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Abstract

Motivation: In order to infer a cell signalling network, we generally need interventional data from

perturbation experiments. If the perturbation experiments are time-resolved, then signal progres-

sion through the network can be inferred. However, such designs are infeasible for large signalling

networks, where it is more common to have steady-state perturbation data on the one hand, and a

non-interventional time series on the other. Such was the design in a recent experiment investigat-

ing the coordination of epithelial–mesenchymal transition (EMT) in murine mammary gland cells.

We aimed to infer the underlying signalling network of transcription factors and microRNAs coordi-

nating EMT, as well as the signal progression during EMT.

Results: In the context of nested effects models, we developed a method for integrating perturb-

ation data with a non-interventional time series. We applied the model to RNA sequencing data

obtained from an EMT experiment. Part of the network inferred from RNA interference was vali-

dated experimentally using luciferase reporter assays. Our model extension is formulated as an in-

teger linear programme, which can be solved efficiently using heuristic algorithms. This extension

allowed us to infer the signal progression through the network during an EMT time course, and

thereby assess when each regulator is necessary for EMT to advance.

Availability and implementation: R package at https://github.com/cbg-ethz/timeseriesNEM. The

RNA sequencing data and microscopy images can be explored through a Shiny app at https://emt.

bsse.ethz.ch.

Contact: niko.beerenwinkel@bsse.ethz.ch

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
In order to learn biological networks, gene silencing techniques such

as RNA interference provide a means to infer causal interactions.

This is often coupled with high-throughput sequencing technologies

such as RNA sequencing to measure the mRNA expression of genes

in perturbed cells. In the literature, methods for learning regulatory

networks from gene expression data tend to rely on the assumption

that the expression level of a given gene is a reliable proxy for the ac-

tivity of the protein which it encodes (Friedman, 2004; Pe’er et al.,

2001; Segal et al., 2003). The same holds true for more recent

approaches incorporating perturbation data (Peters et al., 2016) and

time series (Chen et al., 2017). This is appropriate in transcriptional-

ly regulated networks, where changes in gene expression account for

all causal interactions. However, in networks consisting of tran-

scription factors and microRNAs, post-transcriptional regulation

and post-translational modifications play a major role in signalling.

In such a case of non-transcriptional regulation, we can model the

regulators as hidden variables, and attempt to infer their network

structure through their perturbation effects on the transcriptome.

The nested effects model (NEM) (Markowetz et al., 2005) was

designed for this very purpose.

In the original NEM framework (Markowetz et al., 2007), the

signalling network is considered static, and samples are assumed to

be measured at a time when the perturbed system has reached a

steady state. The dynamic NEM (Anchang et al., 2009) is an attempt

to include time series from perturbation experiments in the NEM

framework. However, this method still relies on the steady state net-

work as a basis for inference, and the main benefit is the ability to

prune transitively closed edges from the static network. A more

comprehensive treatment of dynamic NEM (Fröhlich et al., 2011)
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unrolls the NEM over time—similar to the idea of a dynamic

Bayesian network—which can resolve feedback loops in the net-

work. The inferred network is still static, but the time required for

propagation of signals is allowed to vary. In contrast, the hidden

Markov NEM (Wang et al., 2014) allows for the network structure

itself to change over time.

All the above approaches require time series from perturbation

experiments. In other words, the perturbed system must be meas-

ured at several time points until it reaches a steady state. While this

experimental setup is possible for smaller studies containing few reg-

ulators, it becomes infeasible for larger networks. In the latter case,

it is more common to have steady state data from perturbation

experiments on the one hand, and a time series from an unperturbed

system on the other. In such a setting we cannot reliably infer a dy-

namic network, nor resolve feedback loops in a static network.

Instead, we propose to use the perturbation data to infer a steady

state network, and then map the time series onto that network in

order to assess the progression to the steady state. Given the differ-

ential expression profile at time point t versus the steady state, we

try to find the most likely signalling state of the static network to

yield such an effect profile.

Our method is motivated by a recent experiment investigating

epithelial–mesenchymal transition (EMT) in murine mammary

gland cells (Meyer-Schaller et al., 2019). In cancer, EMT plays an

important role in the development of metastasis, which is the major

cause of death for patients with cancer (Chaffer et al., 2016). Cells

in the epithelial state tend to be stationary, whereas cells in the mes-

enchymal state are migratory and invasive, which enables cancer

cells to enter the blood stream and to seed distant metastases.

On the other hand, the reverse transition from a mesenchymal to an

epithelial state (MET) is believed to boost the outgrowth of seeded

metastatic cancer cells in distant organs (Brabletz, 2012). However,

recent findings indicate that full EMT and MET processes may not

be required for metastasis, but rather that transitions to intermediate

EMT stages could be sufficient (Pastushenko et al., 2018).

EMT entails major changes in the transcriptional and epigenetic

landscape of a cell, and multiple factors regulating this transition

have been identified. In particular, the interplay between Snail and

Zeb transcription factors with microRNAs miR-34 and miR-200 is

believed to regulate the acquisition of intermediate EMT states

(Nieto et al., 2016). A recent screening of >1500 gene regulators in

normal murine mammary gland (NMuMG) cells led to the identifi-

cation of 46 transcription factors and 13 microRNAs which were

necessary for EMT to occur (Meyer-Schaller et al., 2019). Here, we

aimed at inferring a signalling network of those 59 regulators and

estimating the signal progression through the network during the

transition from the epithelial to the mesenchymal state.

