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Hematopoiesis in the bone marrow (BM) is the primary source of immune cells.
Hematopoiesis is regulated by a diverse cellular microenvironment that supports
stepwise differentiation of multipotent stem cells and progenitors into mature blood
cells. Blood cell production is not static and the bone marrow has evolved to sense
and respond to infection by rapidly generating immune cells that are quickly released into
the circulation to replenish those that are consumed in the periphery. Unfortunately,
infection also has deleterious effects injuring hematopoietic stem cells (HSC), inefficient
hematopoiesis, and remodeling and destruction of the microenvironment. Despite its
central role in immunity, the role of the microenvironment in the response to infection has
not been systematically investigated. Here we summarize the key experimental evidence
demonstrating a critical role of the bone marrow microenvironment in orchestrating the
bone marrow response to infection and discuss areas of future research.
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INTRODUCTION

The bone marrow microenvironment is the collection of cells and structures that together support
blood cell production in the bone marrow. The architecture, composition, and function of the
microenvironment has been recently reviewed in great detail (1, 2). The bone marrow architecture is
defined by the enclosing bone tissue and the blood vessels that irrigate it. Small arterioles penetrate
the BM through the bone and give rise to a dense network of sinusoids that drains through a central
vein (3). The endothelial cells that form the BM vessels are major components of the
microenvironment via their production of cytokines that support and regulate hematopoietic
stem cells and other progenitors (4–6). Additional major sources of hematopoietic supportive
cytokines are Ng2+ cells that ensheath arterioles (7–9); a network of perivascular cells [defined as
LepR+, Cxcl12-abundant reticular cells, or Nestin-GFPdim cells depending on the genetic reporter
used to prospectively isolate them (3–6, 10–13)]; and non-myelinating Schwann cells (14). Stepwise
hematopoiesis takes place in the space between these stromal cell types. Additionally, many
hematopoietic and non-hematopoietic (stromal) cells cooperate to regulate blood cell production.
Examples of these include: megakaryocytes that—in addition to platelet production—function by
restricting hematopoietic stem cells (HSC) proliferation (15–17); macrophages which provide a
niche for red blood cell production [reviewed in (18)] but also crosstalk with stromal (non-
hematopoietic) cells (19–21) and neutrophils (22) to regulate HSC release into the circulation; and
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dendritic cells which function as antigen-presenting cells, but
also control HSC trafficking by targeting the endothelium (23).
As the main source of immune cells, the bone marrow is a major
player in -and target of- the response to infection [reviewed in
(24–26)]. Here, we focus on the role of the microenvironment in
orchestrating the response of the bone marrow to infection.
FUNCTIONAL CONSEQUENCES OF
INFECTION IN THE BONE MARROW

Below we summarize the diverse effects of infection on
hematopoiesis and discuss the experimental evidence
demonstrating the role of the microenvironment in
orchestrating these responses. Note that these are not
independent phenomena and, in many cases, take place
simultaneously and are mediated by the same mechanisms.
However, the BM response to infection is also pathogen-
specific (27–29) probably due to differences in the signaling
pathways used to detect the infection and pathogen dosage
(27). The main BM responses to infection are:

1. Emergency myelopoiesis: Neutrophils, monocytes, and
dendritic cells (DC) are consumed in great quantities during
infection. Emergency myelopoiesis is the main mechanism
used by the bone marrow to produce large numbers of
myeloid cells to replenish those consumed in the periphery.
Emergency myelopoiesis has been traditionally divided into
emergency granulopoiesis—the process of emergency
neutrophil production—and into emergency mono/DC-
poiesis—the process of emergency production of monocytes
and dendritic cells. It is characterized by proliferation and
preferential commitment of multipotent progenitors toward
myeloid fates and of lineage-committed progenitors toward
neutrophil (emergency granulopoiesis) or mono/DC fates
(emergency monopoiesis). Both are also associated with rapid
release of hematopoietic progenitors and myeloid cells into the
circulation (see point two below). Several studies support a
specific role of the microenvironment in orchestrating
emergency myelopoiesis. Lipopolysaccharide (LPS) triggers
emergency granulopoiesis via toll-like receptor 4 (TLR4)
activation. Boettcher et al., used bone marrow transplantation
to generate chimeric mice in which TLR4—or its downstream
adaptor Myd88—was knocked out in the stroma or in
hematopoietic cells. These experiments showed that
TLR4 expression in the stroma was necessary and
sufficient to trigger emergency granulopoiesis in response to
LPS. Tie2-cre:Myd88fl/fl mice, which lack MyD88 in
hematopoietic and endothelial cells, are unable to induce
emergency granulopoiesis after LPS treatment or Escherichia
coli infection indicating that TLR4 signaling in endothelial
cells orchestrates emergency granulopoiesis. In this
setting, emergency granulopoiesis is likely mediated by
endothelial cell secretion of granulocyte colony-stimulating
factor (G-CSF), the major cytokine that supports
granulopoiesis (30, 31). Similarly, the Kelsoe group showed
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that in response to the adjuvant alum, the BM initiated IL1
mediated emergency granulopoiesis (32). Il1r1−/− chimeric mice
studies indicated that IL1 acted on stromal cells to trigger
emergency granulopoiesis and G-CSF release (the specific
identity of these G-CSF producing stromal cells is not
known). Alum-induced emergency granulopoiesis was
abrogated in G-CSFR knockout mice or in WT mice injected
with neutralizing antibodies against G-CSF (32, 33).
Interestingly- and in the same manuscript- the Kelsoe group
showed that loss of neutrophils in the absence of
inflammation was sufficient to induce G-CSF-dependent and
-independent progenitor proliferation, similar to that observed
during emergency granulopoiesis (33). This suggests that any
infection that results in neutrophil depletion in the BM will also
lead to G-CSF secretion by stromal cells which in turn will
trigger emergency granulopoiesis. A critical role for neutrophils
in mediating emergency granulopoiesis is further supported by
the work of Kwak et al., who showed that, during inflammation
induced by intraperitoneal injection of heat inactivated E. coli-
myeloid cells (likely neutrophils), produced reactive oxygen
species that stimulated emergency granulopoiesis (34).

