
ORIGINAL RESEARCH
published: 22 July 2022

doi: 10.3389/fcvm.2022.921778

Frontiers in Cardiovascular Medicine | www.frontiersin.org 1 July 2022 | Volume 9 | Article 921778

Edited by:

Yi Tan,

University of Louisville, United States

Reviewed by:

Jake Wen,

University of Texas Medical Branch at

Galveston, United States

Ze-Lin Wang,

Shuzhi Biotech, Ltd., China

*Correspondence:

Xiangqi Li

lixq@sibs.ac.cn

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Cardiovascular Metabolism,

a section of the journal

Frontiers in Cardiovascular Medicine

Received: 16 April 2022

Accepted: 08 June 2022

Published: 22 July 2022

Citation:

Liu L, Zhou X, Chen J and Li X (2022)

Potential of ATP5MG to Treat

Metabolic Syndrome-Associated

Cardiovascular Diseases.

Front. Cardiovasc. Med. 9:921778.

doi: 10.3389/fcvm.2022.921778

Potential of ATP5MG to Treat
Metabolic Syndrome-Associated
Cardiovascular Diseases
Lianyong Liu 1†, Xinglu Zhou 2†, Juan Chen 3† and Xiangqi Li 2*

1Department of Endocrinology and Metabolism, Punan Hospital, Shanghai, China, 2Department of Endocrinology and

Metabolism, Gongli Hospital, Naval Medical University, Shanghai, China, 3Department of Obstetrics and Gynecology, Gongli

Hospital, Naval Medical University, Shanghai, China

Introduction: Metabolic syndrome-associated cardiovascular disease (MetS-CVD) is

a cluster of metabolism-immunity highly integrated diseases. Emerging evidence hints

that mitochondrial energy metabolism may be involved in MetS-CVD development. The

physiopathological role of ATP5MG, a subunit of the F0 ATPase complex, has not been

fully elucidated.

Methods: In this study, we selected ATP5MG to identify the immunity-mediated pathway

and mine drugs targeting this pathway for treating MetS-CVD. Using big data from public

databases, we dissected co-expressed RNA (coRNA), competing endogenous RNA

(ceRNA), and interacting RNA (interRNA) genes for ATP5MG.

Results: It was identified that ATP5MG may form ceRNA with COX5A through

hsa-miR-142-5p and interplay with NDUFB8, SOD1, and MDH2 through RNA–RNA

interaction under the immune pathway. We dug out 251 chemicals that may target this

network and identified some of them as clinical drugs. We proposed five medicines for

treating MetS-CVD. Interestingly, six drugs are being tested to treat COVID-19, which

unexpectedly offers a new potential host-targeting antiviral strategy.

Conclusion: Collectively, we revealed the potential significance of the

ATP5MG-centered network for developing drugs to treat MetS-CVD, which

offers insights into the epigenetic regulation for metabolism-immunity highly

integrated diseases.

Keywords: cardiovascular disease, metabolic syndrome, drug, ATP5L, ceRNA, inflammation, COVID-19, immunity

INTRODUCTION

Metabolic syndrome-associated cardiovascular disease (MetS-CVD) represents a cluster of
metabolic deformities that contribute to increased oxidative stress and activated inflammatory
pathways that cause cardiovascular remodeling and dysfunction (1). This constellation of
biochemical, molecular, and clinical abnormalities is related to diabetes mellitus and obesity,
eventually cardiovascular events and death (2). Just as is known, metabolic regulation and immune-
inflammatory response are highly integrated and interdependent, and the deregulation of this
central homeostatic mechanism can cause a cluster of diseases, such as MetS, obesity, diabetes,
and CVD (3). These factors hint that the immunity/inflammation-related pathway may be a
critical pathological mediator underlyingMetS-CVD. However, therapeutic strategies targeting this
signaling pathway to prevent and/or treat MetS-CVDs remain limited.
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Emerging evidence proposes that energy metabolism may
be involved in developing MetS-CVD besides substance
metabolisms such as glucose and lipid dysregulation (4, 5).
Moreover, relatively less data are expected to reinforce this line
of research. As its name suggests, ATP5MG/ATP5L, a subunit
of the F0 ATPase complex, may function in mitochondrial
energy metabolism. These studies do not fully elucidate its
function. To our relief, there are still some functional clues,
which are primarily from differential expression analysis.
ATP5L expression can be regulated by shear stress in human
coronary artery endothelial cells (6). ATP5L deregulation is
related to the dynamic transition from obesity to T2D (7) and
the development of hypertension (8). MiR-570-3p can regulate
ATP5L with concomitant ATP loss in platelets (9). ATP5L
dysfunction impairs energy metabolism (10) and causes reduced
cerebrospinal fluid (CSF) production in Alzheimer’s disease (AD)
(11). ATP5L is possibly involved in acute mountain sickness
(12) and PM2.5 exposure-related lung pathogenesis (13). ATP5L
may act as a marker of oncogenic cell transformation (14) and
be upregulated using orchiectomy in the substantia nigra in
aged males (15). Additionally, ATP5L-KMT2A gene fusion
presents in leukemia (16, 17). It can be seen from the above
examinations that the association between ATP5MG and MetS-
CVD development has not been shown. ATP5MG involvement
in inflammatory/immune pathways to influence the pathology of
MetS-CVD remains to be identified.