Treating epithelial cells with transforming growth factor beta

(TGF-b) triggers a signalling cascade which causes the cells to transi-

tion into a mesenchymal state (Fig. 1a). If any of the crucial 59 tran-

scription factors and microRNAs is perturbed before and during the

TGF-b treatment, then the cells do not reach the mesenchymal state,

but are instead halted at an intermediate stage (Fig. 1b).

We hypothesized that perturbing a relevant transcription factor or

microRNA would leave an informative record on the transcriptome.

That is, when comparing the transcriptome measured in perturb-

ation experiments versus a control experiment (all sampled 96 h

after TGF-b treatment), regulators which are crucial early in the sig-

nalling cascade should show more extensive differential expression

than regulators which play a role late in the cascade. Furthermore,

we would expect to find a subset structure in the perturbation

effects, due to signal propagation in the underlying pathway

(Markowetz et al., 2005). We used a NEM (Fröhlich et al., 2008;

Markowetz et al., 2007) to infer a signalling network from down-

stream perturbation effects based on RNA sequencing data from

RNA interference experiments sampled after 96 h of TGF-b treat-

ment (Fig. 1c). Following the hypothesis above, we expect that genes

directly regulated by a transcription factor or microRNA crucial at

for instance 24 h, would show similar differential expression be-

tween perturbation and control (both sampled at 96 h), as they do in

an unperturbed time course when comparing 24 h with 96 h. Based

on this assumption, we developed a method for inferring signal pro-

gression through the pathway, in order to infer the time point at

which each regulator is necessary for EMT to progress (Fig. 1d).

Our model (Section 2.3) thus integrates a non-interventional time

series with perturbation data, and is formulated as an integer linear

programme which can be solved efficiently using heuristic

algorithms.

2 Materials and methods

We analysed data gathered in the experiments described by Meyer-

Schaller et al. (2019). In short, transforming growth factor beta

(TGF-b) was used to induce EMT in epithelial NMuMG cells, but
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Fig. 1. Synopsis. (a) Normal cells undergo EMT induced by TGF-b. (b) EMT is

halted in cells perturbed by RNAi against any of the 59 regulators under in-

vestigation. Despite TGF-b treatment to induce EMT, the perturbed cells do

not reach the mesenchymal phenotype, but are halted at intermediate stages.

(c) Nested effects model to infer a non-transcriptional signalling network

from downstream perturbation effects on genes measured using RNA

sequencing. (d) Inferring the signal progression during an unperturbed EMT

time course
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RNA interference (RNAi) against certain regulators prevented the

cells from reaching the mesenchymal state. A screening of approxi-

mately 1500 RNAi interventions identified 46 transcription factors

(TFs) and 13 microRNAs (miRNAs) which were necessary for EMT

to occur. Our aim was to infer the signalling network of those 59

regulators. Although direct regulation between TFs themselves and

between TFs and miRNAs can occur, the signalling activity of the

59 regulators can also be regulated on post-transcriptional level, for

instance by the miRNAs interfering with protein translation (Wang

et al., 2010). Moreover, TF activities can be affected indirectly

through post-translational modification and nuclear localization.

Therefore, modelling interactions between multiple TFs and

miRNAs is complex and poorly understood (Le et al., 2013).

We obtained RNA sequencing data from two separate experi-

mental set-ups on epithelial normal murine mammary gland

(NMuMG) cells; namely one EMT time course and one set of 59

RNAi perturbation experiments. For the time course, epithelial

NMuMG cells were treated with TGF-b and subsequently sampled

at 12 time points between 0 and 10 days. Already after 4 days, the

cells exhibited a mesenchymal phenotype (Fig. 1a). The experiment

was performed in biological duplicates.

For each of the 46 transcription factors, Ambion siRNAs were

used to knock down the transcript coding for the given TF. For each

of the 13 miRNAs, RNAi amounted to over-expression of the given

miRNA. RNAi was performed against the regulators of interest,

starting 2 days before TGF-b treatment, so that the RNAi would

have time to take effect before EMT was induced. After 4 days of

TGF-b treatment, the cells were sampled and sequenced. At this

time point, the cells had been halted in an intermediate stage be-

tween epithelial and mesenchymal states (Fig. 1b). In addition, con-

trol samples with inert (non-targeting) siRNA or miRNA

transfections were sampled after 0 and 4 days of TGF-b treatment.

All experiments were performed in biological duplicates.

2.1 The standard NEM
We here outline the original nested effect model (Markowetz et al.,

2005, 2007), in order to introduce concepts and notation required

to explain how we integrate perturbation data with a non-

interventional time series (Section 2.3).

