
Lablans et al. BMC Medical Informatics and Decision Making (2015) 15:2
DOI 10.1186/s12911-014-0123-5

RESEARCH ARTICLE Open Access

A RESTful interface to pseudonymization
services in modern web applications
Martin Lablans*†, Andreas Borg† and Frank Ückert

Abstract

Background: Medical research networks rely on record linkage and pseudonymization to determine which records
from different sources relate to the same patient. To establish informational separation of powers, the required
identifying data are redirected to a trusted third party that has, in turn, no access to medical data. This
pseudonymization service receives identifying data, compares them with a list of already reported patient records and
replies with a (new or existing) pseudonym. We found existing solutions to be technically outdated, complex to
implement or not suitable for internet-based research infrastructures. In this article, we propose a new RESTful
pseudonymization interface tailored for use in web applications accessed by modern web browsers.

Methods: The interface is modelled as a resource-oriented architecture, which is based on the representational state
transfer (REST) architectural style. We translated typical use-cases into resources to be manipulated with well-known
HTTP verbs. Patients can be re-identified in real-time by authorized users’ web browsers using temporary identifiers.
We encourage the use of PID strings for pseudonyms and the EpiLink algorithm for record linkage. As a proof of
concept, we developed a Java Servlet as reference implementation.

Results: The following resources have been identified: Sessions allow data associated with a client to be stored
beyond a single request while still maintaining statelessness. Tokens authorize for a specified action and thus allow the
delegation of authentication. Patients are identified by one or more pseudonyms and carry identifying fields. Relying
on HTTP calls alone, the interface is firewall-friendly. The reference implementation has proven to be production stable.

Conclusion: The RESTful pseudonymization interface fits the requirements of web-based scenarios and allows
building applications that make pseudonymization transparent to the user using ordinary web technology. The
open-source reference implementation implements the web interface as well as a scientifically grounded algorithm
to generate non-speaking pseudonyms.

Keywords: Pseudonymization, Record linkage, Data protection, REST interface, Research network, Web application,
Mainzelliste

Background
Medical research networks collect data from separate,
heterogeneous sources, such as disease registries, col-
lections of biological material or hospital records. In
order to conduct research on such data, one must be
able to link records from different sources belonging to
one patient. This poses two problems: First, unless all
records carry a unique patient identifier, a record linkage

*Correspondence: lablans@uni-mainz.de
†Equal contributors
Institute of Medical Biostatistics, Epidemiology and Informatics, University
Medical Center of the Johannes Gutenberg University Mainz, Obere
Zahlbacher Straße 69, 55131 Mainz, Germany

algorithm is required to detect multiple occurrences
of one patient based on their identifying information
(name, date of birth etc.) while tolerating errors such
as typos to a certain degree. Second, in order to pro-
tect the privacy of affected patients, the medical records
must be pseudonymized before using them for research.
This type of pseudonymization, which we call “first-level
pseudonymization”, is to be distinguished from the case
where an existing pseudonym is transformed into another,
for example when patient identifiers in different domains
need to be mapped to one another (see the discussion
of PIX/PDQ in section ‘Related work’). In this paper, we
are referring to first-level pseudonymization if not stated
otherwise.

© 2015 Lablans et al.; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

mailto: lablans@uni-mainz.de
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/

Lablans et al. BMC Medical Informatics and Decision Making (2015) 15:2 Page 2 of 10

A common solution to the problem stated above is
to delegate record linkage and pseudonymization to
a trusted third party, called “first-level pseudonymiza-
tion service”, which only stores the patients’ identify-
ing data (“IDAT”) and creates a pseudonym, a random
string by which medical data (“MDAT”) can be recog-
nized as belonging to one patient without allowing re-
identification. Nowadays, this transaction is frequently
handled over a network connection on the internet
(see the discussion of pseudonymization solutions in
section ‘Related work’).

The typical data flow in this scenario is as follows:
The data source, for example a hospital, transmits the
identifying data of a patient to the pseudonymization
service, which checks if the record already exists in its
database. Depending on the outcome, either the exist-
ing pseudonym is returned or a new one is gener-
ated. After that, the data source exports the medical
records of the patient together with the pseudonym to
the researcher. This so-called informational separation
of powers effectively protects privacy: To link medi-
cal information to an actual person, an attacker would
have to gain access to both the IDAT and the MDAT
database.

In clinical practice, however, it is impractical for physi-
cians to retrieve patient records by a random string.
Thus, if frequent re-identification is required, for exam-
ple when data is also used for treatment of the affected
patients, the technological infrastructure must provide a
way to present IDAT along with MDAT to authorized
users, rendering the informational separation of powers
transparent.

Aim
Our aim was to develop an interface for a first-
level pseudonymization service that meets the follow-
ing requirements often present in medical collaborative
research:

• The interface is easily accessible by a wide range of
source IT systems, especially web browsers.