MetS-CVD has a systemic effect, by intersecting ceRNA
(competing endogenous RNA) genes and interRNA (interacting
RNA) genes in the whole body with genes co-expressed
in the heart, we looked for the ATP5MG-circled network
for energy metabolic effects on the heart dysfunction using
the inflammatory or immune pathway. We further identified
chemicals perturbing this network to dig medicines for treating
MetS-CVD. Our study may provide epigenetic insights into
metabolism-immunity/inflammation highly integrated diseases
for basic research and drug development.

MATERIALS AND METHODS

Free public resources, including tools and databases, were
enlisted to obtain data and draw figures. To guarantee the
objectivity of the result, all analyses throughout the study were
employed according to the default settings of the database or
tool, unless otherwise stated. When conducting analysis using
default parameters, these excellent foolproof operating tools or
databases displayed needed data instantly for free download.
Figures were made using POWERPOINT or EXCEL unless
otherwise specified.

The online tool DISEASES (18) was used to analyze the
associations of ATP5MG with diseases. Only the human
gene ATP5MG was selected, and the Z-score data were
downloaded by selecting “text mining.” All genes of ceRNA and
interRNA of ATP5MG were obtained from ENCORI (19) for
functional analysis. For ceRNA, the parameters are as follows:
miRNA number ≥2, P-value, and false discovery rate (FDR)
both ≤0.01; for interRNA, interact number ≥1, experiment

number ≥1. GTEx data in the GEPIA2 database (20) was
employed to extract two hundred coRNA genes of ATP5MG
in the heart by conducting the Pearson’s correlation coefficient
(PCC) analysis. For overlapping genes between coRNA and
ceRNA or interRNA, their correlations with ATP5MG were
presented online and downloaded as scatter plots and p-
values and correlation coefficients. Gene function comments
including GOTERM-BP, GOTERM-CC, GOTERM-MF, Kyoto
Encyclopedia of Genes and Genomes (KEGG) PATHWAY, HIV
INTERACTION (CATEGORY), and GAD DISEASE (CLASS)
for coRNA, ceRNA, and interRNA datasets were achieved using
well-known tool DAVID (21) and illustrated using the glistening
tool IMAGEGP.

Another eyeable tool, EVENN, was used to present
intersection genes (22). TissueAtlas was invited to profile
miRNA expression in distinct tissues and present the network
of miRNA in the heart (23, 24). The related miRNA expression
data were obtained from Next Generation Sequencing (NGS)
and normalized using RPMM. Functional information about
all intersection genes was downloaded from InnatedDB (25).
Only human gene was selected, and Gene Ontology (GO)
terms were extracted directly. KEGG analysis for ATP5MG and
four intersection genes between coRNA and ceRNA genes was
conducted using KOBAS (26). The statistical method used was
“hypergeometric test/Fisher’s exact test,” and the FDR correction
method was “Benjamini and Hochberg.” Tissue and cell profiling
data of intersection genes were directly downloaded from
HPA, a brilliant online database set including massive amounts
of human RNA and protein expression information (27).
Functional processes of intersection genes were downloaded
from NCBI and drawn using IMAGEGP.

Gene–chemical interactions were queried using the gene
symbol from the Comparative Toxicogenomics Database (CTD)
database, a repository embodying the effects of environmental
chemicals on human gene expression (28). All the compounds
that hit the targets, ATP5MG, COX5A, NDUFB8, SOD1, and
MDH2, were downloaded. The network of gene–chemical
interplay was visualized using the software Cytoscape (29), that
is, dragging text file including genes and chemicals directly
to the window of the network and the targeted network is
automatically visualized. Drug matching analysis was performed
using DrugBank to dissect potential drug effects for all these
chemicals, and clinical trial data for queried chemicals in
DrugBank were downloaded and manually performed disease
classification analysis one by one (30).

RESULTS

Deploy MetS-CVD as the Target of the
Analysis of ATP5MG
Identifying the involvement of the ATP5MG-mediated immune-
inflammatory pathway in MetS-CVD is not easy. As MetS-
CVD is a complex systemic disease and often related to
several diseases such as diabetes, obesity, and heart disease,
we enlisted the tool DISEASES to parse ATP5MG–disease
associations mined from the literature. Only 33 types of
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disease associations were uncovered (Figure 1A), and “severe
congenital neutropenia 2,” “mitochondrial disease,” “vascular
disease,” “type 2 diabetes mellitus,” “obesity,” “hypertrophic
cardiomyopathy,” and “prediabetes syndrome” were included
(Figure 1A). This means that ATP5MG may be involved in
immune and metabolic diseases. The highest Z-score was only
3.3 for “severe congenital neutropenia 2.” Considering that the
number of disease associations was small and the highest score
was low, it was concluded that the functional ATP5MG studies
were presently weak, which supported the high originality of our
project design.