Figure 2 illustrates the structure of a NEM. The goal is to infer a

signalling network U, represented as a directed acyclic graph involv-

ing the regulators, also referred to as signalling nodes (S-nodes),

denoted Sj for j 2 f1; . . . ;ng. The classic NEM framework uses the

term ‘S-genes’, which can be misleading, since we here refer to gene

products, such as transcription factors. Furthermore, in our case 13

of the regulators are miRNAs, which is why we use the term

‘S-nodes’. The signalling nodes are individually perturbed in separ-

ate RNAi experiments, but their activity is not directly measured.

Instead, we measure the expression level of effect reporter genes (E-

genes) denoted Ei for i 2 f1; . . . ;mg, which are affected by the per-

turbation of S-nodes. The attachment of effect genes to regulators is

encoded by H, and the network reconstruction is based on an as-

sumption of parsimony. Namely, if an E-gene responds to the per-

turbation of two S-nodes, we assume that it is directly regulated by

only one of them, which acts as a mediator for the other regulator.

For instance, in Figure 2, S1 and S2 both regulate {E1, E2}. However,

since the effects of perturbing S1 are a subset of the effects of per-

turbing S2, we deduce that S1 is downstream of S2 in the signalling

pathway, and we infer the edge S2 ! S1. Thus, the regulators are

hierarchically ordered so that the effects of a child node are a subset

of the effects of its parent. Due to this nesting of effects, we implicit-

ly assume that the signalling network U is transitively closed; that is,

if S1 ! S2 ! S3, then S1 ! S3. In practice, we need to account for

noise in the data, which requires a probabilistic model.

Let D be the data matrix such that Dij records how E-gene Ei

was affected by the perturbation of S-node Sj. (More details are

given in Section 2.2) Suppose that we have a candidate network U,

which is a directed acyclic graph (DAG) of S-nodes S1; . . . ; Sn. We

are ultimately interested in the posterior probability of the model:

PðU j DÞ ¼ PðD j UÞPðUÞ
PðDÞ

where the denominator does not depend on U, and can be disre-

garded for model comparison. Since almost nothing is known about

the signalling network under our investigation, we use a uniform

prior P(U). Thus we focus entirely on the likelihood PðD j UÞ. It can

be computed by marginalizing over E-gene attachments H, or by

using the maximum a posteriori (MAP) estimate of H (Tresch and

Markowetz, 2008). We will follow the latter approach, and thus

solve the following:

arg max
U
fmax

H
PðD j U;HÞg:

The outer maximization is done by evaluating candidate DAGs

in a heuristic way (see Section 2.2). The inner maximization over H
is performed as follows.

Let H ¼ ðhiÞmi¼1 denote the attachment of E-genes E1; . . . ;Em to

the signalling nodes, such that hi ¼ j if Ei is attached to Sj. We as-

sume that the attachments of E-genes are conditionally independent

given the signalling network U, so that PðH j UÞ ¼
Qm

i¼1 Pðhi j UÞ.
Furthermore, we assume that E1; . . . ;Em are conditionally independ-

ent given U and H. Thus, we do not assume genes to be marginally

independent, but rather conditionally independent given their

attachments to the regulators. Hence,

max
H

PðD j U;HÞ ¼
Ym
i¼1

max
j

PðDi: j U; hi ¼ jÞ: (1)

The full derivations are provided in the Supplementary Material.

2.2 Scoring and searching
In order to judge from noisy observations whether a certain E-gene

is affected by the perturbation of a given S-node, we used the R

(R Core Team, 2018) package DESeq2 (Love et al., 2014) to per-

form differential expression analysis of RNA sequencing data. Each

perturbed condition was compared with an unperturbed control,

yielding a P-value for each gene, with the null hypothesis of no dif-

ferential expression. The data matrix entry Dij is the P-value

S1

S2

S3

S4

E1 E2 E3 E4 E5 E6 E7 E8 E9

Fig. 2. Nested effects model. The S-nodes are modelled as hidden variables,

and we aim to infer their causal graph U (solid arrows). In experiments

separately perturbing each S-node, we observe the differential expression of

all E-genes. Assuming that each E-gene is directly regulated by at most one

S-node in U, we compute the maximum a posteriori attachment H (dashed

arrows) of effect genes to S-nodes. We search for the signalling graph U

which yields the most likely probabilistic nesting of effects
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corresponding to gene Ei under perturbation of Sj. The alternative

hypothesis of differential expression is central to our analysis. We

therefore fit a beta-uniform mixture model to the distribution of P-

values across genes in a given condition (Pounds and Morris, 2003).

Since the null distribution of a P-value is uniform, the density func-

tion of the alternative hypothesis can be estimated from the fitted

mixture components (Fröhlich et al., 2008); see details in

Supplementary Material.

For each perturbation experiment k, we estimated the probabil-

ity density function fk of P-values under the alternative hypothesis,

such that:

PðDik j U; hi ¼ jÞ :¼ fkðDikÞ if Ukj ¼ 1
1 if Ukj ¼ 0

�
(2)

where ðUkjÞ 2 f0;1gn�n denotes the adjacency matrix of the candi-

date network U. In words, if U predicts an effect on Ei when

perturbing Sk (given hi ¼ j), we model the P-value Dik using the

alternative density fk; otherwise we model it with the uniform dens-

ity 1. With this definition, we can evaluate Equation (1).

