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The spleen and lymph nodes are important functional organs for human

immune system. The identification of cell types for spleen and lymph nodes

is helpful for understanding the mechanism of immune system. However,

the cell types of spleen and lymph are highly diverse in the human body.

Therefore, in this study, we employed a series of machine learning algorithms

to computationally analyze the cell types of spleen and lymph based on

single-cell CITE-seq sequencing data. A total of 28,211 cell data (training

vs. test = 14,435 vs. 13,776) involving 24 cell types were collected for this

study. For the training dataset, it was analyzed by Boruta and minimum

redundancy maximum relevance (mRMR) one by one, resulting in an mRMR

feature list. This list was fed into the incremental feature selection (IFS)

method, incorporating four classification algorithms (deep forest, random

forest, K-nearest neighbor, and decision tree). Some essential features were

discovered and the deep forest with its optimal features achieved the best

performance. A group of related proteins (CD4, TCRb, CD103, CD43, and

CD23) and genes (Nkg7 and Thy1) contributing to the classification of spleen

and lymph nodes cell types were analyzed. Furthermore, the classification

rules yielded by decision tree were also provided and analyzed. Above findings

may provide helpful information for deepening our understanding on the

diversity of cell types.
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Introduction

The spleen and lymph nodes are both important secondary
lymphoid organs in the human body for immune response and
other immunological functions. The human body has hundreds
of lymph nodes, which are strategically distributed throughout
the body for lymphocytes to effectively encounter antigens
and be activated (Koning and Mebius, 2012). When the body
is stimulated by foreign substances, immune cells recognize
foreign antigens and bring them back to the lymph nodes
and recirculate through the lymph nodes. Thus, a few antigen-
specific lymphocyte populations are continuously transported,
resulting in immune cells in the lymph nodes throughout the
body to respond (Girard et al., 2012). This mechanism forms
the body’s systemic immune surveillance in response to foreign
invasions or alterations in the body’s own cells. The spleen is the
largest secondary lymphoid organ in the body, and its functions
include blood filtration, hematopoiesis, red blood cell clearance,
and various important immune functions (Lewis et al., 2019).
The spleen can be divided into two components in structure,
including the red pulp, which is responsible for blood filtration
function, and the white pulp, which is filled with lymphoid cells
(Mebius and Kraal, 2005).

Different immune cells are present in the lymph nodes,
and they are all essential for the lymph node functions. During
immune surveillance, immune cells need to be continuously
transported in and out of the lymph nodes to ensure contact
with the foreign invaders and transport the antigen back to
the lymph node. Immune cells enter the lymph nodes mainly
through high endothelial venules and afferent lymphatics and
flow out through the efferent lymphatics (von Andrian and
Mempel, 2003). Within the lymph node, various immune cells
have clear spatial positioning and movement based on the
fibroblast reticulum cells networks, and under the guidance of
the network structure, soluble antigen and cytokines can be
delivered via the lymph conduit and further provide conditions
for the survival and activation of various immune cells (Chang
and Turley, 2015). During immune response, the resident
dendritic cells integrated in the lymphatic sinuses actively
recognize antigens from the lymph fluid and quickly present
the antigens to CD4+ T cells and CD8+ T cells after being
stimulated by the antigens (Gerner et al., 2015). Moreover, the
antigen acquisition of B cell depend on follicular dendritic cells
and macrophage (Batista and Harwood, 2009).

Immune cells in the spleen also play an important role. The
B cells in the spleen have a series of distinct B cell lineages.
In addition to traditional and mature B cells, the functions of
marginal zone (MZ) B cells, B1 B cell, and follicular B cells
are very important. MZ B cells reside between the MZ and red
pulp, and it is an innate-like B cell subset specific to the spleen.
It can quickly produce IgM and class-switched IgG and IgA
antibodies against common antigens in the first-line defense
(Cerutti et al., 2013). MZ B cell can also activate NKT cells

through surface CD1d molecules and promote NKT cells to
produce inflammatory cytokines (Semmling et al., 2010). B1
B cell is similar to MZ B cell, produces IgM antibodies, and
contributes to circulating “natural” antibodies. In addition, the
antibody production is independent of thymus cells, and B1
B cell can participate in memory responses (Baumgarth, 2011;
Cerutti et al., 2013). Follicular B cells circulate between the
blood and the spleen and respond to antigens through thymus-
dependent signals (Hoek et al., 2010). Monocytes have two main
functions, namely, circulating in the system and mobilizing to
the tissues when needed, and monitoring foreign infections
in the blood. It can also differentiate into various myeloid
cell types, such as DC and macrophages (Geissmann et al.,
2010; Lewis et al., 2019). T cells, together with B cells, are
present throughout the spleen, and they ear pivotal in mediating
adaptive immunity. During an active immune response, T and
B cells achieve different functions and localization changes
through surface receptor expression and chemotactic gradients
(Pereira et al., 2010; Eisenbarth, 2019). In brief, the function of
immune cells in the spleen and lymph nodes is very important,
and it is an indispensable line of defense for the human body
against foreign invasion and changes in its cells.