The pathogenesis of complex diseases must involve complex
molecular networks. Hence, to determine the functional
annotations and molecular mechanisms underlying MetS-CVD,
we used the coRNA, ceRNA, and interRNA genes of ATP5MG
to conduct all the analyses. GO and KEGG were enlisted to
annotate their functions. Intersections of coRNA and ceRNA
genes and coRNA and interRNA genes were used to obtain
molecules to form our target network (Figure 1B). As a big data
article, to verify our molecular network, we selected a highly
efficient approach that is distinct from traditional experimental
and bioinformatics ones. We used the CTD database to search
for environmental chemicals that can act on our network and
looked for clinical drugs from these chemicals that may treat
diabetes, heart disease, or immunity/inflammation-mediated
diseases (Figure 1B). The existence of such drugs is equivalent
to providing strong evidence of the reasonableness of our
molecular network.

Biological Roles of ATP5MG in the Human
Heart by CoRNA Analysis
Due to less verified functional information on ATP5MG, we
first set out to prospect its functional notes in the heart. We
extracted 200 coRNA genes in the human heart from GEPIA2
and dissected functional annotations of ATP5MG using the
tool DAVID.

Concerning GO-BP, we visualized the top 30 terms in 48
terms (Figure 2A) and found that its function was enriched
in mitochondrial energy metabolism besides some metabolic
and redox terms. Regarding GO-CC, we got 28 terms, showing
a focused expression in mitochondria (Figure 2B). For GO-
MF, we obtained 27 terms; still, involving energy metabolism
was a focus (Figure 2C). KEGG pathway analysis indicates its
wide involvement in the disease process in 13 terms, such as
“oxidative phosphorylation,” “non-alcoholic fatty liver disease
(NAFLD),” “metabolic pathways,” “cardiac muscle contraction,”
and “biosynthesis of antibiotics” (Figure 2D). Furthermore,
GAD DISEASE analysis for eight terms disclosed its role
in acquired immunodeficiency syndrome, aging, and cancer
(Figure 2E). HIV interaction analysis for six terms (Figure 2F)
presented its role in viral infections.

As observed in the above coRNA analysis, the
ATP5MG functions are broad, including energy regulation,
inflammation/infection, and substance metabolism, of which
energy production is a high-frequency term.

Comprehensive Functions of ATP5MG by
CeRNA Analysis
A total of 1,326 ceRNA genes extracted from ENCORI were
parsed for functional comments in human tissues using DAVID.
The top 30 terms for all the sets were visualized.

We achieved 236 functional terms of GO-BP and found
that ATP5MG may participate in the different biological
processes, including “regulation of energy homeostasis,” “cellular
response to glucose starvation,” “blood vessel development,” and
“viral process” in the top 30 terms (Figure 3A). For GO-CC,
85 terms were found, which indicated that ATP5MG may
be widely involved in different suborganelles (Figure 3B).
GO-MF indicated 100 terms and found different molecular
functions, such as “ATP binding” (Figure 3C). As for KEGG, we
obtained 58 terms, including “insulin signaling pathway,” “cAMP
signaling pathway,” “insulin resistance,” “chemokine signaling
pathway,” “chronic myeloid leukemia,” “adrenergic signaling
in cardiomyocytes,” and “TNF signaling pathway” in the top
30 terms (Figure 3D). HIV infection was further analyzed,
and the involvement of ATP5MG in infection events with 21
terms was upheld (Figure 3E). Major functions of ATP5MG
were further verified using GAD DISEASE analysis (Figure 3F),
in which, we achieved 62 functional disease annotations
and mainly grouped them into “CHEMDEPENDENCY,”
“METABOLIC,” “HEMATOLOGIC,” “DEVELOPMENTAL,”
“NEUROLOGICAL,” and “CARDIOVASCULAR.”

It can be seen from the above ceRNA analysis that
ATP5MG-related functions are extensive, including
metabolism, cardiovascular event, energy regulation,
and inflammation/infection.