Since the number of DAGs grows super-exponentially with the

number of nodes, an exhaustive enumeration is not feasible for sig-

nalling networks with more than four or five S-nodes. In order to

infer larger networks, we must apply heuristic approaches.

Specifically, we used a divide-and-conquer method called module

network (Fröhlich et al., 2008), which is tailored to NEMs.

It exploits the fact that the NEM objective is to find a subset struc-

ture among effect genes. Thus, the module network approach subdi-

vides the problem by initially performing hierarchical clustering

based on correlation distance of effect profiles, in order to group sig-

nalling nodes into modules containing at most four S-nodes. Then,

an exhaustive search is performed within each module. Finally,

modules are joined by the highest scoring pairwise connections be-

tween modules.

2.3 Mapping a time series onto a static network
Suppose that we have inferred a signalling network Û from a per-

turbed system sampled upon reaching a steady state at time ts after

applying a pathway stimulus. Now we aim to estimate the signal

progression at a time point t < ts from an unperturbed time series

sampled after application of the same stimulus. We can compute the

maximum a posteriori attachment Ĥ of E-genes to S-nodes in Û (see

details in Supplementary Material). The regulatory module of a sig-

nalling node Sj is the set of E-genes whose MAP attachment is to Sj,

that is the set fEi : ĥ i ¼ jg. Using the unperturbed time series, we

consider differential expression of E-genes in a given regulatory

module as a proxy for the activity of its direct regulator.

For a given time point t 2 ½0; tsÞ, we perform a differential gene

expression analysis contrasted with the steady-state time point ts.

Let the P-value profile of the differential expression tests at time

point t versus ts be denoted by TðtÞ 2 ½0;1�m, where m is the number

of E-genes. Thus T
ðtÞ
i is the P-value of the ith gene from the differen-

tial expression test contrasting t with the steady state ts. Based on

this, we want to estimate the most likely state of the signalling

network at time t. In other words, we are asking what signalling

activities (perturbed or not) of the S-nodes in Û are most likely

giving rise to the differential expression profile TðtÞ which we

observe. This implicitly rests on the assumption that the n S-nodes in

Û sufficiently explain the observed changes to the transcriptome,

and that there is no substantive confounding by latent variables.

Let K 2 f0; 1gn record the binary signalling states of the n regu-

lators, where Kj ¼ 1 if Sj is perturbed and Kj ¼ 0 otherwise. Given

the above assumption, gene Ei is not differentially expressed if and

only if pa(Ei) is not perturbed under K. The former is the null hy-

pothesis of the differential expression test, and the latter is a state-

ment about the activity of S-nodes in Û. In keeping with the

transitive closure and propagation of signals in Û, gene Ei is

expected to be differentially expressed if and only if any of the

ancestors of Ei in Û—denoted anc(Ei)—is perturbed under K. Thus,

based on the same reasoning as in Equation (2),

PðTðtÞi j Û; Ĥ;KÞ ¼
ftðTðtÞi Þ if 9Sj 2 ancðEiÞ : Kj ¼ 1
1 otherwise

(
(3)

¼ ftðTðtÞi Þ
1ð9Sj2ancðEiÞ:Kj¼1Þ (4)

where ft is the alternative density of the differential expression test

comparing time point t with the steady-state time point ts. Again

assuming conditional independence of E-genes given their attach-

ment Ĥ to the signalling network Û, we have,

PðTðtÞ j Û; Ĥ;KÞ ¼
Ym
i¼1

ftðTðtÞi Þ
1ð9Sj2ancðEiÞ:Kj¼1Þ

which we seek to maximize with respect to K. This is equivalent to

solving:

arg max
K

Xm
i¼1

1ð9Sj 2 ancðEiÞ : Kj ¼ 1Þ log ftðTðtÞi Þ: (5)

Due to the transitively closed nature of Û, we need only search

for solutions K which are consistent with Û, in the sense that if Kj ¼
1, then Kk ¼ 1 for every node Sk downstream of Sj in Û. Given this

constraint, the sum in Equation (5) can be written as follows:

Xn

j¼1

Kjcj where cj ¼
X

i2½m�:ĥ i¼j

log ftðTðtÞi Þ:

With c ¼ ðc1; . . . ; cnÞ> the problem in Equation (5) is therefore

equivalent to maximizing c>K given the constraint that if Kj ¼ 1,

then Kk ¼ 1 for every descendant Sk of Sj in Û. This constraint can

be formulated as AK � 0 for a matrix A which we construct as

follows. For each edge Sj ! Sk in the transitive reduction of Û, we

create a row Ai: such that Aij ¼ 1 and Aik ¼ �1, with Ai‘ ¼ 0 for

‘ 6¼ j; k. The optimization problem in Equation (5) can thus be

formulated as a binary integer linear programme with canonical

form:

minimize � c>K

subject to AK � 0

where K is a binary vector. We used the R package lpSolve

(Berkelaar et al., 2015) to solve this problem.