Advances in single-cell sequencing, such as the CITE-seq
method (measurement with cellular indexing of transcriptomes
and epitopes by sequencing) (Stoeckius et al., 2017), have
provided precise tools for the comprehensive analysis of the
immune system. CITE-seq method can be utilized for the
analysis of immune cells at single-cell resolution, determination
of the interaction between different immune cell groups, and
identification of novel distinct immune cell subsets in health
and disease (Papalexi and Satija, 2018). For example, the single-
cell study of mouse and human lymph nodes has clarified the
diversity of cell populations and the underlying developmental
and structural organization (Xiang et al., 2020). Single-cell
sequencing can also discover cell subgroups that contribute
to the disease. For example, splenic single-cell sequencing of
rituximab therapy in patients with immune thrombocytopenia
found that some specific B cell subgroups are associated with
patient recurrence; and this type of B cell subgroup comprised
highly expressed CD19 molecules on the surface, and these
molecules may be potential therapeutic targets (Crickx et al.,
2021).

In the present study, based on the CITE-seq sequencing
data of immune cells from murine spleen and lymph nodes,
we computationally analyzed such data to extract gene
expression signatures and biomarkers, which can characterize
different spleen and lymph node cell types. Briefly, the Boruta
(Kursa and Rudnicki, 2010) and minimum redundancy and
maximum relevance (mRMR) (Peng et al., 2005) methods
were applied on the training dataset one by one. The mRMR
feature list was obtained, which was further introduced to
the incremental feature selection (IFS) (Liu and Setiono,
1998). Four classification algorithms, including deep forest
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(DF) (Zhou and Feng, 2018), random forest (RF) (Breiman,
2001), K-nearest-neighbor (KNN) (Cover and Hart, 1967),
and decision tree (DT) (Safavian and Landgrebe, 1991) were
attempted in the IFS method. Through above procedures, gene-
expression/protein-abundance features and decision rules were
obtained, which were essential for distinguishing 24 spleen and
lymph node cell types. These proteins, genes and rules provided
a much clearer view of the relationship among transcriptional
variation, cell phenotype, and function of different cell subtypes.
Some new expression patterns, implied by rules, may also reveal
new cell markers or functions that have not been determined.
Furthermore, the optimal classifiers were also constructed
through IFS method, which were further evaluated on the test
dataset.

Materials and methods

Study design

Our research is divided into the following processes: (1) data
collection, (2) classification into training and test datasets, (3)
pre-processing of data, (4) feature ranking, (5) development of
models, and (6) feature interpretation, as shown in Figure 1.
The details of the whole process are described in the following
sections.

Data collection

We downloaded the single-cell CITE-seq protein and
gene expression data of spleen and lymph from Gayoso
et al. (2021) at https://github.com/YosefLab/totalVI_
reproducibility/blob/v0.3/data/spleen_lymph_111.h5ad and
https://github.com/YosefLab/totalVI_reproducibility/blob/v0.
3/data/spleen_lymph_206.h5ad. To refine these two datasets, we
only selected the 110 proteins and 13,553 genes that overlapped
and the cells from the 24 overlapped cell types. After filtering,
the first dataset included 14,435 cells, which was picked up as
the training dataset, and the second dataset, including 13,776
cells, was termed as the test dataset. The sample sizes of each
cell type in the training and test datasets are listed in Table 1.

The download data were all CITE-sequencing data. CITE-
seq method is an effective tool for single-cell level multi-omics
integrative analyses and were used to identify transcriptomics
profiling together with phenotypic or proteomic signatures. The
general workflow of CITE-seq can be divided into three steps as
follows:

1) Antibodies with specific DNA barcodes can specifically
bind to the target proteins/antigens;

2) By using single-cell droplet library preparation methods,
such as the preparation methods of 10X genomics, drop-
seq, and ddseq, each cell together with its unique DNA
barcodes was isolated in one droplet; and

3) All the mRNAs of this single cell are indexed with
the original DNA barcodes. Finally, by using next-
generation sequencing and proper bioinformatics
methods, we obtained the single-cell mRNA profiling
information together with its respective phenotypes, such
as biomarker patterns.

