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Abstract: Coronavirus disease 2019 (COVID-19), a global pandemic, is caused by severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2). Angiotensin-converting enzyme 2 (ACE2) is
the receptor for SARS-CoV-2 and transmembrane serine protease 2 (TMPRSS2) facilitates ACE2-
mediated virus entry. Moreover, the expression of ACE2 in the testes of infertile men is higher
than normal, which indicates that infertile men may be susceptible to be infected and SARS-CoV-2
may cause reproductive disorder through the pathway induced by ACE2 and TMPRSS2. Little
is known about the pathway regulation of ACE2 and TMPRSS2 expression in male reproductive
disorder. Since the regulation of gene expression is mediated by microRNAs (miRNAs) and long
non-coding RNAs (lncRNAs) at the post-transcriptional level, the aim of this study was to analyze
the dysregulated miRNA–lncRNA interactions of ACE2 and TMPRSS2 in male reproductive disorder.
Using bioinformatics analysis, we speculate that the predicted miRNAs including miR-125a-5p, miR-
125b-5p, miR-574-5p, and miR-936 as regulators of ACE2 and miR-204-5p as a modulator of TMPRSS2
are associated with male infertility. The lncRNAs with a tissue-specific expression for testis including
GRM7-AS3, ARHGAP26-AS1, BSN-AS1, KRBOX1-AS1, CACNA1C-IT3, AC012361.1, FGF14-IT1,
AC012494.1, and GS1-24F4.2 were predicted. The identified miRNAs and lncRNAs are proposed
as potential biomarkers to study the possible association between COVID-19 and male infertility.
This study encourages further studies of miRNA–lncRNA interactions to explain the molecular
mechanisms of male infertility in COVID-19 patients.
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1. Introduction

In December 2019, a novel coronavirus responsible for coronavirus disease 2019
(COVID-19) was described in Wuhan, China [1,2]. To date, nearly 146,000,000 global
confirmed cases of COVID-19, with nearly 3 million deaths, have been observed [3].

SARS-CoV-2, a single-stranded RNA virus belonging to the coronavirus subfamily,
is one of the seven different coronaviruses that can infect humans and is the pathogen
responsible for COVID-19 [4]. Four coronaviruses, 229E, NL63, OC43, and HKU1, can lead
to mild viral symptoms, while the other three, SARS-CoV-1, MERS-CoV, and SARS-CoV-2,
can cause more severe respiratory symptoms [4].
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The angiotensin-converting enzyme 2 (ACE2) receptor and transmembrane serine
protease 2 (TMPRSS2), localized on the host cell membrane, are indispensable for viral
proliferation in the infected host [5].

ACE2 and TMPRSS2 are highly expressed in normal human tissues, such as the lung,
heart, colon, and testis [6,7]. Overall, the epidemiological findings reported that males are
more vulnerable to the infection than females [8]. However, it seems there is not a clear
association between the localization of receptors and virus infectivity.

ACE2 and TMPRSS2 are androgen-regulated and expressed in both germ cells and
somatic cells [9–11].

Previous studies measured hormonal levels in COVID-19-infected male patients and
they found a lower expression of testosterone levels and higher luteinizing hormone levels,
key mediators in male reproductive health [12,13].

Li et al. indicated that SARS-CoV-2 can be present in the semen of patients with
COVID-19 [14]. Ma and colleagues confirmed the nucleic acid sequence of SARS-CoV-2
using RT-qPCR and the presence of the virus by immunohistochemistry in the testes of
COVID-19 patients. Furthermore, they demonstrated a higher expression of ACE2 and
TMPRSS2 in the testes of infertile men than normal [15]. The SARS-CoV-2 spike protein
binds to the ACE2 receptor of the target cells and TMPRSS2 primes cellular protease to
cleave the S protein into S1 and S2 subunits. The two subunits have two different roles: S1
is the domain where there is the binding with the ACE2 receptor and S2 is responsible for
the fusion with the target cell membrane [5]. Collectively, the previous findings indicate
that men with reproductive disorders may be easily infected by SARS-CoV-2 and this
virus may cause male reproductive disorders through the pathway activated by ACE2 and
TMPRSS2 [16,17].