Functional Notes of Intersection Genes
Between CoRNA and CeRNA Genes of
ATP5MG
The coRNA and ceRNA gene sets of ATP5MG were recruited to
dig intersection genes, and only four cross coding genes were
obtained (Figure 4A). PCC analysis identified high expression
relationship indexes between ATP5MG and the intersection
genes in the heart (Figure 4B). Tissue expression profiling of
ATP5MG at nucleic acid and protein levels showed its extensive
expression in distinct tissues, including high expression in the
heart (Supplementary Figure 1). Tissue expression profiling of
these four cross genes at protein levels indicated that only
four genes except FDX1 exhibited extensive expression in
distinct tissues, including the heart (Supplementary Figure 2).
Cell type expression profiling of ATP5MG and these four
genes in the heart revealed their shared four cell types,
including cardiomyocytes and macrophages, which presented
almost the same expression pattern (Supplementary Figure 3).
Furthermore, we analyzed immune cell type specificity for
the expression of the four intersected coding genes and
ATP5MG, and their extensive expression was found in different
immune cell types (Supplementary Figure 4). For all five genes,
functional notes in KOBAS were analyzed for the KEGG
pathway, and GO-related annotations were retrieved in innateDB
(Supplementary Figure 5). It was revealed that ATP5MG
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FIGURE 1 | Schematic diagram of the project design. (A) Dissect ATP5MG–disease associations by Z-score. (B) Design analysis scheme for biological functions and

the underlying mechanisms of ATP5MG in MetS-CVD.

was directly concerned with mitochondrial ATP production
and metabolic pathway (Supplementary Figure 5A). COX5A
functions in mitochondrial ATP production, metabolic pathway,
and cardiac muscle contraction (Supplementary Figure 5B).
Fewer feature notes of ATPAT1 (Supplementary Figure 5C) and
H2AFV (Supplementary Figure 5D) were discovered. FDX1 had
mitochondrial and metabolic roles (Supplementary Figure 5E).
Recovering these five coding genes in innateDB identified
their registration names (Figure 4C). But only ATP5MG and

COX5A can be indexed in the metabolic database, indicating the

involvement of “oxidative phosphorylation” (Figure 4D). From
the above overall consideration, the ideal coding gene to form the

ceRNA subnetwork of ATP5MG is COX5A.
Next, we set out to mine intersection miRNAs. COX5A can

bind 13 miRNAs, ATPAF1 35 miRNAs, H2AFV 51 miRNAs, and
FDX1 26 miRNAs (Figure 4E). All these four genes shared four
miRNAs, namely, hsa-miR-142-5p, hsa-miR-5590-3p, hsa-miR-
579-3p, and hsa-miR-664b-3p (Figure 4F). Except for hsa-miR-

664b-3p, the other three miRNAs were recorded in innateDB

as innate immune genes (Figure 4G). Furthermore, we profiled
tissue expression of all four intersection miRNAs and found

that, among them, hsa-miR-142-5p exhibited high and extensive

expression in distinct parts of the heart, with the highest in
the heart atrium (Supplementary Figure 6). Expression network
analysis verified the expression of all parts of the heart for
hsa-miR-142-5p (Figure 4H). From the above comprehensive
consideration, the ideal miRNA to form the ceRNA subnetwork
of ATP5MG is hsa-miR-142-5p.

Until now, by dissecting expressional and functional
comments on intersection coding genes and miRNAs, we

reached the target ceRNA subnetwork formed by ATP5MG,
hsa-miR-142-5p, and COX5A (Figure 4I).

Extensive Functions of ATP5MG by
InterRNA Dissection
We fetched 507 interRNA human genes for functional comments
using DAVID, which was built on RNA-RNA interaction of
ENCORI.

As for GO-BP, we obtained 199 function terms and found
that ATP5MG may be related to different biological processes,
including “viral transcription,” “interferon-gamma-mediated
signaling pathway,” “T-cell receptor signaling pathway,”
“leukocyte migration,” “gluconeogenesis,” “ATP-dependent
chromatin remodeling,” “cellular response to interleukin-4,” and
“positive regulation of NF-kappaB transcription factor activity”
(Figure 5A). GO-CC saw 50 terms, showing its wide expression
in different cell parts (Figure 5B). For GO-MF analysis, 43 terms
were gained and different molecular functions were found, such
as “ATP binding” and “MHC class II protein complex binding”
(Figure 5C). When performing KEGG analysis, we acquired 23
terms, including metabolic, myocardic, and insulin signaling
pathways, besides several infection-/inflammation-related
annotations, such as “pathogenic Escherichia coli infection,”
“leukocyte transendothelial migration,” “antigen processing and
presentation,” “bacterial invasion of epithelial cells,” “herpes
simplex infection,” “biosynthesis of antibiotics,” “hepatitis C,”
“shigellosis,” “viral myocarditis,” “influenza A,” and “T-cell
receptor signaling pathway” (Figure 5D).

