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Abstract

Exploring vaccination behavior is fundamental to understand the role of vaccine in sup-

pressing the epidemic. Motivated by the efficient role of the risk perception and the subsidy

policy in promoting vaccination, we propose the Risk Perception and the Risk Perception

with Subsidy Policy voluntary vaccination strategies with imperfect vaccine. The risk percep-

tion is driven by multiple information sources based on global information (released by Pub-

lic Health Bureau) and local information (from first-order neighbors). In time-varying

networks, we use the mean-field approach and the Monte Carlo simulations to analyze the

epidemic dynamics under vaccination behavior with imperfect vaccine. We find that vaccina-

tion with the incorporation of risk perception and subsidy policy can effectively control the

epidemic. Moreover, information from different sources plays different roles. Global informa-

tion is more helpful in promoting vaccination than local information. In addition, to further

understand the influence of vaccination strategies, we calculate the social cost as the cost

for the vaccine and treatment, and find that excess vaccination cost results in a higher social

cost after the herd immunity. Thus, for balancing the epidemic control and social cost, pro-

viding individuals with more global information as well as local information would be helpful

in vaccination. These results are expected to provide insightful guidance for designing the

policy to promote vaccination.

Introduction

Epidemics emerge one after another, causing harm to human health and social development.

To control the epidemic, various containment policies are adopted, such as travel restrictions

[1], isolation [2], social distance [3], wearing masks [4], testing-tracing [5] and vaccination [6–

8]. Due to the high cost caused by intervention strategies, such as isolation, lock down, vacci-

nation is expected to help contain epidemic spread [9]. But once the herd immunity is

achieved, self-interested individuals might hesitate or even refuse to be vaccinated, leading to

“vaccination dilemma” [10–13]. Thus, it is important to study the impact of people’s responses

and behaviors on the adoption of vaccine and the epidemic control. The concept of the
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effectiveness and efficiency of vaccination are proposed owing to the real observation that vac-

cines are not always perfect [14, 15]. The former means that some vaccinated individuals

acquire immunity with effective probability and the remaining individuals fail to acquire

immunity; the latter means a defense against contagion by decreasing the infection risk.

Since people usually make the vaccination decision based on risk perception [16–20], many

studies explored how risk perception affects the vaccination. Yang et al. [21] studied individu-

als’ behaviors on vaccination related to risk perception, i.e., the higher perceived infection risk

would strengthen the probability to vaccinate. Andreas et al. [22] discussed the determinants

of infection risk perception and found risk perception increased with perceived fear and one’s

own knowledge about the epidemic. Since people might perceive the infection risk through the

epidemic severity, Shi et al. [23] explored the situation that the infection risk perception is

based on the epidemic severity driven by the level of vaccine coverage in the last season.

Further, according to the observation that various epidemic information leads to different

perception on epidemic severity [24], recent studies examined the impact of information

sources on the risk perception and the vaccination. For instance, individuals perceive the

infection risk in terms of the local information [25, 26], and then decide whether to adopt vac-

cination. Here the local information [27] represents the amount of infections around the first-

order neighbors. Besides, Alberto et al. [28] incorporated the vaccination based on global

information (public information communicated by the public health authorities) into classical

Susceptible—Infected—Recovered (SIR) model. They showed that the global information

helps to eliminate epidemic quickly. Shi et al. [29] modeled the impact of three kinds of infor-

mation sources related with both local information and global information on the infection

risk perception, and found that the global information is more objective than the local infor-

mation when calculating the infection risk.

Since vaccination is affected by subsidy policy, some studies focused on how to accelerate

vaccination through subsidy policy, because individuals’ behavior on vaccination might be

affected by payoffs [30, 31]. For instance, Zhang et al. [32] explored the effectiveness of the ran-

dom subsidy policy on vaccination promotion and found that the random subsidy policy can

increase the vaccine coverage through mean-field approximation and Monte Carlo simula-

tions. To improve the effect of subsidy policy, Ding et al. [33] proposed that selected subsidized

individuals based on history information and showed it can strengthen the probability of non-

hub nodes to take the vaccine. Zhang et al. [34] compared the random subsidy policy and the

targeted subsidy policy, and found that the targeted subsidy policy can eliminate epidemic bet-

ter. Further, Zhang et al. [35] examined how the amount of subsidy affects vaccination behav-

ior and showed that the partial-offset subsidy policy is more effective than the free subsidy

policy in facilitating vaccination. However, Kuga et al. [36] considered that the difference

between the effectiveness of the partial-offset subsidy and free subsidy policy in promoting

vaccination depends on whether subsidies are targeted at voluntary vaccinators while avoiding

excessive social costs. Tatsukawa et al. [37] designed a degree dependent subsidy policy where

individuals get subsidy for vaccine according to their degree, and they compared the efficiency

of degree dependent subsidy, free subsidy and flat discount subsidy policies in suppressing the

epidemic with a minimum social cost. It shows that the degree dependent subsidy policy per-

formed better than the flat discount subsidy policy, while the vaccination coverage and the

final epidemic size are dominated by the free ticket policy.