Despite these recent studies, there are currently no biomarkers able to establish the
effects of COVID-19 and elucidate the molecular mechanisms associated with male infertil-
ity. Therefore, non-invasive approaches that can diagnose the effects of COVID-19 on male
infertility are appealing aspects [18].

The regulation of gene expression is mediated by micro RNAs (miRNAs) and long
non-coding RNAs (lncRNAs) at the post-transcriptional level in multiple molecular mech-
anisms. miRNAs, small non-coding RNAs, are important regulators of gene expression
through binding to the 3′ untranslated region of their complementary mRNA sequences
and lead to their degradation or inhibition of translation [19–21]. Previous studies reported
the significant role of miRNAs in spermatogenesis and testicular development [22,23]. As
miRNAs are abundant in plasma, serum, and seminal plasma, it makes them appealing po-
tential non-invasive biomarkers [24]. Indeed, miRNAs can modify the host’s transcriptome
and modulate viral infection through the regulation of biological pathways with pro- or
antiviral effects [25].

lncRNAs, sequences of RNA longer than 200 nucleotides that are not translated into
proteins [26], can sponge miRNAs to moderate their regulatory effect on mRNAs; the associ-
ation between lncRNAs and miRNAs is essential for gene regulation [27]. Various lncRNAs
are involved in modulating mammalian spermatogenesis [28]. Changes in miRNA and
lncRNA expression profiles in patients with non-obstructive azoospermia supported their
role in male infertility [20]. In line with this scenario, miRNAs and lncRNAs could also
have potential therapeutic applications. Nevertheless, the molecular mechanism of miR-
NAs and lncRNAs on the course of male infertility associated with COVID-19 remains
poorly understood.

In this study, the expression profiles of miRNAs and lncRNAs which regulate ACE2
“the hottest targets of SARS-CoV-2” and TMPRSS2 “S protein priming” were analyzed
comprehensively in infertile men by bioinformatics approaches. We proposed potential
biomarkers which might help to understand the effects of COVID-19 on male infertility.
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2. Materials and Methods
2.1. Predicting the Interactions miRNA–ACE2 and miRNA–TMPRSS2

The miRNAs that target ACE2 and TMPRSS2 were predicted by mirDIP database
Version 4.1.0.3 [29]. This integrated database covers 30 datasets including TargetScan,
RNAhybrid, mirTar, mirbase, DIANA, etc. [29]. The score class was limited to high and
very high interactions.

2.2. Screening the miRNAs Associated with Male Infertility

In order to filter the retrieved miRNAs associated with male infertility, differentially
expressed miRNAs (DE-miRNAs) in human testes from infertile men were obtained from
the study of Abu et al. [30]. |Log FC| > 3 and p value < 0.05 were considered statistically
significant to identify differentially expressed miRNAs.

2.3. Predicting the Interactions lncRNAs–miRNAs

The identified DE-miRNAs were submitted to miRWalk2 [31] to predict the association
between miRNA and lncRNA.

2.4. Filtering the lncRNAs Associated with Male Infertility

The predicted lncRNAs in the last step were screened according to lncRNAs associated
with male infertility that have been identified by Joshi and Lu [32,33]. |Log FC| > 3 and
p value < 0.05 were considered statistically significant to identify differentially expressed
lncRNAs. The computational procedure of our study is represented in Figure 1. miRNAs
able to regulate ACE2 and TMPRSS2 and associated with male infertility were identified
through mirDIP and the study of Abu et al. [30].
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In addition, we identified the interactions between these miRNAs and differentially
expressed lncRNAs in infertile men identified by Joshi and Lu [32,33].