Emergency myelopoiesis can also be triggered—in a G-
CSF independent manner—by stromal-mediated cytokine
release. Chou et al., found that Toxoplasma gondii infection
induced emergency granulopoiesis by expanding granulocyte
monocyte progenitors and inhibited erythropoiesis by
reducing megakaryocyte erythrocyte progenitors. T. gondii-
induced emergency granulopoiesis was blocked in
IL6 knockout mice (28). Chimeric mice studies showed
that IL6 expression in stromal cells was necessary for
emergency granulopoiesis. VCAM+PDGFRa+ mesenchymal
cells—which are a subset of the LepR+ perivascular cells based
on scRNAseq studies (35)—purified from infected mice
expressed higher IL6 than those purified from control mice.
These studies thus suggest that T. gondii induces IL6 release
from perivascular cells which in turn re-programs
hematopoietic progenitors toward neutrophil fates and
emergency granulopoiesis (28). Schürch et al., found
complex crosstalk between cytotoxic T- cells, mesenchymal
stromal cells, and myeloid progenitors that drives emergency
granulopoiesis in response to lymphocytic choriomeningitis
virus (LCMV) infection (36). They found that transfer of
LCMV-specific effector cytotoxic T cells caused expansion
and proliferation of multipotent progenitors and myeloid
progenitors and monocyte release into the circulation.
Interferon gamma (Ifng) knockout T cells were unable to
induce emergency myelopoiesis whereas Ifngr−/− mouse
chimera studies showed that IFNGR expression in the
stroma was required for emergency myelopoiesis. Only
CD45−CD31−CD51+Sca-1+ stromal cells expressed
functional IFNGR and these cells released IL6 upon IFNg
stimulation. Mouse chimeras lacking IL6 in stromal cells did
not induce emergency myelopoiesis after cytotoxic T cell
transfer (36). Together these studies indicate complex
crosstalk where LCMV infection leads to the generation of
LCMV cytotoxic T cells. These in turn produce IFNg which
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targets bone marrow stromal cells to elicit IL6 production
that then acts on hematopoietic progenitors to induce
emergency myeloid production (36).

2. Mobilization: In addition to increased myeloid cell
production, emergency myelopoiesis also encompasses the
release of mature myeloid and hematopoietic stem cells and
progenitors (HSPC) into the circulation. Mobilized progenitors
can migrate to the spleen and other organs where they can
differentiate in situ; this is advantageous in clearing local and
systemic infections (27, 37). Many infections also cause stem and
progenitor proliferation and loss of HSC (24–26). When
HSC proliferate, they lose stem cell potential and can quickly
become exhausted (38, 39). Infection-inducedHSPCmobilization
might also be used to replenish empty niches in distal bones thus
maintaining the normal HSC pool (40). There is clear evidence
indicating that hematopoietic cell mobilization in response to
infection is regulated in a non-cell autonomous manner by the
microenvironment.