So far, although progress has been made on how risk perception and subsidy policy affects

individuals’ vaccination behavior, there are still some deficiencies needed to be further

improved. In reality, vaccination behavior is affected by various factors, like subsidy and risk

perception driven by multiple information sources. However, most studies focus on the vacci-

nation behavior affected by single factor, the joint roles of risk perception and subsidy policy is
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not considered. Similar, the joint roles of local and global information in vaccination is

neglected. Besides, the government subsidy is implemented before epidemic spread while

ignoring the dynamic interplay between the subsidy and vaccination behavior, leading to

insufficient understanding of the role of subsidy policy in promoting vaccination and slowing

down epidemic. In addition, since the interplay of vaccination and epidemic spread are usually

coupled among dynamically interacted individuals, how the dynamical interaction between

individuals affects vaccination and epidemic is still unknown. Therefore, in order to compre-

hensively understand how individuals risk perception driven by the information they received,

and the subsidy policy implemented by the government co-affect on vaccination behavior, it is

necessary to explore the combined effect of these factors on the epidemic spread under the

framework of time-varying networks.

Aiming at solving the above problems, we explore the role of subsidy policy and risk per-

ception driven by information sources on vaccination in the time-varying networks. We pro-

pose two vaccination strategies, i.e., the Risk Perception (RP) and the Risk Perception with
Subsidy Policy (RPS). Under the RP strategy, individuals decide whether to vaccinate driven by

the infection risk which based on information sources and transmissibility of epidemic. Under

the RPS strategy, individuals make the vaccination decision based on risk perception and sub-

sidy policy. To perceive infection risk more accurately, we consider two basic types of informa-

tion, i.e., global and local information, incorporated with the availability of asymptomatic

individuals. To simulate disease spread and quantify the effectiveness of the vaccination strate-

gies, we adopt the Susceptible—Exposed—Vaccinated—Asymptomatic—Infected—Recovered

(SEVAIR) compartmental model with imperfect vaccine [38]. Since the imperfect vaccine

defends against contagion by decreasing the infection risk, the likelihood of being infected

after vaccination is named as failure rate. Similarly, immunity from imperfect vaccines may be

lost after a period of time, we name it as time-sensitivity.
Through the simulations, we found that vaccination campaign can effectively contain the

epidemic, especially with the support of subsidy policy for vaccine. And, the global informa-

tion with the incorporation of asymptomatic individuals brings more risk perception for indi-

viduals, resulting in rapid containment of the epidemic. Since excess vaccination cost leads to

a higher social cost after herd immunity, providing individuals with more global information

and local information is helpful to control the epidemic spread while reducing the social eco-

nomic burden. Besides, vaccines with low time-sensitivity and low failure effect can further

inspire individuals to vaccinate. In addition, vaccine’s time-sensitivity plays a more fundamen-

tal role in vaccination behavior than vaccine’s failure rate.

Model

In this section, we first introduce the activity-driven (AD) networks that simulate dynamic

interactions between individuals. Second, we propose the Susceptible—Exposed—Vaccinated

—Asymptomatic—Infected—Recovered (SEVAIR) compartmental model with voluntary vac-

cination. Last, we propose the Risk Perception (RP) strategy and Risk Perception with Subsidy
Policy (RPS) strategy, to explore the impact of risk perception and subsidy policy on

vaccination.

Activity-driven network

Since individuals often interact with each other dynamically, we simulate the dynamic evolu-

tion of epidemic spread and vaccination with activity driven networks. In this model, each

node i is assigned with activity ai, which is used to represent the probability to actively connect

with other nodes [39]. In the real world, individuals’ behavior [40] usually follows a power-law
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distribution F(a)/ a−γ, with γ 2 (2, 3] and a 2 [�, 1], where � is the cutoff value to avoid distri-

bution divergence [41]. The generation process of the temporal network is described as

follows:

• At each discrete time t, N disconnected nodes are distributed in the network Gt;

• Each node i becomes active and generates m interactions with probability aiΔt. Non-active

nodes can receive connections from others who are active;

• At time t + Δt, all edges in the network Gt are cleared.

• Repeat the above steps to generate the network Gt+Δt until the timescale T.

It is worth noting that neither self-loops nor multiple edges are allowed. All connections

last for a temporal interval Δt.

The SEVAIR model

To understand how individual’s vaccination decision affects the epidemic spread, we propose

the Susceptible—Exposed—Vaccinated—Asymptomatic—Infected—Recovered (SEVAIR)

compartmental model, see Fig 1, by incorporating voluntary vaccination state [42–44].

On the voluntary vaccination, we assume that the vaccine is imperfect due to the limited

role of vaccine [38] and expressed as the time-sensitivity of vaccine (δ) and vaccine failure rate
(α). The former means that the vaccinated (V) individuals can return to susceptible (S) indi-

viduals, the latter means vaccinated (V) individuals can still be infected.

In the SEVAIR model, susceptible (S) individuals take the vaccination with probability pa(t)
at time t, and become vaccinated (V) individuals. The vaccination probability pa(t) will be dis-

cussed in details in Sec. Vaccination Decision. Owing to the imperfect vaccine, vaccinated (V)

individuals will return to the susceptible individuals (S) with rate δ, and reduce their suscepti-

bility with probability α. Susceptible (S) individuals who do not vaccinate will turn to exposed

(E) state at transmission rate λ (ωλ), when contacting with symptomatic (I) (asymptomatic

(A)) individuals. After an incubation period 1

Z
, exposed (E) individuals become infectious,

while the ratio of asymptomatic individuals from exposed individuals is ρ with ρ 2 [0, 1]. Both

the asymptomatic (A) and infected (I) individuals recover at rate μ. The main parameters

involved in the model are listed in Table 1.