2.5. Gene Ontology Analysis

Gene Ontology (GO) and panther version 16.0 were used to perform functional
classification of identified lncRNAs in categories such as molecular function, biological
process and cellular component [34].

2.6. Testis-Specific lncRNAs

The Gini index was used to explore testis-specific lncRNAs. The Gini index was
calculated to evaluate the specificity of expression of lncRNAs compared to different
healthy tissues. We used the public database GTEX that contains the expression levels
in 30 human normal tissues: adipose tissue, adrenal gland, bladder, blood, blood vessel,
brain, breast, cervix uteri, colon, esophagus, fallopian tube, heart, kidney, liver, lung,
muscle, nerve, ovary, pancreas, pituitary, prostate, salivary gland, skin, small intestine,
spleen, stomach, testis, thyroid, uterus, and vagina [35]. We analyzed the Gini index for
each normal tissue and quantified the specificity of lncRNAs for testis. It can assume a
value from 0 to 1. We defined a lncRNA specific for testis if the Gini index is <= 0.15. We
considered 10167 lncRNAs in GTEX data as reported from the lncRNome database [36].

3. Results
3.1. miRNAs Associated with Male Infertility Regulate ACE2 and TMPRSS2

From our bioinformatics analysis we predicted that 80 miRNAs and 92 miRNAs can
regulate ACE2 and TMPRSS2, respectively. Ten miRNAs (miR-1208, miR-141-3p, miR-182-
5p, miR-300, miR-331-3p, miR-362-5p, miR-381-3p, miR-4308, miR-582-5p and miR-587) were
found in common between ACE2 and TMPRSS2.

Furthermore, we explored the miRNAs that regulate ACE2 and TMPRSS2 and are
associated with male infertility according to the study of Abu et al. [30]. Four miRNAs
(miR-125a-5p, miR-125b-5p, miR-574-5p, and miR-936) were associated with male infertility
and were also predicted to modulate ACE2 expression. miR-204-5p, with an effective role in
male infertility, was presented as a possible regulator of TMPRSS2. Supplementary File 1
shows the list of all predicted miRNAs as regulators of ACE2 and TMPRSS2, the miRNAs
associated with male infertility, and the extracted miRNAs from the predicted ones which
were also associated with male infertility.

3.2. lncRNAs–miRNAs Associated with Male Infertility

A total of 5612 lncRNAs were predicted to interact with miR-125a-5p and miR-125b-5p,
and 3416 lncRNAs were predicted to interact with miR-936. miR-204-5p was proposed to
have interactions with 6569 lncRNAs.

We extracted 349 unique lncRNAs which were associated with male infertility. A
total of 155 lncRNAs have interactions with miR-125a-5p and miR-125b-5p, 122 lncRNAs
with miR-936, and 187 lncRNAs with miR-204-5p. Supplementary File 2 shows the list of
349 lncRNAs.

3.3. Functional Annotations

The biological role of 349 lncRNAs was evaluated through a functional analysis. From
the 349 unique lncRNAs, 323 lncRNAs were annotated by PANTHER and functional analy-
sis of the lncRNAs showed that the top molecular functions (Figure 2a) were “bindings”
(40.5% of lncRNAs) and “catalytic activity” (28.6% of lncRNAs); the top biological processes
(Figure 2b) were “cellular process” (31% of lncRNAs) and “biological regulation” (16.9% of
lncRNAs); and the top cellular components (Figure 2c) were “cellular anatomical entity”
(50% of lncRNAs) and “intracellular” (39.2% of lncRNAs).
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Biological process analysis demonstrated that the identified lncRNAs were involved
in the immune system and reproductive process.

3.4. Possible Roles of lncRNAs in Male Reproductive Disorder Associated with COVID-19

In order to investigate lncRNAs which could play a regulatory role in COVID-19, and
especially its male reproductive system consequences, we performed an analysis to select
testis-specific lncRNAs. We found that the expression levels of 9 of 349 lncRNAs (GRM7-
AS3, ARHGAP26-AS1, BSN-AS1, KRBOX1-AS1, CACNA1C-IT3, AC012361.1, FGF14-IT1,
AC012494.1, and GS1-24F4.2) were specific for testis tissue, demonstrating their possible
crucial role in the male reproductive system.