2.4 Validation experiments
Luciferase reporter assays were used to assess the accuracy of the

static NEM signalling network edge predictions in NMuMG epithe-

lial cells which underwent EMT upon the addition of TGF-b. The

assays were performed as previously reported by Meyer-Schaller

et al. (2019). In short, RNAi was used to down-regulate a transcrip-

tion (co)factor by siRNA, or to over-express a miRNAs. One day

later, TGF-b was added to the cells to induce EMT, followed by

retransfection (day 2) and transfection of a Firefly luciferase reporter

2 days after EMT induction (day 3) together with a Renilla lucifer-

ase reporter to normalize for cell counts. After 4 days of TGF-b
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treatment (day 5), cells were assayed for luciferase activity. To meas-

ure Smad4 or Sox4 activities, Firefly luciferase reporters with

Smad3/4 binding sequence (Dennler et al., 1998) or seven specific

Sox4 binding sites (Meyer-Schaller et al., 2019) were used, respect-

ively. The activity of the Notch co-activator Maml2 was assessed

with a Notch reporter containing specific Rbpjj response elements

(Promega, CS173601).

3 Results

We used the Bioconductor R package nem (Froehlich et al., 2018) to

infer a static signalling network from the RNAi perturbation data.

In order to base the analysis on relevant genes, we included only

genes which were differentially expressed (FDR < 5%) during the

time course, provided that they were also differentially expressed in

at least one perturbation experiment. This left us with 11 270

E-genes. Furthermore, the nem fitting procedure included a so-called

null node, to which uninformative genes were attached. In order to

assess the robustness of the inferred network, we performed boot-

strap with 1000 resamples, each time resampling all E-genes with

replacement, and inferring a network. Additionally, we ran a jack-

knife procedure, leaving out one signalling node at a time, and

inferring the remaining network containing 58 regulators. We sum-

marize the results in Figure 3, which aggregates the transitively

closed adjacency matrices of the inferred networks.

For each edge, its bootstrap support is the proportion of inferred

networks (out of 1000) in which the given edge is present.

Analogously, the jackknife support of a given edge is the proportion

of networks (out of 57) in which that particular edge is present.

(The proportion is out of 57 rather than 59, since for each edge be-

tween a pair of nodes, there were precisely two jackknife runs where

either of two nodes was left out.) Each cell in the adjacency heatmap

corresponds to the average of the bootstrap and jackknife supports

for that given edge. We used the average because we wanted both

procedures to contribute equally to the consensus, and the bootstrap

would otherwise dominate by virtue of having 1000 runs, whereas

the jackknife is restricted by the number of S-nodes. Figure 4 shows

the consensus network consisting of the edges whose average

support exceeds 50%. To aid visualization, the transitive reduction

of the graph is displayed, meaning that we omit redundant edges

implied by transitively closing the graph.

3.1 Validation of the static network
The transcription factors whose activity was measured by reporter

assays were selected from the top (Sox4), middle (Smad4) and bot-

tom (Maml2 via Rbpjj) of the inferred signalling hierarchy (Fig. 4).

For each reporter assay, RNAi perturbation experiments were per-

formed against regulators selected uniformly from the hierarchy.

Each such experiment assessed the directed edge from the perturbed

regulator (parent node) to the transcription factors measured by the

reporter assay (child node). By comparing the validated effects

(Fig. 5) with the predicted edges of the NEM (Fig. 3), we estimated

precision and recall of the inferred signalling graph. In total, 53

NEM edge predictions were experimentally assessed. For the Smad4

and Sox4 reporter assays, the precision and recall is 75% and

62.5%, respectively. If including the Rbpjj reporter as a proxy for

Maml2 activity, the overall precision and recall is 67.6% and

73.5%, respectively.

3.2 Signal progression during EMT
Principal component analysis of the time-course samples shows that

the gradual progression of EMT during the time course was cap-

tured on a transcriptomic level (Fig. 6). The first principal compo-

nent accounts for 68% of the variance in the data, and almost

perfectly orders the samples chronologically. Exceptions are the

samples taken at 60 h, which have scores on PC1 most similar to the

scores of the samples taken at 36 h. The 60 h samples also have

extreme scores with respect to PC3.