At a mean-field level [45], the epidemic process is quantified by individuals with activity a
at time t in different states, namely, Sa(t), Ea(t), Va(t), Aa(t), Ia(t) and Ra(t). Then, the dynamic

equations of the SEVAIR model are given by:

Saðt þ DtÞ ¼ SaðtÞ þ dDtVaðtÞ � lmSaðtÞaDt
Z

da0
oAa0 ðtÞ þ Ia0 ðtÞ

N

� lmSaðtÞDt
Z

a0da0
oAa0 ðtÞ þ Ia0 ðtÞ

N
� paðtÞDtSaðtÞ;

ð1Þ
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Fig 1. Schematic representation of the SEVAIR model. The arrows indicate the transition probabilities. Susceptible (S) individuals take vaccines with

probability pa(t), and the susceptible (S) individuals who do not vaccinate will turn to exposed (E) state at transmission rate λ (ωλ), when contacting

with symptomatic (I) (asymptomatic (A)) individuals. Vaccinated (V) individuals return to the susceptible individuals (S) at rate δ, and will be infected

by contacting symptomatic (I) (asymptomatic (A)) individuals with an infection rate αλ (αωλ). After an incubation period 1

Z
, exposed (E) individuals

become infectious, while the ratio of asymptomatic individuals from exposed individuals is ρ with ρ 2 [0, 1]. Both the asymptomatic (A) individuals and

infected (I) individuals recover at rate μ.

https://doi.org/10.1371/journal.pone.0276177.g001

Table 1. The parameters used in SEVAIR model.

Parameters Description

λ Infection rate

ω The reduced infection rate for asymptomatic individuals

1

Z
Incubation period

ρ The ratio of asymptomatic individuals from exposed individuals

μ Recovery rate

α The failure rate of vaccine

δ The probability that V individuals lose immunity and return to S state

https://doi.org/10.1371/journal.pone.0276177.t001
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Eaðt þ DtÞ ¼ EaðtÞ � ZDtEaðtÞ þ almVaðtÞaDt
Z

da0
oAa0 ðtÞ þ Ia0 ðtÞ

N

þ almDtVaðtÞ
Z

a0da0
oAa0 ðtÞ þ Ia0 ðtÞ

N

þ lmDtSaðtÞa
Z

da0
oAa0 ðtÞ þ Ia0 ðtÞ

N

þ lmDtSaðtÞ
Z

a0da0
oAa0 ðtÞ þ Ia0 ðtÞ

N
;

ð2Þ

Vaðt þ DtÞ ¼ VaðtÞ þ paðtÞDtSaðtÞ � almVaðtÞaDt
Z

da0
oAa0 ðtÞ þ Ia0 ðtÞ

N

� almVaðtÞDt
Z

a0da0
oAa0 ðtÞ þ Ia0 ðtÞ

N
� dDtVaðtÞ;

ð3Þ

Aaðt þ DtÞ ¼ AaðtÞ þ ZrDtEaðtÞ � mDtAaðtÞ; ð4Þ

Iaðt þ DtÞ ¼ IaðtÞ þ Zð1 � rÞDtEaðtÞ � mDtIaðtÞ; ð5Þ

Raðt þ DtÞ ¼ RaðtÞ þ mDtIaðtÞ þ mDtAaðtÞ: ð6Þ

In Eq (1), the second term on the right side represents that vaccinated individuals return to

the susceptible compartment at rate δ due to the imperfect role of vaccines. The third term

quantifies the probability that susceptible individuals with activity a choose to take the vaccine

and become vaccinated with probability pa(t). The fourth term represents that active suscepti-

ble individuals become exposed by contacting with asymptomatic or infected individuals. And

the fifth term quantifies that inactive susceptible individuals transform into exposed individu-

als by contacting with asymptomatic or infected individuals who are active.

Vaccination decision

By responding to the epidemic, individuals usually hope to become free-riders on herd immu-

nity for avoiding vaccine cost, namely, “Vaccination dilemma” [10]. To address the “Vaccina-

tion dilemma”, we propose two vaccination strategies for individuals to vaccinate, i.e., Risk
Perception (RP) strategy and Risk Perception with Subsidy Policy (RPS) strategies. The RP strat-

egy is based on risk perception driven by multiple information sources, while the RPS strategy

depends on both risk perception and subsidy policy.

Risk perception (RP). Under the RP strategy, let pRPa;NVðtÞ and pRPa;VðtÞ denote the payoffs

for unvaccinated individuals and vaccinated individuals with activity a at time t, respectively

(see Fig 2).