GRM7-AS3, ARHGAP26-AS1, BSN-AS1, and KRBOX1-AS1 interact with miR-936,
and CACNA1C-IT3, AC012361.1, FGF14-IT1, AC012494.1, and GS1-24F4.2 interact with
miR-204-5p.

4. Discussion

In this study, we analyzed the potential association of the dysregulated miRNAs and
lncRNAs in male infertility and their association with ACE2 and TMPRSS2. First, we
studied miRNAs that could regulate two crucial genes for viral proliferation in the infected
host, ACE2 and TMPRSS2. Furthermore, we selected those miRNAs that regulate ACE2 and
TMPRSS2 and are associated with male infertility. We identified four miRNAs, miR-125a-5p,
miR-125b-5p, miR-574–5p, and miR-936, that regulate ACE2 and are differentially expressed
in infertile men. TMPRSS2 is regulated by miR-204-5p, a differentially expressed miRNA in
infertile men.

A previous study demonstrated a potential role of miR-125b-5p in hepatitis B virus
(HBV) and COVID-19. Indeed, miR-125b-5p and HBV DNA levels were positively asso-
ciated, demonstrating its role in HBV infection [37]. Regarding COVID-19, miR-125b-5p
could modify the risk of SARS-CoV-2 infection in lung cancer patients [38].
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miR-125a-5p and miR-125b-5p were found to be over-expressed in Sertoli cells, and in
the epididymis of fertile men [39,40]. Salas et al. analyzed miRNA profiles of patients with
teratozoospermia and oligozoospermia and miR-125a-3p was found to be downregulated
in both the conditions [41]. In addition, previous studies reported a potential interaction
between ACE2 and histone deacetylase, HDAC2, suggesting a regulatory network that
involves miR-125a–ACE2–HDAC2 [42]. Although the role of HDAC2 in spermatogenesis
is not completely understood, previous studies demonstrated that genes regulated by
HDAC2 are involved in spermatogonial stem cells [43].

In our study, miR-574–5p was found to be down-expressed in Sertoli cells of infertile
men. We can hypothesize that an increase in ACE2 expression reported in infertile men with
COVID-19 can be due to the downregulation of miR-574–5p [44]. In addition, miR-574–5p
was also proposed as an agent with antiviral activity in HBV, downregulating the expression
of HBV polymerase mRNA [45]. A possible mechanism that reinforces its possible role
in COVID-19 treatment is reported by a recent study that showed that the upregulation
of miR-574–5p inhibits TLR4/ NF-kB signaling and downregulates the production of
proinflammatory cytokines in patients with acute respiratory distress syndrome [46]. In
line with this scenario, miR-574–5p could reduce the cytokine storm, one of the most
common causes of death in patients with COVID-19 [46]. Proinflammatory cytokines
are important regulators of testis development and male fertility, suggesting a complex
regulatory network of miR-574–5p–ACE2–TLR4/NF-kB–cytokines.

miR-936 is indicated as a regulator of ACE2 in placentas [47]. In addition, a previous
study showed that a fibroblast growth factor, FGF2, is a direct target of miR-936 [48]. In a
previous study on Zika virus, the inhibition of FGF2 affected viral replication through the
inhibition of the MAPK pathway, which is associated with normal FGF/FGFR activity [49].
FGF2 seems to also play a crucial role in male reproductive tissues [50]. In addition,
several studies demonstrated the positive correlation between FGF2 and angiotensin,
suggesting a small regulatory circuit that involves miR-936–ACE2–FGF2 in COVID-19 and
male infertility [51].