Further analysis of HIV infection for 19 terms verified the
broad involvement of ATP5MG in infection events (Figure 5E).
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FIGURE 2 | Functional annotations of ATP5MG in the human heart by coRNA analysis. The analysis of GO, KEGG, HIV interaction and GAD DISEASE based on two

hundreds of coexpression genes of ATP5MG was conducted using DAVID. ATP5MG may present various functions, obviously focused on mitochondrial energy

metabolism and related to infection, inflammation, or immune-related function in the heart. (A) Functional annotations by GO-BP analysis. (B) Functional annotations

by GO-CC analysis. (C) Functional annotations by GO-MF analysis. (D) Functional annotations using KEGG analysis. (E) Functional annotations by HIV interaction

analysis. (F) Functional annotations by GAD DISEASE analysis. GO, Gene Ontology; BP, biological process; CC, cellular component; MF, molecular function. KEGG,

Kyoto Encyclopedia of Genes and Genomes.

ATP5MG-related extensive functions were further confirmed
using GADDISEASE analysis (Figure 5F), in which, we achieved
34 functional disease annotations, including “type 2 diabetes” and
“lymphoma, non-Hodgkin,” “diabetes mellitus, type 1,” “chronic
obstructive pulmonary disease,” “acquired immunodeficiency
syndrome,” “stroke, ischemic,” “leukemia, myelogenous, chronic,
BCR-ABL-Positive,” “hepatitis B,” and “hepatitis C.”

From the above interRNA dissection, it can be noted that
ATP5MG regulates diabetes and myocarditis and has a focus on
functions on immune/inflammation.

Biological Roles of Intersection Genes
Between InterRNA and CoRNA Genes of
ATP5MG
Five cross genes, namely, NDUFB8, SOD1, MDH2, UBL5, and
VDAC1, were gained based on dissecting interRNA and coRNA
genes of ATP5MG (Figure 6A). ATP5MG and the five genes had
high expression relation indexes in the heart (Figure 6B). The
five genes had very low free energy and very high alignment
scores, except for VDAC1 (Figure 6C). Tissue expression, cell
expression, and immune and metabolic queries were dissected

to select the ideal genes to form a subnetwork of RNA–
RNA interaction.

Tissue expression profiling of these four genes at protein
levels disclosed extensive expression in distinct tissues, including
the heart (Supplementary Figure 7). However, UBL5 data are
unavailable. Cell type expression profiling of these five genes
in the heart uncovered their shared four cell types, including
cardiomyocytes and macrophages (Supplementary Figure 8).
Profiling distinct immune cell types for the five intersected
coding genes found their extensive expression in immune cells
(Supplementary Figure 9). Querying the metabolic database
uncovered the involvement of NDUFB8, SOD1, and MDH2 in
the metabolism (Figure 6D).

All five genes were identified in the InnateDB
database (Figure 6E), where GO-related functional
notes were extracted. It was shown that NDUFB8 was
associated with mitochondrial ATP production and
metabolic pathway (Supplementary Figure 10A). SOD1,
a famous antioxidant, functions diversely, including
mitochondrial ATP production, metabolic regulation,
heart and vascular role, and immune/inflammation
regulation (Supplementary Figures 10B–D). MDH2 showed
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FIGURE 3 | Comprehensive functional notes of ATP5MG by ceRNA analysis. Analyses of GO, KEGG, HIV interaction and GAD DISEASE were conducted using the

DAVID tool based on 1326 ceRNA genes of ATP5MG in 32 human tissues. ATP5MG may take on various functions. (A) Functional terms for GO-BP. (B) Functional

terms for GO-CC. (C) Functional terms for GO-MF. (D) Functional terms for KEGG pathway. (E) Functional terms for HIV interaction. (F) Functional terms for GAD

DISEASE. GO, Gene Ontology; BP, biological process; CC, cellular component; MF, molecular function. KEGG, Kyoto Encyclopedia of Genes and Genomes.
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FIGURE 4 | Intersection genes between coRNA and ceRNA genes of ATP5MG. Only four sharing coding genes were dug out for coexpression gene sets and ceRNA

gene sets of ATP5MG. These four cross coding genes shared four miRNAs. Metabolic and immune annotations were recovered and verified metabolic and immune

roles of one coding gene and one miRNA for ATP5MG. (A) Genes numbers of distinct datasets. (B) Expression relations between ATP5MG and the intersection genes

in the heart. (C) Four intersection genes besides ATP5MG were annotated in innateDB. (D) COX5A, and ATP5MG were annotated in the metabolic database. (E)

miRNA gene numbers of four intersection genes. (F) Intersected miRNAs of four intersection genes. (G) Three intersection miRNAs except hsa-miR-664b-3p were

annotated in innateDB. (H) Regulation network of hsamiR-142-5p in the heart. (I) ATP5MG-centered ceRNA subnetwork.

mitochondrial andmetabolic roles (Supplementary Figure 10E).
Fewer function notes of UBL5 (Supplementary Figure 10F) and
VDAC1 (Supplementary Figure 10G) were recovered.

As the results shown above, taken together, the ideal genes
to form the interRNA subnetwork of ATP5MG are NDUFB8,
SOD1, and MDH2 (Figure 6F).