We used our method described in Section 2.3 to map the time-

course data onto the inferred network. For a given time point

t 2 f0; 2;6;12;24;36;48;60; 72g, we computed the differential

expression profile between t and 96 h, which represents the mesen-

chymal stage. Then, we estimated which states of the S-nodes are

Irf9
Maml2
Irf2bp2
Smad7

Tcf3
Zeb2

Pml
Zbtb7a
Pou2f1
Ctbp1
Sub1

Rexo1
Fosl1

Hdac4
Smad4

Zeb1
Pbx3

Nfkbib
Taf6l
Fosb
200c
Junb

Ncoa2
Pawr

Smarce1
Mef2b

Rxrb
Irf1

Trank1
Hoxb6

Sp1
Foxf2

Elf4
Nrip2
200b

96
200a
Trip4
Rybp

429
Cnbp

Tead2
Nfat5
Snai1
1199
Sox4

Mnt
Gtf2i

Foxc1
Taf5l
101b
1247

181b−2
Fosl2

Klf8
101a
125b
6944

31

31 6944
125b
101a
Klf8
Fosl2
181b−2
1247
101b
Taf5l
Foxc1
G

tf2i
M

nt
Sox4
1199
Snai1
N

fat5
Tead2
C

nbp
429
R

ybp
Trip4
200a
96 200b
N

rip2
Elf4
Foxf2
Sp1
H

oxb6
Trank1
Irf1
R

xrb
M

ef2b
Sm

arce1
Paw

r
N

coa2
Junb
200c
Fosb
Taf6l
N

fkbib
Pbx3
Zeb1
Sm

ad4
H

dac4
Fosl1
R

exo1
Sub1
C

tbp1
Pou2f1
Zbtb7a
Pm

l
Zeb2
Tcf3
Sm

ad7
Irf2bp2
M

am
l2

Irf9

child node

pa
re

nt
 n

od
e

0.00

0.25

0.50

0.75

1.00
support

Fig. 3. Adjacency matrix showing the average of bootstrap and jackknife sup-

ports for each edge in the graph. Parent nodes are topologically ordered

(from root to leaf), and child nodes follow the same ordering. The entry in

row i and column j records the average of the bootstrap and jackknife sup-

ports for the directed edge Si ! Sj

Gtf2i

Nfat5

Zeb1

Tead2

Sox4

Irf1

Ctbp1

Trank1
Elf4

Pml

Pbx3

Hoxb6
Nrip2

Sub1

Irf9

Rexo1

Junb

Smad7

Pawr

Nfkbib

Klf8

Foxc1

Maml2

Fosl1

Smarce1Mef2bTrip4

Smad4

Fosl2

Taf5l

Zeb2

Taf6l

Cnbp

Zbtb7a
Pou2f1

Snai1

Fosb

Rxrb

Rybp

Hdac4

Foxf2

Irf2bp2

Tcf3

Sp1

Mnt

Ncoa2

125b
1247

200b

429

31

96

200c

101a 181b−2

101b

200a

1199

6944

Fig. 4. Transitive reduction of the consensus network, which contains edges

whose average of bootstrap and jackknife supports exceeds 50%. Nodes are

topologically ordered so that all edges point downward. Transcription factors

are coloured blue and miRNAs orange

Inferring signalling dynamics by integrating interventional with observational data i581



most likely to produce the differential expression profile which we

observed. The procedure was performed on the inferred network Û
�

and its MAP E-gene attachment Ĥ
�

for every bootstrap and jack-

knife resample. For each t, this yielded 1000þ59 estimates of K,

which were aggregated by taking the component-wise (node-wise)

average. The result is shown in Figure 7, where an S-node is uncol-

oured if it is inferred to be in a signalling state different to that at

96 h. Otherwise it is coloured green. Thus the colour of a given S-

node indicates the time point at which its signalling activity is

inferred to differ or agree with that at the mesenchymal state. The

colour gradient was determined by running the integer linear pro-

gramme on all networks inferred across bootstrap and jackknife

resamples, followed by aggregating the results.

The progression to mesenchymal signalling activity starts with the

S-nodes at the top of the hierarchy, as implied by enforcing the transi-

tive closure in the integer linear programme. However, the same trend

is observed even when not requiring the mapping to respect the transi-

tive closure see Supplementary Material (Supplementary Fig. S1). As

EMT progresses, the signal flows slowly from top to bottom of the net-

work, except for the 60 h time point, and reaches the tail of the net-

work by 72 h of TGF-b treatment. These results indicate that the

NEM, although based on perturbation data from only one time point,

can capture the temporal progression of signalling activities through

the EMT system. Supplementary Figure S2 shows that signal progres-

sion would not be inferred by random chance, assessed by permuting

gene labels before estimating signalling activity.

3.3 Computational complexity
The computational complexity of the module network algorithm for

standard nested effect models has been addressed in previous articles

(Fröhlich et al., 2008), so we will not study it here. In our case of infer-

ring a NEM with 59 S-nodes and 11 270 E-genes, the average run-

time was 12.4 CPU hours (SD 1.72) on an Intels
R

XeonsR Processor E5-

2680 v3 (2.5–3.3GHz). The average memory requirement was 36.3

GB (SD 3.37). In contrast, our method for mapping the EMT time-

course data onto the inferred NEM takes less than a second. Thus the

bottleneck is clearly the network inference.

In order to assess the computational complexity of our proposed

method for inferring signalling activity in a NEM, we simulated syn-

thetic NEMs with n S-nodes and m E-genes, where values of n and m

were varied systematically. For each synthetic network, we randomly

perturbed S-nodes, and generated synthetic E-gene data from a beta-

uniform mixture model. Then, we ran our algorithm to map the effect

profile onto the NEM, and recorded the elapsed run-time. To assess

the complexity dependence on n, we fixed m¼2000 and varied

n ¼ 10;20; . . . ;100. Each configuration was run 100 times each, and

the resulting box plots are shown in the left panel of Figure 8. Since the

run-time is plotted on a logarithmic scale, the linear trend (regression

slope 0.042) suggests that the time complexity grows exponentially

with the number of S-nodes. To estimate the complexity as a function

of m, we fixed n¼60 and varied m ¼ 2000;4000; . . . ; 20000. Each

configuration was repeated 100 times, and the resulting box plots are

shown in the right panel of Figure 8. Again the trend is roughly linear

on the logarithmic scale (regression slope 5.8�10�5), though not as

steep as that for n. Thus we see a time complexity which grows expo-

nentially with the number of E-genes.