Data preprocessing

Lots of features (110 proteins and 13,553 genes) were used
to represent cells in the training and test datasets. Clearly, it
was impossible that all of them were related to distinguish
cell types. Generally, the related features occupy a small
proportion. Thus, it was necessary to extract them with some
advanced computational methods. Here, we selected Boruta
feature selection method (Kursa and Rudnicki, 2010). Its brief
description was as follows.

Boruta feature selection method is a RF (Breiman, 2001)-
based wrapper method that is used to detect and output
relevant features. The importance of one feature is measured
by comparing it with shuffled features. For each real feature in
the original dataset, a shuffled feature is generated. All shuffled
and real features are combined to constitute a shuffled dataset.
A RF classifier is trained on such shuffled dataset to produce
the importance score of each feature. The real features with
importance scores significantly higher than those for shuffled
features are kept. These features are removed from the dataset
and the same procedures are applied to the updated dataset until
the time reaches a predefined value. The Boruta outputs all kept
features, which are deemed to be important.

In the present study, the Boruta program provided by https:
//github.com/scikit-learn-contrib/boruta_py was applied, and
the default parameters were set.

Feature ranking

The features selected by Boruta should be further evaluated
as it was not clear which features were more important. Thus,
we further employed the widely used feature selection method,
mRMR (Peng et al., 2005).

The mRMR is a high-performance feature selection method.
The original purpose was to select a compact feature subset
that have high relevance to target labels and low redundancies
between features in this set. However, such purpose is hard to
be achieved as such problem is NP-hard. As an alternative way,
it sorts features in a list, named mRMR feature list. Features

Frontiers in Molecular Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fnmol.2022.1033159
https://github.com/YosefLab/totalVI_reproducibility/blob/v0.3/data/spleen_lymph_111.h5ad
https://github.com/YosefLab/totalVI_reproducibility/blob/v0.3/data/spleen_lymph_111.h5ad
https://github.com/YosefLab/totalVI_reproducibility/blob/v0.3/data/spleen_lymph_206.h5ad
https://github.com/YosefLab/totalVI_reproducibility/blob/v0.3/data/spleen_lymph_206.h5ad
https://github.com/scikit-learn-contrib/boruta_py
https://github.com/scikit-learn-contrib/boruta_py
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/


fnmol-15-1033159 October 7, 2022 Time: 14:14 # 4

Li et al. 10.3389/fnmol.2022.1033159

FIGURE 1

Overview of the design. The training and test datasets for spleen and lymph are investigated. The training dataset is analyzed by the feature
selection methods of Boruta and minimum redundancy maximum relevance one by one. The mRMR feature list is generated, which is further
fed into incremental feature selection (IFS) method, incorporating four classification algorithms, to extract significant single-genes/proteins and
combined-gene/protein rules. The SMOTE is applied in the IFS method to reduce the influence of imbalanced problem. The optimal classifiers
yielded by the IFS method are applied on the test dataset to evaluate their generalization ability.

with high ranks in this list are more important than others. This
list is generated by repeatedly selecting features. In each loop, a
feature with maximum difference between its relevance to target
labels and redundancies to already-selected features is selected
and appended to the current list. The relevance and redundancy
are all measured by mutual information (MI) between features
or target labels.

In the present study, the mRMR program
with the default parameters was obtained from
http://home.penglab.com/proj/mRMR/.

Feature selection and model building

Although mRMR generated the mRMR feature list, it was
still not clear which features can constitute the optimal features
for distinguishing cell types. In view of this, some other
computational methods were adopted.

Incremental feature selection
IFS is a feature selection method (Liu and Setiono,

1998), which can determine the optimal features for a given
classification algorithm. Based on one feature list (e.g., mRMR

feature list), a series of feature subsets are generated by IFS, each
of which contains some top features in the list. For example, the
first subset can contain the first feature in the list, the second
subset includes the first two features in the list, and so forth.
On each feature subset, a specific classifier is constructed on
samples represented by features in this subset with a given
classification algorithm. All classifiers are further evaluated by
10-fold cross-validation (Kohavi, 1995). The classifier with the
best performance is regarded as the optimal classifier, and the
features used in the optimal classifier are regarded as the optimal
features.

Classification algorithm
To execute the IFS method, at least one classification

algorithm is necessary. To fully evaluate each feature subset, four
powerful classification algorithms were attempted, including DF
(Zhou and Feng, 2018), RF (Breiman, 2001), KNN (Cover and
Hart, 1967), and DT (Safavian and Landgrebe, 1991).