Environmental Exposures and Clinical
Drugs Targeting Intersection Genes of
ATP5MG-Circled Network
Through all sorts of screening, we harvested a six-gene network
comprising ceRNA and interRNA subnetworks. The ceRNA
subnetwork comprises ATP5MG, hsa-miR-142-5p, and COX5A,
while the interRNA subnetwork includes other three genes,
namely, NDUFB8, SOD1, and MDH2. This network is viewed
as a mediator of MetS-CVD. To ascertain their practical
significance, we first employed environmental exposures from
the CTD database to query chemicals perturbing our network.
As miRNA information is unavailable in this database, we just
checked the five coding genes, namely, ATP5MG, COX5A,

NDUFB8, SOD1, and MDH2. A total of 251 chemicals were
identified to target them (Figure 7A). Among them, five
chemicals affect the expression of MDH2 and SOD1, one affects
MDH2 and COX5A, one affects COX5A and ATP5MG, one
affects ATP5MG and NDUFB8, four affect ATP5MG and SOD1,
three affect NDUFB8 and SOD1, and five affect COX5A and
SOD1. There were six chemicals targeted to three genes, two
targeted to four genes, and two targeted to five genes.

Then, we conducted a match analysis using DrugBank, a

distinguished clinical drug database, to verify whether some
of these chemicals can be prescribed as drugs to treat

clinical diseases. Advanced clinical trials of some of these
drugs are visualized here. Zidovudine exhibited phase 4 for

diabetes mellitus/insulin sensitivity, CVD/metabolic diseases,

and various inflammation/infection-related diseases (Figure 7B).
Cyclosporine exhibited phase 4 for diabetic nephropathy/type 2
diabetes mellitus, HCV infection/HIV infection/inflammation,
and COVID-19, and phase 3 for cardiovascular disease (CVD),
phase 2 for heart hypertrophy (Figure 7C). Resveratrol owned
phase 4 for “allergic rhinitis (disorder)” and “PCOS, insulin
resistance,” phase 3 for “dyslipidemia” and “peripheral arterial
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FIGURE 5 | Extensive function annotations of ATP5MG by RNA-RNA interaction analysis. DAVID tool was enlisted to analyze GO, KEGG, HIV interaction, and GAD

DISEASE based on 507 genes that can regulate ATP5MG by RNA-RNA interaction in 32 human tissues. The top 30 terms for each group were visualized. ATP5MG

may function diversely. (A) Function annotations for GO-BP. (B) Function annotations for GO-CC. (C) Function annotations for GO-MF. (D) Function annotations for

KEGG pathway. (E) Function annotations for HIV interaction. (F) Function annotations for GAD DISEASE. GO, Gene Ontology; BP, biological process; CC, cellular

component; MF, molecular function. KEGG, Kyoto Encyclopedia of Genes and Genomes.
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FIGURE 6 | Intersection genes between coexpression and RNA-RNA-interacting genes of ATP5MG. Five intersection genes were mined for coexpression and

RNA-RNA interaction gene sets of ATP5MG. The strength of the interaction is assessed. Metabolic and immune annotations were retrieved. (A) Genes numbers of

distinct datasets. (B) Expression relations between ATP5MG and intersections. (C) Strength of the interplay of five intersection genes. (D) NDUFB8, SOD1, and MDH

were annotated in the metabolic database. (E) Five cross genes were registered in innateDB. (F) ATP5MG-interplayed gene subnetwork.

disease (PAD),” phase 2 for “mitochondrial functions/physical
functions,” “diabetes/obesity (disorder), “syndrome, metabolic,”
and “congestive heart failure chronic,” and phase 1 for “heart
failure with preserved ejection fraction (HFpEF)/heart failure,
diastolic/high blood pressure (hypertension)/hypertensive heart
disease/stress oxidative” (Figure 7D). Vitamin E possessed
phase 4 for “diabetic macular edema (DME),” “obesity,
adolescent/stress oxidative,” “coronary artery disease (CAD),”
“vasospastic angina,” “diabetes mellitus/dyslipidemia/fatty liver,”
and “hepatic steatosis/hepatitis B chronic infection,” phase 3
for “cardiovascular disease (CVD)/cerebrovascular diseases,”
numerous cancers, “surgical site infections,” “chronic heart
failure (CHF)/myocardial infarction (ischemia),” phase 2 for
HIV infection, and phase 1 for COVID-19 (Figure 7E).
Acetaminophen had many clinical trials at phase 4 for
“obesity/osteoporosis,” “osteoarthritis of the knee,” “type 2
diabetes mellitus,” “high blood pressure (hypertension),” “ST
segment elevation” myocardial infarction (STEMI),” “coronary
arteriosclerosis,” phase 3 for COVID-19, different infections, and
CVD (Figure 7F).

Sodium selenite had phase 4 for peripartum cardiomyopathy
and sepsis, phase 3 for CVD, arsenic poisoning, and left
ventricular dysfunction, and phase 2 for COVID-19 (Figure 7G).