4 Discussion

We extended the NEM framework to map an unperturbed EMT

time series onto a steady state signalling network inferred from
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RNAi perturbation experiments. Based on the static network, our

method estimates the progression of signalling activity of 59 tran-

scription factors and miRNAs during EMT. The methodology

integrates an unperturbed time series with perturbation data,

which opens up new avenues in modelling signalling activities on

large datasets where time-resolved perturbation experiments are

infeasible.

EMT enables epithelial cells to become migratory and invasive, and

requires a complex and coordinated flow of transcription (co)factor

activities to reach a mesenchymal state. In the past, the acquisition of

different EMT stages has been modelled using three- or four-factor sys-

tems, or based on activity predictions in the absence of perturbation

data (Hong et al., 2015; Steinway et al., 2014; Zhang et al., 2014). In

contrast, in this study we made use of a large set of transcriptomic data

from RNAi experiments of 59 transcription factors and miRNAs,

which have been experimentally reported as essential EMT factors

(Meyer-Schaller et al., 2019). Using a NEM, we inferred a signalling

network from the RNAi perturbation experiments. Extending the

NEM framework, we mapped an unperturbed EMT time series onto

the inferred network, in order to gauge the signal progression through

the network during EMT. To validate the NEM network, we per-

formed transcription factor reporter assays to measure TF signalling

activities while perturbing upstream factors. These experiments yielded

precision and recall estimates of 75% and 62.5%, respectively.

Nevertheless, we were surprised that some important EMT factors,

such as Smad4 or Zeb1 and Zeb2 (Lamouille et al., 2014), appear ra-

ther low in the inferred signalling hierarchy, in the middle to the begin-

ning of the ‘tail’ in Figure 4. The kinetic prediction of the signalling

flow (Fig. 7) confirms an early activation of the top nodes in the net-

work (up to 48 h TGF-b treatment) followed by a rapid activation of

the bulk of the signalling network (72 h TGF-b treatment).

Interestingly, the network flow reverts at the 60 h time point, coincid-

ing with a similar divergence in the principal component analysis

(Fig. 6), which otherwise captures the chronological EMT progression

very accurately. TGF-b treatment of NMuMG cells results in TGF-b-

induced cell-cycle arrest and induction of apoptosis before the cells con-

vert to a mesenchymal state (Massagué, 2012). The partial reversion of

TGF-b signalling after 60 h of treatment could reflect an important re-

turn point for the cells to overcome the apoptotic stimuli before con-

tinuing on the mesenchymal transition route.

Zeb transcription factors are engaged in a well characterized

feedback loop with the miR-200 family (Wellner et al., 2009). Since

the NEM inference is constrained to acyclic graphs, we cannot infer

feedback loops. However, the NEM infers directed edges into Zeb2

from the miR-200 family members miR-200a, miR-200b and miR-

429, as well as an edge from Zeb1 to Zeb2, and the acyclic con-

straint forces one to be inferred upstream of the other. This may ex-

plain why Zeb1 is not inferred to be downstream of the miR-200

family, since this would otherwise create a feedback loop between

Zeb1 and Zeb2. Due to the lack of time resolution in the perturb-

ation data, feedback loops cannot be resolved, and we must consider

the topology of the inferred network as a snapshot of the pathway

at the time of sampling.

4.1 Limitations and possible extensions of the

methodology
The NEM framework and our extension of it (Section 2.3) both

make strong assumptions on the structure of the data generating

mechanism. As discussed in the introduction, those assumptions are

made because we have data only on the transcriptomic effects of

perturbing signalling nodes, whereas we lack data on the activity of

the signalling nodes themselves. However, assuming nested effects,

we can infer signalling activities of the network nodes without infor-

mation of whether this signalling is direct or mediated by unknown

factors. The alternative—to model signalling nodes by the abundan-

ces of the mRNAs coding for them—would only work in systems

that are transcriptionally regulated, that is, where regulators directly

bind to each other’s promoter regions. Admittedly, the model as-

sumption of nested effects may be too strict for our application since

it does not accommodate feedback loops, which have been reported

to exist between Zeb and the miR-200 families (Nieto et al., 2016).

However, feedback loops are notoriously difficult to model in struc-

ture learning, with only a few exceptions where the form of the feed-

back is described by linear structural equation models (Drton and

Maathuis, 2017). This class of models is not applicable in our case,

since the variables of interest are hidden.

An alternative approach to de novo network inference is to util-

ize prior knowledge of protein–DNA and protein–protein interac-

tions (PPIs) (Yeang et al., 2004). We did not pursue this approach

for our EMT application in murine cells, because the current know-

ledge is too scarce. However, methods based on PPI networks have

been developed with yeast as the model organism. For instance,

Ourfali et al. (2007) utilize a directed PPI network to search for sig-

nalling pathways connecting a perturbed gene with an affected tar-

get. To utilize undirected PPI networks whose edges are weighted by

confidence, Gitter et al. (2011) turn to the problem of orienting

edges with the objective of maximizing the confidence in source-

target paths of a bounded length. This method was also applied to

incorporate time series (Gitter et al., 2013). In a similar vein,

Silverbush and Sharan (2014) aim to orient edges in an undirected

PPI network while maximizing the number of directed source-target

vertex pairs which are connected via shortest paths in the original

graph. The above approaches all solve integer linear programmes

(ILPs), though their objective is rather different from ours. Whereas

those approaches solve ILPs to find paths or orient edges, our ILP

takes the network inferred by the NEM as given, and instead aims

to detect differential signalling based on a probabilistic measure of

differential expression within regulatory modules.