Deep forest

DF is a deep neural network that builds deep models based
on non-differentiable modules, such as DTs. Briefly, DF builds
multi-layer models through tree integration by using gradient
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boosting DTs as a building block for each layer, emphasizing
its representational learning capability and optimization of the
training process. The DF algorithm used in the present study
was the Cascaded DF (El-Nabawy et al., 2021), which can be
trained to obtain hierarchical and distributed representations
in both supervised and unsupervised settings. This structure
can achieve competitive performance on many types of tasks.
It contains a smaller number of parameters, ensuring that a
large number of tuning parameters is not required during use,
improving training efficiency.

Random forest

The RF is a non-parametric decision classification ensemble
algorithm containing a number of DTs. Each DT is constructed
by randomly selecting samples and features. RF aggregates the
predictions of all DTs as its decision. Considering the differences
between DTs, RF can avoid the overfitting problem. Although
RF loses the interpretability and may slightly increase the bias,
it improves the performance and reduces the error. To date, it is
always an important candidate to construct classifiers in dealing
with different medical problems (Casanova et al., 2014; Marques
et al., 2016; Zhao et al., 2018; Baranwal et al., 2019; Chen W.
et al., 2021; Chen et al., 2022; Ran et al., 2022; Tang and Chen,

2022; Wang and Chen, 2022; Wu and Chen, 2022; Yang and
Chen, 2022).

K-nearest-neighbor

The KNN is one of the most classic classification algorithms.
This algorithm does not contain a training procedure. For
a given test sample, its distances to all training samples are
calculated and k nearest neighbors are extracted. Based on the
labels of these neighbors, the predicted label of the test sample
can be determined. Generally, the label occurring most on
the k nearest neighbors is picked up as the predicted label of
the test sample.

Decision tree

DT is also a classic classification algorithm. Different from
above algorithms, which is very difficult to uncover their
classification principles, DT provides an opportunity for human
to understand its classification procedures as such procedures
are completely open. Besides the tree-like representation of DT,
it can also be represented by a set of rules. Each rule indicates
a path from the root to one leaf node. Several features may be
included in each rule, which constitute a special pattern for the
result of the rule (label for one class). In recent years, it becomes

TABLE 1 The sample sizes of each cell type in the training and test datasets.

Index Cell type Sample size of the training dataset Sample size of the test dataset

1 Lymph node CD122+ CD8 T 551 551

2 Lymph node CD4 T 1,777 1,761

3 Lymph node CD8 T 1,031 1,046

4 Lymph node Ifit3-high B 404 375

5 Lymph node Ifit3-high CD4 T 267 256

6 Lymph node Ifit3-high CD8 T 160 161

7 Lymph node mature B 1,953 1,917

8 Lymph node transitional B 102 103

9 Lymph node tregs 171 171

10 Spleen B1 B 294 270

11 Spleen CD122+ CD8 T 267 261

12 Spleen CD4 T 818 818

13 Spleen CD8 T 427 421

14 Spleen cDC2s 119 122

15 Spleen cycling B/T cells 123 119

16 Spleen ICOS-high tregs 117 116

17 Spleen Ifit3-high B 273 249

18 Spleen Ly6-high mono 129 114

19 Spleen mature B 3,187 2,873

20 Spleen MZ B 431 458

21 Spleen neutrophils 159 144

22 Spleen NK 155 130

23 Spleen NKT 176 155

24 Spleen transitional B 1,344 1,185

Total 14,435 13,776
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more and more popular to analyze various complicated medical
datasets (Chen L. et al., 2021; Ding et al., 2022; Zhou et al., 2022).

To implement above four classification algorithms, some
public online sources were used in this study. In detail, the DF
program was downloaded from https://github.com/LAMDA-
NJU/Deep-Forest. As for RF, KNN, and DT, their programs
implemented through the Scikit-learn module were used. All
programs were executed using default parameters.

Synthetic minority oversampling technique
According to Table 1, the training dataset was imbalanced.

The size of the largest cell type was about 31 times the size
of the smallest cell type. The classifiers directly built on such
dataset may produce bias. This problem can be completely or
partly solved by some computer techniques. Here, we adopted
synthetic minority oversampling technique (SMOTE) (Chawla
et al., 2002). It creates synthetic samples for each minority class
until the size of the minority class is equal to that of the majority
class. The SMOTE program used in this study was sourced
from https://github.com/scikit-learn-contrib/imbalanced-learn
and it was performed with the default parameters.

Feature interpretation

The feature interpretation includes single-genes/proteins
and combined gene/protein rules. The interpretation of single
genes/proteins focuses on the essential genes/proteins that are
assigned high ranks in the mRMR feature list, while that of the
combined gene/protein rule focuses on the rules yielded by the
optimal DT classifier.