Hydrogen peroxide saw phase 4 for inflammation or infections,
including COVID-19 (Figure 7H). Dihydroartemisinin is
a famous drug with phase 4 clinical trials for glucose-6-
phosphate dehydrogenase (G-6-PD) deficiency and different
infections, including COVID-19 (Figure 7I). Doxorubicin
can treat many cancers and HIV infections, and it had
phase 3 for “Toxicity, Cardiac” (Figure 7J). Arsenic trioxide
(Figure 7K) and vinblastine (Figure 7L) were often used to
deal with different cancers, and they both had clinical trials for
HIV infections.

It can be seen from the above that five drugs, namely,
zidovudine, cyclosporine, resveratrol, vitamin E, and
acetaminophen, have an obvious ability to treat inflammation-
/immunity-related diseases, metabolism-related diseases, and
CVD, strongly supporting our idea. The fringe benefits include
six drugs, namely, cyclosporine, vitamin E, acetaminophen,
sodium selenite, hydrogen peroxide, and dihydroartemisinin,
which can be administered to treat COVID-19.

Overall, we finally harvest an underlying mechanism
mediated by the ATP5MG-centered inflammatory/immune
pathway (Figure 8). Chemicals or drugs affect Mets-CVD
by targeting this network comprising ceRNA and interRNA
subnetworks, which include one miRNA and four coding genes.
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FIGURE 8 | Taking home message on ATP5MG-centered network. Inflammatory or immune pathway mediated by ATP5MG-centered network in MetS-CVD.

Chemicals or drugs target this network formed by the ceRNA subnetwork and interRNA subnetwork. This network may be involved in COVID-19.
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DISCUSSION

In this study, we screened for the ATP5MG-oriented molecular
network for MetS-CVD. Our molecular network relied on the
strength of ceRNA and interRNA. ceRNA is not an RNA
but a new mechanism of gene expression regulation suggested
recently (31). ceRNA shows the mutual regulation of two
long RNA molecules by competing for binding to shared
microRNAs, a family of small non-coding RNAs that are
essential regulators of gene expression (32). Essentially, ceRNA
is still an RNA-RNA interaction, while interRNA means a direct
interaction of long RNAs. Reading this new regulatory network
will produce novel insights into MetS-CVD. Notably, there
is no distinction between “MetS and CVD” and MetS-CVD
because these two diseases are closely coupled and pathologically
unclear diseases. Still, there is no distinction between MetS and
obesity/diabetes/other metabolism-related diseases because they
are often inextricably linked. They were viewed as metabolic
diseases to analyze identically.

Recent reports on ceRNA presented its involvement
in inflammation/immunity in CVDs. Time-ordered
ceRNA networks are constructed in ischemic and dilated
cardiomyopathy (33). The ceRNA network controls
inflammation through tanshinone IIA in atherosclerosis
(34), affects metabolic and proinflammatory responses in
coronary artery disease (CAD) (35), and regulates inflammation
and cell proliferation in remote ischemic preconditioning
of myocardial ischemia-reperfusion injury (36). NEAT1-
formed ceRNA participates in endothelial dysfunction by
regulating inflammation in vein graft failure (37). GATA5-
mediated ceRNA adjusts cardiac conduction block through
an inflammatory process (38). H19-related ceRNA regulates
sepsis myocardial dysfunction (39) and ameliorates myocardial
injury and maladaptive cardiac remodeling partially by adjusting
inflammatory response (40). ceRNA constructed by CDKN2B-
AS1 inhibits VSMC proliferation by inhibiting the inflammatory
factors (41). ceRNA generated by PEAMIR restrains the
inflammatory response in myocardial ischemia/reperfusion
injury exacerbated by PM2.5 exposure (42). XIST, as a ceRNA
participator, impacts inflammation and pyroptosis in atrial
fibrillation (43). From all these reviewed, it can be seen that, our
ceRNA subnetwork, ATP5MG/hsa-miR142-5p/COX5A, focused
on metabolic and inflammatory signals, is a novel mechanism,
which may provide new insights into CVD (Figure 4I).

We can also find some studies on ceRNA when we retrieve

metabolic diseases. miR-146a-5p-mediated ceRNAs regulate
inflammation in diabetic peripheral neuropathy (44). Paternal
folate modulates lipid and glucose metabolism in broiler

offspring through the ceRNA mechanism (45). Metabolism-
related ceRNA may act as a predictor of the survival outcomes
of patients with osteosarcoma (46). CASC2/miR-9-5p/PPARγ

alleviates the high glucose-induced cell injury in diabetes
nephropathy (47). In polycystic ovary syndrome (PCOS), a
ceRNA network is constructed (48), most ceRNA axes are closely
related to steroid biosynthesis and metabolic pathways (49),
and PWRN2-mediated ceRNA may regulate oocyte nuclear
maturation (50). Exosomal circLDLR/miR-1294/CYP19A1

represses estradiol manufacture in PCOS (51). Key ceRNA
pairs in metabolic pathways may participate in right ventricular
dysfunction (52). circRNA/lncRNA/miRNA/mRNA inhibits
macrophage inflammation in type 1 diabetes mellitus
(T1DM) (53). AC063977.6/miR-338-3p/PFKFB2 may regulate
metabolic event during Intervertebral disc degeneration (IDD)
pathogenesis (54). LncRNAs-based ceRNA reflects in circulating
extracellular vesicles in human MetS (55). Based on the above,
from the MetS perspective, our ceRNA network is still a
new network.