Since individuals whether vaccinate or not depends on self-interest and financial pressure,

individuals accept the vaccine only if the payoffs of taking the vaccine is larger than that of not,

i.e., pRPa ðtÞp
RP
a;VðtÞ � ð1 � p

RP
a ðtÞÞp

RP
a;NVðtÞ. Then, the critical probability that susceptible
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individuals with activity a decide to vaccinate at time t, pRPa;cðtÞ, is given by:

pRPa;cðtÞ ¼
pRPa;NVðtÞ

pRPa;NVðtÞ þ pRPa;VðtÞ
: ð7Þ

Assuming that individuals who take the vaccination would incur unit vaccine cost cV, while

individuals who get infected bear the treatment cost cI, we can calculate the payoffs for unvac-

cinated and vaccinated individuals by considering the cost of vaccination and the treatment

cost of infection. Without loss of generality, we set the treatment cost cI = 1 and denote the rel-

ative cost for vaccination c ¼ cV
cI

with 0� c� 1. Then, the payoffs of unvaccinated and that of

vaccinated individuals at time t are obtained:

pRPa;NVðtÞ ¼ � cIIRa;NVðtÞ ¼ � IRa;NVðtÞ; ð8Þ

pRPa;VðtÞ ¼ � cIIRa;VðtÞ � cV ¼ � IRa;VðtÞ � cV ; ð9Þ

where IRa,NV(t) and IRa,V(t) represent the infection risk perception of unvaccinated and vacci-

nated individuals with activity a at time t, respectively.

Regarding the infection risk, individuals typically consider the infection rate and the sever-

ity of epidemic [29]. Thus, we can define the risk perception for unvaccinated and vaccinated

Fig 2. Schematic representation of the Risk Perception (RP) vaccination strategy under different information sources. Individuals decide to be

vaccinated by calculating the payoffs with or without vaccination based on infection risk perception, where the infection risk is perceived by global

information released by Public Health Bureau or local information from first-order neighbors. (a) The information sources obtained by individuals is

used to perceive the infection risk; (b) Evaluation of payoffs for unvaccinated and that of vaccinated individuals at time t; (c) Individuals determine to

take the vaccinate or not.

https://doi.org/10.1371/journal.pone.0276177.g002
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individuals at time t as follows:

IRa;NVðtÞ ¼ 1 � ð1 � lÞ
daðtÞ; ð10Þ

IRa;VðtÞ ¼ 1 � ð1 � alÞ
daðtÞ; ð11Þ

where da(t) indicates the perceived epidemic severity of individuals with activity a at time t.
With the individuals’ payoffs and risk perception defined in Eqs (8)–(11), we can rewrite

Eq (7) as:

pRPa;cðtÞ ¼
1 � ð1 � lÞ

daðtÞ

cV þ 2 � ð1 � lÞ
daðtÞ � ð1 � alÞ

daðtÞ
: ð12Þ

Regarding the ways that individuals obtain information, there are usually two kinds of disease

information sources available to individuals. The first is official data released by the Public

Health Bureau on cumulative infections [4, 28], namely, global information. The second is

obtained by observing first-order neighbors, namely, local information [26, 46]. Based on the

above information sources and whether the information about asymptomatic infections is

available, we consider five types of information channels in different combinations.

• GlobalI: Individuals with activity a acquire global information about infected individuals at

time t, i.e., da(t) =
R
Ia(t)da.

• LocalI: Individuals with activity a obtain local information from first-order neighbors. Thus,

at time t, the perceived severity of epidemic is daðtÞ ¼ ma
R Ia0 ðtÞ

N da0 þm
R Ia0 ðtÞa

0

N da0.

• GlobalI + LocalI: Individuals perceive the number of infected individuals based on both

global information and local information. Individuals differ in how much they trust the two

sources, thus formulated with parameter w, expressed as daðtÞ ¼ w
R
IaðtÞdaþ ð1 � wÞ

ma
R Ia0 ðtÞ

N da0 þm
R Ia0 ðtÞa

0

N da0
� �

.

• GlobalIA: In this mechanism, the Public Health Bureau announces the number of both

infected and asymptomatic cases, so da(t) =
R
Ia(t)da +

R
Aa(t)da.

• GlobalIA + LocalI: Individuals perceive the number of infected individuals based on both

global information and local information. And, the Public Health Bureau publishes the num-

ber of both infected and asymptomatic cases. Accordingly, the perceived severity of epidemic

at time t is given by daðtÞ ¼ wð
R
IaðtÞdaþ

R
AaðtÞdaÞ þ ð1 � wÞ ma

R Ia0 ðtÞ
N da0

�

þm
R Ia0 ðtÞa

0

N da0Þ, where w is the weight over global information.

Risk perception with subsidy policy (RPS). Facing with the epidemic, the subsidy policy

is usually provided by the government to reduce the cost spent by individuals for vaccine, and

promote them to get vaccinated. In order to understand the role of the subsidy for vaccination,

we propose the risk perception with subsidy policy (RPS) vaccination strategy (see Fig 3).

We assume that the amount of vaccine subsidies offered by the government (GVS) is associ-

ated with the cost of vaccination, cV, as GVS = 0.3cV, for the sake of simplicity.