Performance evaluation

The Matthew correlation coefficient (MCC) (Matthews,
1975) metric is used to evaluate the performance of all classifiers.
MCC is the correlation coefficient between the observed labels
and the predicted labels. It is deemed as a balanced measurement
even if the sample sizes of classes differ significantly. MCC can
be calculated as follows:

MCC =
cov(X, Y)

√
cov (X, X) cov(Y, Y)

=

∑n
i = 1

∑C
j = 1 (xij−xj)(yij−yj)√∑n

i = 1
∑C

j = 1 (xij−xj)
2 ∑n

i = 1
∑C

j = 1 (yij−yj)
2
,

(1)
where X denotes a binary matrix including the predicted label of
each sample, and Y denotes another binary matrix representing
the true label of each sample. The correlation coefficient of X
and Y is defined as cov (X, Y), and xj and yj are the average
values in the jth column of X and Y, respectively. C denotes the

total number of cell types, while n denotes the number of cells.
The range of MCC is between −1 and 1. Higher values of MCC
indicate better performance of the classifier.

In addition, we also provided the overall accuracy and
individual accuracy on each cell type to fully display the
performance of all classifiers.

Results

In the present study, 28,211 cells were obtained from the two
sample sets. After filtration, the two datasets, including 14,435
and 13,776 cells, respectively, were deeply analyzed. The entire
procedures are illustrated in Figure 1. This section gave the
detailed results at each stage.

Prediction performance

As lots of features were involved to represent cells, we first
adopted Boruta to select important features from the training
dataset. 1,180 features were kept, where 67 were about proteins
and rest 1,113 were about genes. These remaining features were
further analyzed by the mRMR method. An mRMR feature list
was generated, which is provided in Supplementary Table 1.

According to the procedures shown in Figure 1, the IFS
method was applied to the mRMR feature list. We selected
step one to construct all possible feature subsets from such
list, obtaining 1,180 feature subsets. On each subset, a classifier
was built with each of four classification algorithms (DF, RF,
KNN, and DT) and cells represented by features in this subset.
All classifiers were evaluated by 10-fold cross-validation. Their
performance was assessed by measurements listed in section
“Performance evaluation,” which is available in Supplementary
Table 2. To clearly show the performance of classifiers under
different feature subsets, an IFS curve was plotted for each
classification algorithm, as shown in Figure 2, in which MCC
was set as Y-axis and the size of the feature subset (i.e., the
number of features) was defined as X-axis. It can be observed
that when using DF as the classification algorithm, the highest
level of MCC of 0.868 was obtained at the top 216 features.
The highest level of MCC of 0.804 can be achieved at the top
235 features by using RF, whereas the highest levels of MCC of
0.787 and 0.611 can be obtained at the top 107 and 624 features
by using KNN and DT, respectively. Accordingly, the optimal
features for each classification algorithm can be obtained and
the optimal DF, RF, KNN, and DT classifiers can be built with
their optimal features. The ACC values for these classifiers are
listed in Table 2, which were 0.881, 0.819, 0.799, and 0.643,
respectively. From ACC and MCC, the optimal DF classifier was
best, the optimal RF and KNN classifiers were almost at the
same level, and the optimal DT classifier provided the lowest
performance. Furthermore, we also counted the performance
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of these four optimal classifiers on 24 cell types. A violin plot
was drawn for each optimal classifier, which is displayed in
Figure 3A. Evidently, the optimal DT classifier still gave the
lowest performance. As for other three optimal classifiers, the
optimal KNN classifier seemed to be better than the optimal
RF and DF classifiers. However, its performance on majority
class was very poor. For example, on the largest cell type
(Spleen Mature B), the optimal KNN classifier only provided
the individual accuracy of 0.410. Such case decreased its overall
performance. Furthermore, the optimal DF classifier was better
than the optimal RF classifier based on their performance on 24
cell types.

To test the generalization ability of above four optimal
classifiers, the test dataset was fed into each optimal classifier.
The obtained ACC and MCC values are listed in Table 2. It can
be observed that the ACC and MCC values on testing dataset
were lower than those on the training dataset. As testing samples
did not participate in the construction of classifiers, such results
were acceptable. In detail, the optimal DF and RF classifier
yielded the most robust prediction with MCC values of 0.542
and 0.552, respectively, and the ACC values of 0.586 and 0.599,
respectively. The MCC and ACC values of the optimal KNN and
DT classifiers are much lower than those obtained by the above
two classifiers. As for their performance on 24 cell types, a violin
plot was also drawn for each optimal classifier, as illustrated
in Figure 3B, from which we can see that the high individual
accuracies of the optimal RF and DF classifiers were evidently
more than those of other two optimal classifiers, conforming to
their overall performance.