In our study, we found that TMPRSS2 is regulated by miR-204-5p. miR-204 was found
to be over-expressed in prostate cancer cell lines compared to human prostate tissue. In
prostate cancer, different genomic rearrangements can occur, such as the most common
fusion of androgen receptor TMPRSS2 with ERG. miR-204 is a TMPRSS2/ERG oncofusion
negative regulator and can act as a tumor suppressor or oncomiR, regulating the genes
under androgen receptor control [52]. In addition, miR−204b−5p was found to be abundant
in the spermatozoa of the epididymis, suggesting its crucial role in the male reproductive
system [53].

Furthermore, we explored the interactions between differentially expressed lncRNAs
in infertile men and the miRNAs reported above. From this analysis, we identified 349
lncRNAs as potential biomarkers explaining the potential effects of COVID-19 on the male
reproductive system. The role of 349 lncRNAs was analyzed with a pathway analysis and
we found that they are involved mainly in regulation and binding.

In order to define a selected number of lncRNAs, we evaluated the testis-specific
lncRNAs in the 349 lncRNAs. We found that 9 out of 349 lncRNAs were testis specific:
GRM7-AS3, ARHGAP26-AS1, BSN-AS1, and KRBOX1-AS1 interacting with miR-936, and
CACNA1C-IT3, AC012361.1, FGF14-IT1, AC012494.1, and GS1-24F4.2 interacting with
miR-204-5p. Little is known about the role of these lncRNAs. GRM7-AS3 and KRBOX1-AS1
are more known and studied in the literature.

GRM7-AS3 is complementary to a functional RNA, GRM7. Currently, there are
no studies that reported an association between GRM7-AS3, COVID-19 and the male
reproductive system. A previous study reported that GRM7 plays a role in neurologic
diseases such as depression, epilepsy and bipolar disorder, regulating synaptic activity [54].

KRBOX1-AS1 has also been correlated with programmed cell death and cell prolifera-
tion in rectal cancer [55]. Although KRBOX1 was found to be over-expressed in testis by a
previous study, its role has not been investigated [56].
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As these lncRNAs were found to be differentially expressed in infertile men and their
expression in healthy men was testis-specific, we proposed these lncRNAs as biomarkers
that could explain the association between COVID-19 and male reproductive disorder.
miRNAs interacting with these lncRNAs (miR-936 and miR-204-5p) could also play an
important role in this molecular mechanism.

Overall, this study predicted the interactions of DE-miRNAs and DE-lncRNAs from
infertile men with ACE2 and TMPRSS2 using bioinformatics approaches. We assumed
the proposed miRNAs and lncRNAs can be potential biomarkers to examine the effect
of SARS-CoV-2 on testis and spermatogenesis damages. However, further experimental
study is required to confirm the current findings through comparing the infertile men and
normal cases after COVID-19 infection.

5. Conclusions

miRNAs and lncRNAs are involved in various mechanisms of COVID-19 infection
and male infertility, but their roles are not fully understood. The present study proposed
the miRNAs and lncRNAs as possible diagnostic tools regarding the pathogenic role of
SARS-CoV-2 in male infertility.

The miRNAs, including miR-125a-5p, miR-125b-5p, miR-574–5p, miR-936 and miR-
204-5p, and the associated lncRNAs, including GRM7-AS3, ARHGAP26-AS1, BSN-AS1,
KRBOX1-AS1, CACNA1C-IT3, AC012361.1, FGF14-IT1, AC012494.1, and GS1-24F4.2, could
shed a light on possible diagnostic applications in male infertility after SARS-CoV-2 infec-
tion. Further studies are encouraged to validate the current findings by comparing normal
and infertile men after infection with COVID-19.

Supplementary Materials: The supplementary files are available online at https://www.mdpi.com/
article/10.3390/cells10061480/s1. Supplementary File 1 shows the list of gene targets of ACE2 and
TMPRSS2. Supplementary File 2 shows the list of 349 lncRNAs associated with male infertility and
interacting with miRNAs associated with COVID-19 and male infertility.
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