Let pRPSa;V ðtÞ and pRPSa;NVðtÞ denote the payoffs of vaccinated and that of unvaccinated individu-

als with activity a under the RPS vaccination strategy at time t, respectively. Similar to Eq (7),

each individual decides whether to be vaccinated according to the payoffs of vaccination, i.e.,

pRPSa ðtÞp
RPS
a;V ðtÞ � ð1 � p

RPS
a ðtÞÞp

RPS
a;NVðtÞ. Thus, the critical probability that susceptible individuals
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with activity a decide to be vaccinated under the RPS strategy at time t, pRPSa;c ðtÞ, satisfies the

condition:

pRPSa;c ðtÞ ¼
pRPSa;NVðtÞ

pRPSa;NVðtÞ þ pRPSa;V ðtÞ
: ð13Þ

Since vaccinated individuals can receive subsidies under the RPS strategy, the benefits of

unvaccinated and vaccinated individuals are given as follows:

pRPSa;NVðtÞ ¼ p
RP
a;NVðtÞ ¼ � IRa;NVðtÞ; ð14Þ

pRPSa;V ðtÞ ¼ � cIIRa;VðtÞ � cV þ GVS ¼ � IRa;VðtÞ � 0:7cV : ð15Þ

Using the analytical formula for individuals’ payoffs provided by Eqs (14) and (15), and the

risk perception from Eqs (8)–(11), we can rewrite the probability that individuals with activity

a take the vaccine under the RPS strategy, pRPSa;c ðtÞ as:

pRPSa ðtÞ ¼
1 � ð1 � lÞ

daðtÞ

0:7cV þ 2 � ð1 � lÞ
daðtÞ � ð1 � alÞ

daðtÞ
; ð16Þ

where da(t) is same under the RP and the RPS strategies, depending on the information

sources.

In the above, we propose the Risk Perception (RP) strategy and the Risk Perception with Sub-
sidy Policy (RPS) strategies to explore the impact of risk perception and subsidy policy on the

vaccination and the epidemic. The infection risk perception is based on multiple information

Fig 3. Schematic representation of the Risk Perception with Subsidy Policy (RPS) vaccination strategy under different information sources.

Individuals decide to be vaccinated by calculating the payoffs with or without vaccination based on both infection risk perception and subsidy policy.

The infection risk is perceived by the epidemic severity formulated by the information, which is classified as global information released by Public

Health Bureau and local information from first-order neighbors. (a) The information sources obtained by individuals is used to perceive the infection

risk; (b) The subsidy policy from government; (c) Evaluation of payoffs for unvaccinated and that of vaccinated individuals at time t; (d) Individuals

determine to take the vaccinate or not.

https://doi.org/10.1371/journal.pone.0276177.g003
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sources driven by different channels. In the next section, simulations are carried out to com-

pare the effect of the two vaccination strategies on the epidemic spread.

Simulation results

In this section, we perform extensive Monte Carlo simulations to investigate the impact of risk

perception driven by different information sources, subsidy policy and imperfect vaccine on

the vaccination strategies by observing the epidemic scale.

Previous studies have found that heterogeneity in individuals’ activities has a significant

impact on the epidemic spread [47]. Hence, we consider activity distribution with heteroge-

neous distribution and homogeneous distribution. Here, the network is generated with activity

distribution F(a)/ a−γ, with γ = 2.2 representing heterogeneous distribution (HED), and γ =

2.9 representing homogeneous distribution (HOD). We elevate the lower bound of activity a
in the homogeneous networks to fix the first moment of activity. The other parameters are set

as: the size of networks is N = 10000, the timescale is T = 2000, and the temporal interval is

Δt = 1.

For the epidemic process, to simulate a more realistic disease, we capture the epidemiologi-

cal characteristics of COVID-19 as an example [48, 49]. The incubation period is 1

Z
¼ 20ðZ ¼

0:05Þ and the recovery rate is μ = 0.01. The ratio of asymptomatic over symptomatic individu-

als from exposed individuals is set as ρ = 0.3 in Ref. [50]. And we assume the reduced infection

rate for asymptomatic individuals is ω = 0.9. For the vaccine quality, the efficacy of COVID-19

vaccine is reported as 91.6% [51], so we set the failure rate of vaccine as α = 0.1. The probability

of V individuals returns to S state is δ = 0.005 [52]. For the vaccination process, the weight

over global information is set as w = 0.3, for the sake of simplicity. The above parameters are

default values, unless specified otherwise. All experimental results are averaged over 500 inde-

pendent simulations.

Comparison of the RP strategy and the RPS strategy

Firstly, to understand the impact of vaccination strategy and network topology on epidemic

spread, we compare the proportions of recovered (R) and vaccinated (V) individuals at the sta-

ble state under the RP and the RPS vaccination strategy. For simplicity, we assume that the

infection risk perceived by individuals is based on global information, that is, the epidemic

information about infected individuals from the Public Health Bureau, i.e., GlobalI.
Fig 4 shows the density of recovered individuals R1 and vaccinated individuals V1 under

the condition of without vaccination (NV), vaccination under the RP strategy (RP) and the

RPS strategy (RPS), respectively.