Significant single-genes/proteins and
combined gene/protein rules

According to the principle for generating the mRMR feature
list, top features in such list may be essential for distinguishing
cell types. The discussion part in section “Analysis of the
quantitative features for distinguishing different cell types”
shown that the surface proteins (CD4, TCRb, CD103, CD43,
and CD23) and genes (Nkg7 and Thy1) have a decisive effect
on different cell types. However, considering that the interaction
between features is unknown, relying on one single protein or
gene alone to reveal the different expression patterns of spleen
and lymph node cells is not sufficient. Therefore, we further
employed DT to learn classification rules. As the optimal DT
classifier used the top 624 features in the mRMR feature list,
a tree was learn by applying DT on all samples represented
by these features. From this tree, a total of 2,675 rules were
generated, which are given in Supplementary Table 3. Each cell
type was assigned some rules. The number of rules for each
cell type is shown in Figure 4. The cell type (Spleen Mature
B) was assigned most rules, whereas the rules for the cell type
(Spleen Ly6-high mono) were least. In section “Analysis of the

quantitative rules for distinguishing different cell types,” some
rules were analyzed.

Discussion

As mentioned above, we utilized several machine learning
methods to characterize the relationship among cell phenotypes,
functions, and transcriptomes by analyzing CITE-seq data of
immune cells from murine spleen and lymph nodes. The
features in the investigated datasets contain the abundance
of 110 surface proteins and the expression level of 13,553
genes. After using several methods, we finally constructed a DF
classifier using 216 features, which can yield a high MCC of
0.868. Some top features in the mRMR feature list were deemed
to be essential to distinguish spleen and lymph node cells. In
addition, we further adopted DT to generate a group of decision
rules, which can not only distinguish cell types but also indicate
different patterns on various cell types.

Analysis of the quantitative features for
distinguishing different cell types

Based on machine learning algorithms, we identified a set
of significant features that contribute to the determination of
immune cell types in the spleen and lymph nodes. We reviewed
several publications to prove how these features are decisive for
different cell types, including surface proteins of CD4, TCRb,
CD103, CD43, and CD23, and the genes of Nkg7 and Thy, which
are listed in Table 3.

The surface protein CD4 (ADT_CD4_A0001) is a
coreceptor of T cell receptors on T lymphocytes, and it
can recognize antigens displayed by MHC class II molecules
on antigen presenting cells. CD4 is a commonly used marker
for CD4+ T cells. CD4 + T cells can differentiate into various
effector cell subtypes, including T types 1, 2, and 17, follicular
helper T cells, and regulatory T cells. These subtypes are
all involved in regulating the immune response to different
types of pathogens (Hwang et al., 2020). Similarly, the CD8a
(ADT_CD8a_A0002) and CD8b (ADT_CD8b (Ly-3)_A0230)
proteins are surface glycoproteins found on most cytotoxic T
lymphocytes. They act as a coreceptor of T cell receptors and
can recognize antigens in an MHC class I context by antigen
presenting cells. During T cell differentiation in the thymus,
precursors cells developed from CD4 CD8 double negative cells
into CD4 CD8 double positive cells. Then, these double positive
cells make a lineage decision to become CD4+ T cell or CD8+
T cells and retain the specificity to MHC class II or MHC class
I (Germain, 2002). Therefore, the expression level of Cd8b1
(ENSMUSG00000053044) and Cd8a (ENSMUSG00000053977)
are also important for distinguishing T cells in the transcriptome
level.
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FIGURE 2

The IFS curves of four classification algorithms in terms of MCC. The highest MCC values of four algorithms are marked. The deep forest yields
the highest MCC of 0.868 when top 216 features in the mRMR feature list are used.

TABLE 2 Performance of the optimal classifiers with different classification algorithms on the training and test datasets.

Classification algorithm Number of features Training dataset Test dataset

ACC MCC ACC MCC

Deep forest 216 0.881 0.868 0.586 0.542

Random forest 235 0.819 0.804 0.599 0.552

K-nearest-neighbor 107 0.799 0.787 0.361 0.322

Decision tree 624 0.643 0.611 0.450 0.395

The surface protein TCRb (ADT_TCRbchain_A0120) is a
subunit of the T cell receptor molecules. It can be used as a
marker of T cells and is important for TCR-mediated T cell
recognition of foreign antigens displayed by MHC. At the DNA
level, the TCRB is synthesized through VDJ recombination
events and later connected to the C segment at the RNA level.
These events play an important role in the development of T
cells and can provide a wide range of antigen recognition for
immune cells (Roldan et al., 1995).

