQI. Additionally,
the energy structure, civilian vehicle composition, and construction factors had certain impacts on
air pollution, with the magnitudes of the effects depending on the city. These findings enhance our
understanding of the variation characteristics of regional air pollution, which is critical for guiding
region-oriented policy making to reduce air pollution.
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