In Fig 4(a), compared with the NV curve, for both the RP and the RPS strategies, R1 is

decreased to a lower level, showing the significant role of vaccines. When the infection rate is

high (λ� 0.2), the RPS strategy performs slight better than the RP strategy in promoting vacci-

nation and controlling epidemic (Fig 4(a) and 4(c)). It can be explained that if λ is small (λ�
0.2), individuals do not think themselves at great risk and refuse to vaccinate. With a higher

infection rate (λ� 0.2), subsidy can further reduce the economic pressure from vaccine cost,

thereby, inducing more individuals to get vaccinated. Moreover, when the infection rate is

close to 1 (λ� 0.9), for both the RP and the RPS strategies, the vaccination coverage V1
increases to a high level, approaching to 1, while the final recovered proportion R1 reduces

closing to 10% rapidly. This is because that risk perception of individuals would enhance as λ
increases according to Eq (10), which leads to the raise of self-protection awareness. In addi-

tion, compared with the HED network (Fig 4(a)), the epidemic threshold in HOD networks
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are larger (Fig 4(b)), which confirms that the epidemic is harder to spread in HOD networks

than HED networks [47].

To further analyze the impact of the relative cost c on vaccination strategy and epidemic

spread, we plot the vaccine coverage V1 and the final epidemic size R1 versus the relative cost

c under the RP and the RPS strategies, respectively. In Fig 5(a) and 5(c), as the relative cost c
increases, R1 increases and V1 decreases. This is because individuals are reluctant to spend

Fig 4. The final epidemic size (R1) and the vaccine coverage (V1) as functions of λ under different vaccination strategies. No vaccination (NV,

blue); the risk perception vaccination strategy (RP, purple); the risk perception with subsidy policy vaccination strategy (RPS, green). (a) and (c): HED

network; (b) and (d): HOD network. Here the relative cost c = 0.5.

https://doi.org/10.1371/journal.pone.0276177.g004
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more for the vaccine as the cost for vaccine increases. Furthermore, the gap between the epi-

demic size under the RP and the RPS strategies becomes larger, regardless of activity distribu-

tion (Fig 5(a) and 5(b)), which implies that subsidy plays a fundamental role in facilitating the

vaccination especially at a higher relative cost c.
We conclude that the RPS strategy is more effective in promoting vaccination than the RP

strategy, especially under a higher transmission rate and a higher relative vaccination cost.

Besides, since the heterogeneity of individuals’ activities has no obvious effect on the epidemic

Fig 5. The final epidemic size (R1) and the vaccine coverage (V1) versus c under the RP and the RPS strategies. Risk perception vaccination

strategy (RP, purple); Risk perception with subsidy policy vaccination strategy (RPS, green). (a) and (c): HED network; (b) and (d): HOD network.

Here, the infection rate λ = 0.5.

https://doi.org/10.1371/journal.pone.0276177.g005
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spread and vaccination (see Fig 4), the following experiments are simulated on the HED

networks.

Effect of information sources on vaccination decision

The diversity of information sources leads to the difference in individuals’ risk perception, and

results in various vaccination behavior. Thus, in this section, we explore the impact of infor-

mation sources on vaccination decision and epidemic spread.

We investigate the density of recovered individuals (R1) and vaccinated individuals (V1)

at the steady state versus the relative cost (c) under different information sources, i.e., GlobalI,
GlobalIA, GlobalI + LocalI, GlobalIA + LocalI and LocalI, for the two vaccination strategies, i.e.,

the RP and the RPS strategies, respectively (see Fig 6).

As shown in Fig 6, for all the information sources, as the relative cost c increases, the vac-

cine coverage V1 decreases. In addition, the vaccine coverage V1 under the RP strategy is less

than that under the RPS strategy (see Fig 6(a) and 6(b)), due to the support of subsidy policy

for the vaccine cost. Thus, subsidy provided by the government is helpful for promoting vacci-

nation among individuals when the vaccine cost is high especially at the early stage of vaccine

development.

In Fig 6(a) and 6(c), firstly, compared with the global information on symptomatic infected

individuals (GI, purple squares), more information on asymptomatic individuals would

improve individual’s risk infection (GIA, purple circles), thus, leading to a higher V1 and a

lower R1. This phenomenon reminds us that the presence of asymptomatic can be detrimen-

tal as well as beneficial. Even if asymptomatic individuals can accelerate the epidemic spread, it

can enhance the risk perception of individuals and boost vaccination campaigns indirectly.

While for local information (LI, green curve in Fig 6(c) and 6(d)), due to the limited informa-

tion around the first-order neighbors on the infection, almost no individuals vaccinate for

both the RP and the RPS strategies. Lastly, in Fig 6(c) and 6(d), compared with global informa-

tion (purple curves), global information combined with local information (blue curves) brings

less infection risk perception, thus, leading less individuals get vaccinated. This is because that

the global information is objective than the local information, under global information com-

bined with local information, due to the weight over global information w is smaller than half,

the perceived severity of epidemic is much lower than the actual epidemic size, which leads to

insufficient self-protection awareness.

In real world, an excellent vaccination strategy should not only slow down the epidemic

spread, but also bring less economic burden. Thus, we take into account social costs spent for

the vaccine and for the treatment during the epidemic. Here, we define social cost, denoted as

SC:

SC ¼ cVVtot þ cIR1; ð17Þ

where Vtot denotes the amount of taking the vaccine during the epidemic, expressed as:

Vtot ¼
V1

ð1 � aÞð1 � dÞ
: ð18Þ

Vtot include both the vaccinated individuals at the stable state, and the ones who return to sus-

ceptible state or transform into exposed state owing to the time-sensitivity and failure effect of

vaccine.