Protein CD103 (ADT_CD103_A0201) is also known as
integrin subunit alpha E. It is highly expressed in intestinal
intraepithelial lymphocytes and could be used as a biomarker
for CD4+ T cells. CD103+ CD8+ T cells induced by human
alloantigens have the functional characteristics of regulatory T
cells, thus confirming the importance of CD103 to CD4+ T
cells, especially regulatory T cells (Uss et al., 2006). The negative
expression of CD103 is associated with splenic marginal zone
lymphoma and mantle cell lymphoma, and the pathogenic
mechanism may be related to the change in interaction between
CD103 and E-cadherin (Santos et al., 2017).

The surface protein CD43 (ADT_CD43_A0110) is a highly
sialylated transmembrane glycoprotein, and it participates in
cell adhesion, proliferation and the antigen-specific activation
of T cells. It is expressed in various immune cells and can be
used as a marker for NK cells and B cells (McCann et al., 2003).
High CD43 level is related to diffuse large B cell lymphoma, and
CD43 could be used as a biomarker of adverse prognosis (Ma
et al., 2015).

Gene Nkg7 (ENSMUSG00000004612) encodes a protein
called natural killer cell granule protein 7, which is expressed
in activated T cells and natural killer cells but not in B cells,
monocytes, and myeloid cells (Turman et al., 1993). A recent
study found that Nkg7 was up-regulated dozens of times during
the differentiation of NKT cell lineages, indicating its important
role in the activity of NKT cells. Moreover, experimental results
by using Nkg7 knockout mice show that the negative expression
of Nkg7 would decrease NK cell-mediated cytotoxicity (Baxter
et al., 2016). Therefore, Nkg7 is essential for the functions of
T, NK, and NKT and can be used as an important feature for
distinguishing different immune cells.
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FIGURE 3

Violin plot to show the performance of four optimal classifiers on the training and test datasets. (A) Violin plot on the training dataset. (B) Violin
plot on the test dataset.

FIGURE 4

Bat chart to show the number of rules for each cell type.

Gene Thy1 (ENSMUSG00000032011) encodes a cell surface
glycoprotein that belongs to the immunoglobulin superfamily. It
was first identified in mouse T lymphocytes and was later shown
to play a role in cell adhesion and communication of multiple
cell types (Sauzay et al., 2019). Moreover, Thy1 is expressed
in B cells in the bone, marrow, spleen, and lymph node, and

has different expression patterns (Crawford and Goldschneider,
1980). This differential expression of Thy1 can be used to
identify B cells in different tissues.

The protein CD23 (ADT_CD23_A0108) is a B cell-specific
antigen that plays an essential role in B cell growth and
differentiation and the regulation of IgE production. The
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TABLE 3 Essential features for identifying spleen and lymph
node cell types.

Feature name Related
proteins/genes

Rank in the
mRMR feature list

ADT_CD4_A0001 CD4 1

ADT_TCRbchain_A0120 TCRb 5

ADT_CD103_A0201 CD103 12

ADT_CD43_A0110 CD43 14

ENSMUSG00000004612 Nkg7 15

ENSMUSG00000032011 Thy1 16

ADT_CD23_A0108 CD23 28

stimulation of CD40 antigen induces the expression of CD23
and participates in the activation and maturation of B cells, and
CD23 could be used as a marker of mature B cells (Saeland et al.,
1993).

The features generated by the machine learning algorithms
are closely related to the cell function or fate of immune cells.
The differential expression of multiple genes in different cell
types or tissues provides a basis for our classifier.

Analysis of the quantitative rules for
distinguishing different cell types

Our results show a large number of decision rules
(Supplementary Table 3). In some decision rules, the expression
of some commonly used markers provides proof of reliability of
the rules. Moreover, some surface protein abundance and gene
expression levels may show new characteristics of cell types and
may reveal the relationship among transcriptional variation, cell
phenotype, and function. The obtained decision rules involved
the surface proteins of CD24, CD103, CD357, CD43, and so on.

In our decision rules for indicating spleen mature B
cells, we noticed a criterion that requires the high expression
of surface protein CD24. CD24 is commonly expressed on
mature granulocytes and B cells, and it is very crucial for the
differentiation process of cells (Pruszak et al., 2009). CD24 is a
crucial signal molecule that is expressed on human B cells and
participates in the activation of B cell functions (Kay et al., 1991).
The highly expressed CD24 on B cells is associated with several
diseases, including small cell lung carcinoma and systemic
lupus erythematosus (Jackson et al., 1992; Jin et al., 2013).
The expression pattern of CD24 can serve as the indicator for
identifying the B cell maturation stages, and the highly presented
CD24 antigen on B cells is precisely related to the maturation
of B cells (Lavabre-Bertrand et al., 1994). These findings are
consistent with our decision rules for indicating spleen mature
B cells, which support the reliability of our analysis.