The chemokine CXCL12 and its receptor CXCR4 are the
major signals regulating neutrophil (41, 42) and HSPC (43)
retention in the bone marrow. CXCL12 is produced by
perivascular stromal cells and endothelial cells (4, 6, 13,
43). G-CSF inhibits CXCL12 production in the BM and
infections that cause increases in G-CSF, or reductions in
CXCL12 (27, 30, 31, 44), will also elicit neutrophil and HSPC
mobilization. Mechanistically, G-CSF functions by binding
G-CSFR in a monocyte lineage hematopoietic cell. Through
an unknown mechanism, these hematopoietic cells induce
the downregulation of CXCL12 in BM stromal cells,
triggering neutrophil and progenitor release to the
circulation (21). A great example of this regulation is the
work by Burberry et al. The bacterial wall contains LPS-
sensed via the receptor TLR4 and the downstream mediators
MyD88 and TRIF- and peptidoglycan-sensed via the
receptors NOD1 and NOD2 and the adaptor RIPK2.
Burberry et al., found that systemic infection elicited HSPC
mobilization to the spleen. This mobilization was mostly
abolished in Trif−/− and Ripk2−/− mice. Using bone
marrow transplantation to generate chimeric mice with
hematopoietic or stromal deletions of TLR4 and NOD1,
they demonstrated that expression of these receptors in
stromal cells was both necessary and sufficient for HSPC
mobilization. Both receptors synergized to drive G-CSF
expression by stromal cells (likely endothelial cells).
Blocking G-CSF via antibody injection or by using G-
CSFR−/− mice completely abolished HSPC mobilization
after infection (27). In an elegant experiment, the same
group formally demonstrated that the mobilized HSPCs
generate immune cells that function in clearing the
infection. They transferred splenocytes from control
or mobilized mice into recipients that were then
infected with E. coli. The mice transferred with the
mobilized splenocytes had dramatically lower levels of E.
coli colonies in the spleen and liver (27).

Mobilization of inflammatory monocytes in response
to Listeria monocytogenes infection is also controlled by the
Frontiers in Immunology | www.frontiersin.org 3
stroma in a G-CSF-independent manner. Using Ccr2−/−

and Ccl2−/− mice (Ccl2 encodes MCP1) Shi et al., found
that low doses of LPS induced rapid monocyte mobilization
in a CCR2/MCP1 dependent manner. Mouse chimeras
showed that Ccl2 deletion in non-hematopoietic cells
completely abolished LPS-induced monocyte mobilization.
Using an MCP1 reporter mouse, Shi et al., demonstrated that
LPS quickly (2 hours) induces MCP1 expression in
perivascular stromal cells that are tightly associated with
sinusoids. Conditional Ccl2 deletion in perivascular cells
using Nestin-cre mice greatly reduced monocyte egress
from the BM and reduced bacteria clearance in a model of
L. monocytogenes infection (45).

During homeostasis, several types of hematopoietic cells
regulate HSPC release into the circulation. Bone marrow
macrophages and monocyte-lineage cells specifically
crosstalk with bone marrow perivascular cells promoting
CXCL12 production. Loss of bone marrow macrophages
leads to reductions in CXCL12 and HSPC release (19–21).
In addition, trafficking and phagocytosis-by bone marrow
and intestinal macrophages- also control HSPC release
during homeostasis (22, 46). A recent study also showed
that bone marrow dendritic cells regulate HSC release
through the BM, likely by modulating permeability of
sinusoids via CXCL1-CXCR2 signaling (23). Since infection
causes massive changes in the numbers of these
hematopoietic components of the microenvironment, it is
highly likely that the same pathways will also participate in
regulating HSPC mobilization during infection.

3. Hematopoietic injury: Infection frequently causes bone
marrow aplasia and inefficient hematopoiesis as well as loss of
functional HSC (24–26). While some of these are mediated by
direct effects of cytokines like IFNa and IFNg on hematopoietic
cells (47, 48), several lines of experimental evidence support a
role of the microenvironment in these processes.

In the steady state, most hematopoietic stem cells are
quiescent. Loss of quiescence and proliferation causes
cumulative damage to HSC leading to their functional
exhaustion (38, 39, 47, 48). Kobayashi et al., demonstrated
that treatment with the bacterial second messenger c-di-GMP
induced emergency myelopoiesis and loss of HSC quiescence.
In agreement, c-di-GMP also caused a three-fold loss of bone
marrow HSC without impairing surviving HSC function.
Mouse chimera experiments indicated that loss of HSC
required expression of STING—the c-di-GMP receptor—in
both hematopoietic and non-hematopoietic cells (49).