Next, we explore the impact of different information sources on social costs (SC). In Fig 7,

under local information (LI, green curves), since individuals can only perceive the infection

risk by first-order neighbors, the severity of epidemic is far underestimated. As a consequence,
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both the final epidemic size and treatment cost are larger which leads to a higher social cost.

Compared with global information (GI and GIA, purple curves), before herd immunity is

achieved (c� 0.5), global information combined with local information (GI + LI and GIA + LI,
blue curves) brings more treatment cost, leading to a higher social cost; once herd immunity is

achieved (c� 0.5), global information combined with local information avoids excess vaccine

costs, leading to a lower social cost. Compared GI with GIA (purple curves), the incorporation

of more information on asymptomatic has no obvious effect on social cost. Thus, the crossover

Fig 6. The final epidemic size (R1) and vaccine coverage (V1) versus the relative cost c under different information sources. GlobalI (GI, purple,

square), GlobalIA (GIA, purple, circle), GlobalI + LocalI (GI + LI, blue, square), GlobalIA + LocalI (GIA + LI, blue, circle), LocalI (LI, green, square). (a) and

(c): RP strategy; (b) and (d): RPS strategy. Here, the infection rate λ = 0.5.

https://doi.org/10.1371/journal.pone.0276177.g006
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point (c = 0.5) represents the balance of treatment costs and vaccine costs, in other words,

herd immunity is achieved. Before the crossover point, the more vaccinated individuals, the

lower treatment cost and social cost will be. While after the crossover point, the more vacci-

nated individuals imply extra vaccine cost, leading to a higher social cost. The above results

indicate us, for balancing the control of the epidemic spread and social benefit, providing indi-

viduals with both global information and local information (GI+ LI and GIA + LI) is a good

choice.

The time-sensitive and failure effect of vaccine

Since the role of vaccine is limited, in this section, we explore how imperfect vaccine under dif-

ferent failure rate α and time-sensitivity δ affect epidemic dynamics. For simplicity, we take the

vaccination process under the RPS strategy as an example.

Firstly, to analyze the impact of failure rate α, we select several typical values as α = 0, 0.2,

0.5, 0.7, 1, respectively. Fig 8 illustrates that as α increases, the vaccine coverage V1 decreases

and the final epidemic size R1 rises. Only if α is lower (α� 0.2), V1 can exceed half of the

population (green and blue curves in Fig 8(b)). That is because, the higher failure rate α implies

the lower protective effect, thus individuals refuse to spend for vaccine which provides less use-

ful protection.

Secondly, we analyze the interplay of failure rate of vaccine (α) and the relative cost (c). Fig

9 illustrates the final proportion of recovered R1 and vaccinated individuals V1 versus differ-

ent vaccine failure rate α and relative cost c. Similar to the results in Fig 8, the increase of vac-

cine failure rate and vaccine cost leads to a decline in vaccine coverage. Under the global

information (GI and GIA), when vaccine efficiency (1 − α) reaches validity standard (α� 0.4)

(see Fig 9(a), 9(b), 9(f) and 9(g)), the herd immunity will be achieved and the epidemic can be

contained. This is because highly effective vaccines will bring more individuals get vaccinated.

Fig 7. The social cost (SC) versus the relative cost c under different information sources for the RP strategy (a) and the RPS strategy (b). GlobalI
(GI, purple, square), GlobalIA (GIA, purple, circle), GlobalI + LocalI (GI + LI, blue, square), GlobalIA + LocalI (GIA + LI, blue, circle), LocalI (LI, green,

square). Here, the infection rate λ = 0.5.

https://doi.org/10.1371/journal.pone.0276177.g007
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With the incorporation of local information (GI + LI and GIA + LI), a more effective vaccine (α
� 0.3) and a lower vaccine cost(c� 0.4) will contain the epidemic (see Fig 9(c), 9(d), 9(h) and

9(i)). The reason is that local information affects the individuals’ judgment of epidemic sever-

ity, thus, noneffective or expensive vaccines would not inspire individuals to get vaccinated.

Under the local information (LI), since individuals obtain very limited information from first-

Fig 8. The epidemic scale R1 and the vaccinate coverage V1 versus cost (c) for different failure rate (α) under the RPS strategy. (a) R1; (b) V1.

Here, the infection rate λ = 0.5.

https://doi.org/10.1371/journal.pone.0276177.g008

Fig 9. Effects of failure rate of vaccine (α) and cost (c) under different information sources. (a)—(e): R1, (f)—(j): V1. (a) and (f): Global

information about infected individuals (GI); (b) and (g): Global information about infected and asymptomatic individuals (GIA); (c) and (h): Global

information about infected individuals and local information about infected individuals (GI + LI); (d) and (i): Global information about infected and

asymptomatic individuals combined with local information about infected individuals (GIA + LI); (e) and (j): Local information about infected

individuals (LI). Here, the infection rate λ = 0.5.

https://doi.org/10.1371/journal.pone.0276177.g009
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order neighbors, most individuals believe that their infection risks are low, thus giving up to

vaccinate (see Fig 9(e) and 9(j)).