In our analysis, we did not take into account the direction of differ-

ential expression; that is, whether the log-fold change was positive or

negative. Similarly, we did not quantify whether relationships in the

signalling network were activating or inhibiting. Rather, we considered

the statistical significance of differential expression and the presence of

interactions between regulators, regardless of their sign. This is in line

with the standard NEM framework, but there exists an extension
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called Factor Graph NEM (Vaske et al., 2009) which natively models

not only the presence of effects, but also their sign. This extension

reformulates the NEM as a factor graph, and uses message passing to

learn the optimal network. The authors reported that their extension

performed better than the standard NEM in the presence of inhibitions

in both the signalling graph and the effects. Since miRNAs tend to si-

lence gene expression, and transcription factors can both activate and

inhibit, it is possible that FG-NEM would yield different results for our

data. However, in the absence of inhibition, the authors reported that

FG-NEM, surprisingly, performs dramatically worse than the standard

NEM. Furthermore, FG-NEM is designed only for knock-down experi-

ments, and would therefore require some modification to appropriately

model the over-expression of miRNAs, as were performed in our case.

Since the number of directed acyclic graphs grows super-

exponentially with the number of nodes, the computational bottle-

neck is to infer the static NEM, which is a prerequisite for our

method. A simulation study showed that the computational com-

plexity of our method for mapping a time series onto a signalling

network is negligible compared to inferring the static NEM.
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Massagué,J. (2012) TGFb signalling in context. Nat. Rev. Mol. Cell Biol., 13,

616–630.

Mersmann,O. (2018) microbenchmark: Accurate Timing Functions. R pack-

age version 1.4-6.

Meyer-Schaller,N. et al. (2019) A hierarchical regulatory landscape during the

multiple stages of EMT. Dev. Cell, 48, 539–553.e6.

Nieto,M. et al. (2016) Emt: 2016. Cell, 166, 21–45.

Ourfali,O. et al. (2007) SPINE: a framework for signaling-regulatory pathway

inference from cause-effect experiments. Bioinformatics, 23, i359–i366.

Pastushenko,I. et al. (2018) Identification of the tumour transition states

occurring during EMT. Nature, 556, 463–468.

Pe’er,D. et al. (2001) Inferring subnetworks from perturbed expression pro-

files. Bioinformatics, 17, S215–S224.

Peters,J. et al. (2016) Causal inference by using invariant prediction: identifica-

tion and confidence intervals. J. R. Stat. Soc. B, 78, 947–1012.

Pounds,S. and Morris,S.W. (2003) Estimating the occurrence of false posi-

tives and false negatives in microarray studies by approximating and parti-

tioning the empirical distribution of p-values. Bioinformatics, 19,

1236–1242.

R Core Team (2018) R: A Language and Environment for Statistical

Computing. R Foundation for Statistical Computing, Vienna, Austria.

Ritchie,M.E. et al. (2015) limma powers differential expression analyses for

RNA-sequencing and microarray studies. Nucleic Acids Res., 43, e47.

Segal,E. et al. (2003) Module networks: identifying regulatory modules and their

condition-specific regulators from gene expression data. Nat. Genet., 34, 166–176.

Silverbush,D. and Sharan,R. (2014) Network orientation via shortest paths.

Bioinformatics, 30, 1449–1455.

Steinway,S.N. et al. (2014) Network modeling of TGFb signaling in hepatocel-

lular carcinoma epithelial-to-mesenchymal transition reveals joint sonic

hedgehog and wnt pathway activation. Cancer Res, 74, 5963–5977.

Tresch,A. and Markowetz,F. (2008) Structure learning in nested effects mod-

els. Stat. Appl. Genet. Mol. Biol., 7, 1–26.

Vaske,C.J. et al. (2009) A factor graph nested effects model to identify net-

works from genetic perturbations. PLoS Comput. Biol., 5, 1–16.

Wang,J. et al. (2010) Transmir: a transcription factor–microRNA regulation

database. Nucleic Acids Res., 38, D119–D122.

Wang,X. et al. (2014) Reconstructing evolving signalling networks by hidden

Markov nested effects models. Ann. Appl. Stat., 8, 448–480.

Wellner,U. et al. (2009) The EMT-activator ZEB1 promotes tumorigenicity by

repressing stemness-inhibiting microRNAs. Nat. Cell Biol., 11, 1487–1495.

Yeang,C.-H. et al. (2004) Physical network models. J. Comput. Biol., 11, 243–262.

Zhang,J. et al. (2014) TGF-b–induced epithelial-to-mesenchymal transition

proceeds through stepwise activation of multiple feedback loops. Sci.

Signal., 7, ra91–ra91.

Inferring signalling dynamics by integrating interventional with observational data i585