Many infections cause loss of B cell lymphopoiesis (50–
53). B cell production in the bone marrow is maintained by
CXCL12 and IL7-producing perivascular cells and CXCL12
producing osteoblasts (4, 6, 12, 54). Injection of adjuvants
mimic the suppression of lymphopoiesis observed during
infection (50, 55). Using this experimental paradigm, Ueda et
al., showed that TNFa caused reduction of CXCL12- which is
produced only by stromal cells in the bone marrow- leading
to B cell egress from the BM (55). Similarly, the Link
Laboratory showed that G-CSF targets monocyte-lineage
November 2020 | Volume 11 | Article 585402
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cells and this in turn induces downregulation of CXCL12,
IL7, and other B cell supportive cytokines in perivascular
stromal cells and osteoblasts (56, 57). Note that the same
studies also observed that G-CSF treatment depleted
per ivascu lar ce l l s and os teob las t s (56 , 57) . In
agreement, Terashima et al., found that sepsis-induced G-
CSF release caused loss of osteoblasts, reduced production of
IL7 by the surviving osteoblasts, and depletion of common
lymphoid progenitors leading to inefficient lymphopoiesis
(52). Together these studies suggest that infections that cause
increases in TNFa and/or G-CSF in the bone marrow will
suppress lymphopoiesis by directly destroying the niche and
inhibiting the ability of the surviving niche cells to
support lymphopoiesis. The bone marrow is also the main
reservoir for long-lived plasma cell and memory T cells (58–
60). Both cell types are in contact with CXCL12- and IL7-
producing perivascular cells (54) and require CXCL12 and
other microenvironment-produced signals for maintenance
in the BM (61). These suggest that the G-CSF mediated
destruction/inhibition of the microenvironment described
above will also impact the ability of the BM to recruit and
maintain plasma cells and memory T cells.

4. Infection-induced remodeling and damage of the
microenvironment: The bone marrow microenvironment is
remarkably dynamic and can be extensively remodeled
after myeloablation (62, 63), aging (64), and leukemia (35,
65). Infection is no exception and several pieces of data
indicate extensive injury and remodeling of bone marrow
stromal populations in response to infection or stimulation
with bacterial cell wall components.

It is becoming clear that endothelial cells and blood vessels
in the bone marrow undergo rapid angiogenesis and
remodeling in response to infection. Scumpia et al., observed
dilated sinusoids as soon as 12h after cecal ligation in a mouse
model of sepsis, suggesting that infection affects bone marrow
vessel permeability (66). Many infections lead to increased
levels of IFNa. Prendergast et al., found that pIpC treatment
(an IFNa inducer) or IFNa injection caused a threefold
increase in the number of BM endothelial cells, upregulation
of adhesion molecules, vascular dilation, and permeability in
wild-type but not Ifnar−/− mice. Surprisingly, mouse chimera
experiments showed that IFNAR expression in stromal cells or
hematopoietic cells is sufficient to activate the endothelium
(67). In agreement, Vandoorne et al., found increased
sinusoids, endothelial proliferation, and angiogenesis, and
increased vascular permeability in response to LPS (68).
Increased permeability correlates with neutrophil egress
from the BM (68), suggesting that vascular remodeling
facilitates mobilization. Non-endothelial stromal cells are
also remodeled by infection. As discussed in point three, G-
CSF-mediates the destruction of CXCL12-producing
perivascular cells and osteoblasts (52, 56, 57). Additionally,
c-di-GMP—which targets stromal cells via STING to cause
loss of HSC (49)—also caused vascular dilation and loss of
endothelial cells and perivascular stromal cells and that this
required STING expression in stromal cells. The specific
Frontiers in Immunology | www.frontiersin.org 4
mechanisms for this stromal destruction are not known, but
c-di-GMP upregulates G-CSF (49), strongly suggesting a role
for this cytokine in remodeling the microenvironment in this
experimental paradigm. In addition to these in vivo studies,
there is evidence showing that many pathogens can directly
infect endothelial and BM stromal cells and reduce their ability
to support hematopoiesis in vitro (69–73). Together these
studies demonstrate that infection massively remodels the
microenvironment that supports hematopoiesis—likely via
direct and indirect mechanisms—and suggest that
destruction of the microenvironment might be a major
driver for loss of hematopoietic function during infection.
DISCUSSION

The manuscripts discussed above provide overwhelming
evidence for the role of the microenvironment in
orchestrating the bone marrow response to infection.
However, a common limitation is that most studies have
focused on one aspect of the response to infection (emergency
myeloid cell production, mobilization, hematopoietic and
stromal injury). Thus it is still not possible to know if these
are aspects of a single response controlled by common pathways
(e.g., G-CSF) or individually controlled processes that allow
fine-tuning of the response through the kinetics of the infection.
The mechanisms through which infection damages the stromal
compartment and how these structures regenerate are highly
interesting; especially in light of recent scRNAseq studies
demonstrating that the stromal compartment of the bone
marrow is highly heterogeneous (35, 74, 75); and suggesting
that specific components of the microenvironment provide
unique niches supporting the differentiation of distinct
lineages (1, 4, 6, 10, 12, 75). Whether some infections
preferentially affect some niches but not others remains open.
It is well established that aging negatively impacts HSC
function, biases hematopoiesis toward myeloid cell
production, and dramatically remodels the microenvironment
(64, 76). The answers to these questions will provide critical
insights into how the bone marrow functions during stress, and
lead to the development of new therapies to preserve/improve
bone marrow function during infectious challenges.
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