Next, we analyze the time-sensitive impact of vaccine (δ) (the rate that vaccinated individu-

als will return to the susceptible individuals), as demonstrated in Fig 10.

As shown in Fig 10(a), R1 increases as the time-sensitivity δ increases. It can be explained

that since highly time-sensitivity δ implies shorter protection time, individuals refuse to spend

more for short-lived protection vaccine. Further, if the vaccine provides permanent immunity

(δ = 0) (Fig 10(b) green curve), the majority of individuals will choose to be vaccinated regard-

less of vaccine cost.

Last, we analyze the interplay of time-sensitivity of vaccine (δ) and vaccination cost (c) on

the epidemic. Fig 11 shows that the density of recovered individuals R1 and the vaccine cover-

age V1 at the steady state obtained by Monte Carlo simulations. Under the global information

(GI and GIA), the epidemic can be controlled except in cases where higher vaccine cost

(c� 0.5) and higher time-sensitivity (δ� 0.012) are reached (see Fig 11(a) and 11(b)). This is

because that vaccine with low time-sensitive effect inspires more individuals to vaccinate,

resulting in rapid containment of the infection. With the incorporation of local information

(GI + LI and GIA + LI), a lower time-sensitivity (δ� 0.001) or a lower vaccine cost (c� 0.2) will

mitigate the epidemic (see Fig 11(c), 11(d), 11(h) and 11(i)). This is because individuals under-

estimate the epidemic severity, only a long-term immunity vaccine or lower vaccine costs can

promote individuals to get vaccinated. Under the local information (LI), vaccine with lower

time-sensitive effect (δ� 0.002) leads less individuals get vaccinated (see Fig 11(e) and 11(j)),

thus, herd immunity can not be established.

More importantly, compared Fig 9(j) with Fig 11(j), vaccine with low time-sensitive effect

is more effective in promoting vaccination than vaccine with low failure rate. This indicates

that the vaccine time-sensitive effect (δ) has a greater impact on individuals’ vaccination

behavior than the efficiency of vaccine.

Fig 10. The epidemic scale R1 and the vaccinate coverage V1 versus cost (c) for different time-sensitivity of vaccine (δ) under the RPS strategy.

(a) R1; (b) V1. Here, the infection rate λ = 0.5.

https://doi.org/10.1371/journal.pone.0276177.g010

PLOS ONE Risk perception and subsidy policy-based voluntary vaccination

PLOS ONE | https://doi.org/10.1371/journal.pone.0276177 October 13, 2022 17 / 21

https://doi.org/10.1371/journal.pone.0276177.g010
https://doi.org/10.1371/journal.pone.0276177


Conclusion and discussion

The role of vaccine in controlling epidemic is beyond doubt. Due to vaccine hesitancy [53]

and vaccine dilemma [10], herd immunity is difficult to achieve. For voluntary vaccination, in

this study, we propose Risk Perception (RP) strategy and Risk Perception with Subsidy Policy
(RPS) strategy to explore the role of subsidy policy and risk perception driven by multiple

information sources. Based on the information is global or local and whether the information

about asymptomatic individuals is available, we further consider five types of information

sources. In addition, we analyze the impact of the time-sensitivity and the failure effect of the

vaccine on vaccination and epidemic spread. Then, we perform Monte Carlo simulations in

activity-driven networks.

Compared the RP strategy with the RPS strategy, we found that the RPS strategy is more

remarkable in rapid containment of the infection due to the support of subsidy for vaccine

cost. Next, the global information with the incorporation of the information on asymptomatic

individuals brings more objective epidemic severity and higher risk perception than limited

local information, leading to a higher vaccine coverage. Considering that excess vaccination

cost leads to a higher social cost after herd immunity, information source based on both global

information and local information is proper for controlling the epidemic spread while reduc-

ing the social economic burden. Besides, only long-term and high protective vaccines can

delay the epidemic by inspiring individuals to vaccinate. In addition, the time-sensitive effect

of the vaccine affects vaccination behavior more than the vaccine efficiency, therefore, more

attention should be paid to the duration time of protection when developing a vaccine.

Our work may help to provide some suggestions for designing the policy that promotes

individuals to take the vaccine. However, this paper also has limitations. For simplicity, we

assume that all vaccinated individuals can receive the same subsidies, neglecting the difference

in subsidies based on different infection risk. As for future work, different subsidies for high

risk individuals and low risk individuals can be considered to provide a more accurate plan for

vaccine policy design.

Fig 11. Effects of time-sensitivity of vaccine (δ) and cost (c) under different information sources. (a)—(e): R1, (f)—(j): V1. (a) and (f): Global

information about infected individuals (GI); (b) and (g): Global information about infected and asymptomatic individuals (GIA); (c) and (h): Global

information about infected individuals and local information about infected individuals (GI+ LI); (d) and (i): Global information about infected and

asymptomatic individuals with local information about infected individuals (GIA + LI); (e) and (j): Local information about infected individuals (LI).
Here, the infection rate λ = 0.5.

https://doi.org/10.1371/journal.pone.0276177.g011
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