The surface protein CD103, which is also called ITGAE,
showed a high expression for indicating lymph node CD8 T cells
based on our analysis. This protein is preferentially expressed

in intraepithelial lymphocytes and plays a role in adhesion,
migration, and lymphocyte homing (Kim et al., 2019). CD103
is highly expressed at mucosal sites, and it is very important
in immune regulation (Annacker et al., 2005). The CD103
positive T cells play a vital role in antitumor immunity (Xiao
et al., 2019). The expression of CD108 reflects the degree of
tumor infiltration of CD8+ lymphocytes and can predict the
prognosis in colorectal cancer (Hu et al., 2018). Therefore, T
cells with highly expressed CD108 are involved in the immune
reactions against antigens derived from tumors or pathogens.
Additionally, the genotype-tissue expression (GTEx) database
demonstrated that CD108 has an increased expression in lymph
node, thus confirming our quantitative rules for indicating
lymph node CD8 T cells.

The highly expressed CD357, also known as TNFRSF18 or
GITR, can indicate the lymph node regulatory T cells based on
our computational analysis. CD357 is a member of the TNF-
receptor superfamily. This receptor protein plays a key role in
immune regulation such as T-cell activation (van Beek et al.,
2019). CD357 is overexpressed in regulatory T cells (Shimizu
et al., 2002). CD357 is a co-activating molecule that is crucial
in regulating T cell activation. This surface protein is highly
expressed in murine and human regulatory T cells and is
considered a regulatory T cell marker (Nocentini and Riccardi,
2005). These results strongly support the indicatory role of
CD357 for recognizing regulatory T cells.

Ly6-high monocytes, which are also called inflammatory
monocytes, express the high level of CCR2 and decreased
CX3CR1 and play important roles in inflammation. Our
decision rules showed that surface protein CD49d and gene
CEBPB required a relatively high expression to indicate ly6-
high monocytes. CD49d, which is also called ITGA4, belongs
to the intergrin alpha chain family and may play a role
in cell motility and migration. The regulation of ITGA4 is
associated with inflammatory diseases (Gerecke et al., 2015;
Zundler et al., 2017). Genetic study has reported that ITGA4 can
influence the monocyte–lymphocyte ratio (Maugeri et al., 2011).
Hence, CD49d is very critical for indicating ly6-high monocytes.
As for gene CEBPB, the activity of its protein product is
important in immune and inflammatory responses (Fields and
Ghorpade, 2012). Bone marrow chimera experiments show that
the deletion of CEBPB remarkably decrease ly6c monocytes,
confirming the importance of CEBPB in monocytes (Tamura
et al., 2017). Therefore, the criteria involving CD49d and CEBPB
were validated for indicating ly6-high monocytes.

Results further show that a high expression of surface
protein CD43 is required to indicate the spleen NK cells.
CD43 is a highly sialylated glycoprotein that functions in
antigen-specific activation of various immune cells. Despite the
wide distribution of CD43 in monocytes, lymphocytes, and
thymocytes, it is specifically expressed on human NK cells
(McCann et al., 2003). The different sialylated forms of CD43
induce distinct functional roles of NK cells by transducing
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activation signals (Aguado et al., 1999). Notably, immature NK
cells, which are mainly found in lymph nodes, usually lack CD43
expression, while mature NK cells defined as highly expressed
CD43 preferentially migrate to inflammatory sites (Zhang and
Meadows, 2008). These findings confirmed our rules that highly
expressed CD43 on the cell surface can indicate the spleen NK
cells.

In summary, our decision rules proposed that combined-
cell surface protein or gene expression can be used to
distinguish immune cell subtypes in different tissues. It validated
the markers of each immune cell subtype and helps in
discovering some new expression patterns of immune cells in
the spleen and lymph node.

Conclusion

The present study analyzed the single-cell CITE-seq protein
and gene expression data of spleen and lymph, which involved
24 cell types. Through a computational procedure, including
several machine learning algorithms, some essential features,
powerful classifiers and classification rules were accessed. The
analysis on the essential features, corresponding to surface
proteins and genes, and rules indicated that they were
related to the identification of spleen and lymph node cell
types, suggesting they can be latent biomarkers for cell type
identification. Furthermore, the powerful classifiers can be tools
to classify spleen and lymph node cells.
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