Relatively, the involvement of ceRNA in energy metabolism
in metabolic diseases has been less reported. A study showed
possible energy metabolic regulation by ceRNA under grass-
fed and grain-fed regimens in angus beef cattle (56). Another
research indicates that ANRIL improves the mitochondrial
function of hepatocellular carcinoma by regulating the miR-
199a-5p/ARL2 axis (57). The study of energy metabolism’s
involvement in the ceRNA mechanism of metabolic diseases is
just beginning, and our investigation is timely.

The role of RNA-RNA interaction in CVD has been little
examined. lncRNA TBX5-AS1:2 is involved in tetralogy of Fallot,
the most common complex congenital heart disease, by affecting
the mRNA stability of TBX5 through RNA-RNA interaction (58).
Likewise, there are few examinations of the involvement of RNA–
RNA interaction in metabolic diseases. LINC01537 stabilizes
PDE2A mRNA to promote its expression through RNA–RNA
interaction regulating energy metabolism in lung cancer (59).
Therefore, it can be seen that our interRNA subnetwork,
ATP5MG-NDUFB8/SOD1/MDH2, regulated by metabolic and
inflammatory signals, is a novel mechanism that may produce
new insights into MetS-CVD (Figure 6F).

For a novel molecular network, experimental explorations
using cellular and animal models are required to verify the
suggested mechanism. As we are unable to perform experimental
operations, CTD and DrugBank were employed to mine drugs to
confirm the clinical values of our network. As is known, only if a
gene is biologically critical, it can be investigated in clinical trials.
If the clinical drug information cannot be found, the network will
be of no value or needs future information. Crucially, such drugs
have to be able to treat inflammation/immunity-related diseases,
also MetS and CVD. By wonderful good fortune, we mined
much valuable drug information. Eleven valuable drugs were
selected from these chemicals (Figures 7B–L). Among them,
five drugs (i.e., zidovudine, cyclosporine, resveratrol, vitamin
E, and acetaminophen) (Figures 7B–F) had the potential to
treat inflammation/immunity-related diseases, also metabolism-
related diseases and CVD, which give strong support to
our purpose.

As presented in facts, combating COVID-19 is like fighting
a series of wars, so COVID-19 is called WARS [58]. In this
study, we mined six drugs (i.e., cyclosporine, vitamin E,
acetaminophen, sodium selenite, hydrogen peroxide, and
dihydroartemisinin), which can be conscribed to win the
WARS (Figure 7), showing the value of our strategy in
targeting inflammation or immunity-related pathway, and
unexpected benefits of potential host-targeting antiviral
strategies. Intriguingly, acetaminophen, hydrogen peroxide, and
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artemisinin (dihydroartemisinin) are all bitter medicines, which
are the ligands of bitter taste receptors (60, 61). Host-directed
therapy using bitter medicine (HDT-BM) was suggested to fight
infection-related diseases, including WARS (62, 63), in which
inflammatory or immune pathways are naturally involved. Just
as the bitter medicine caffeine (62), acetaminophen, hydrogen
peroxide, and artemisinin (dihydroartemisinin) may function
broadly by targeting several molecules (mechanism of action
in DrugBank), including bitter taste receptors, which showed
the complicated regulatory mechanisms of gene expression.
That means examining a network, not a single molecule, is of
particular significance.

CONCLUSION

In this bioinformatics examination using public big data,
it was revealed that ATP5MG might form ceRNA with
COX5A through hsa-miR-142-5p and interplay with NDUFB8,
SOD1, and MDH2 by the RNA–RNA interaction under
inflammation-/immunity-related scenes. We decoded clinical
trials of five medicines from 251 chemicals targeting this
network, including zidovudine, cyclosporine, resveratrol,
vitamin E, and acetaminophen, which may be recruited to
treat CVD, metabolic diseases, and inflammation-/immunity-
related diseases; reasonably, they may also treat MetS-CVD.
Ecstatically, we got a windfall, that is, cyclosporine, vitamin
E, acetaminophen, sodium selenite, hydrogen peroxide, and
dihydroartemisinin may be employed to deal with COVID-19.
Thus, our study may provide basic and clinical insights into
epigenetic network regulation for metabolism-immunity highly
integrated diseases.
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