• Support for non-speaking pseudonyms.
Non-speaking means that a patient’s pseudonym is
not functionally determined by her IDAT, as would
be the case with hashing or encrypting it. This
ensures that re-identification through the pseudonym
alone is not possible. In addition, pseudonyms should
be human-readable and representable in web
application data and URLs.

• Support for transparent re-identification in the user’s
web browser in scenarios where users need to see
both IDAT and MDAT on the same webpage.

• Possibility to delegate user authentication to a
different system in order to reduce administrative

overhead. This is important because the
pseudonymization service is usually run by a third
party not necessarily involved in the research project
or specialized in pseudonymization.

• Result is available to be used by third-party software
implementations free of charge, and the possibility to
enhance the interface definition and share such
improvements with the research community and
with software developers.

It must be clarified that our solution is limited to
pseudonymization in the sense of replacing IDAT in the
form of well-defined attributes. Related tasks like remov-
ing embedded IDAT from image data or free text forms,
or preventing re-identification of patients through quasi-
identifying attributes in the MDAT are research areas of
their own and are not within the scope of this article. Also,
our distinction between IDAT and MDAT does not pre-
clude that the MDAT may contain some amount of demo-
graphic data (for example sex or age), provided that this
does not significantly increase the risk of re-identification.

Methods
RESTful web services
REST (“Representational State Transfer”) was introduced
as an architectural style for “distributed hypermedia sys-
tems” by Roy Fielding in his dissertation [1]. This style
is the foundation of a class of web applications denoted
as “RESTful”. However, as Fielding’s description is too
abstract to translate directly into practical guidelines,
developers of RESTful web services have relied on infor-
mal sources of information, leading to the situation of
“REST’s best practices” being “a matter of folklore” [2] and
to controversial discussions about what makes a web ser-
vice “RESTful” or not (see, for example, the discussion on
Fielding’s blog [3]).

A practical yet well-thought-out definition is given
by Richardson and Ruby under the name “Resource-
Oriented Architecture” [2]. Its core principles are:

• All interesting entities of the application (“resources”)
are represented by descriptive URIs.

• Access to and manipulations of resources are handled
by the standard HTTP methods (GET, POST, PUT,
DELETE) and follow their semantics.

• The protocol is stateless in the sense that a request is
independent from a previous request and includes all
the information the server needs to understand it.

We base the interface of our pseudonymization service
on these principles, as they fit its specific needs in several
aspects.

First, because of its nature as a container, the patient
list’s entities and operations translate naturally into

Lablans et al. BMC Medical Informatics and Decision Making (2015) 15:2 Page 3 of 10

resources and methods. For example, operations like
“add a patient to the database” or “delete session
1234” are implemented by the HTTP requests POST/
patients and DELETE/sessions/1234 (see section
‘Web interface’ for more examples).

Second, an interface based on pure HTTP makes the
implementation of client applications easy and indepen-
dent from the need for special libraries of frameworks: A
patient list client can be programmed in any language or
environment that is able to formulate HTTP requests, in
particular web browsers.

Last but not least, being based on HTTP, this protocol is
most firewall-friendly – a necessary requirement particu-
larly in the medical domain, where strict network policies
are common in order to protect sensitive data. Also,
network connections can easily be protected using Trans-
port Layer Security (SSL/TLS) to secure transmission of
sensitive data via the proven HTTPs protocol.

Separating transport security from the interface allows
administrators to freely choose reasonable security mea-
sures to fulfil the requirements of a specific application,
ranging from encryption to more complex solutions like
virtual private networks.

Re-identification using temporary identifiers
In order to support re-identification of patients (i.e. dis-
play IDAT) in the user’s web browser or a similar user
interface, we have implemented a data protection concept
that was collaboratively created by members of the TMF, a
German umbrella organization for medical research net-
works [4]. All sixteen data protection officers of the federal
states in Germany have meanwhile agreed to this con-
cept. A core requirement for use in applications related to
patient treatment is the concept of temporary identifiers
(“Temp IDs”). A Temp ID uniquely identifies a patient for
the duration of a user session and is implemented as a hash
value or a universally unique identifier (UUID) of suffi-
cient length to prevent brute-force attacks. It is handed
to the user’s web browser by the web server (hosted on
the IDAT server in the original concept) and subsequently
transmitted to the other server as an authorization ticket
to obtain the missing data. This model obviates the need
to authenticate the user on both the IDAT and the MDAT
server and improves privacy as the permanent PID is not
disclosed.

The first implementation of this concept in a web
application was, to our knowledge, the teleradiological
platform MDPE (Medical Data and Picture Exchange)
[5], out of which the generic software library DSLib [6]
evolved. DSLib facilitates the use of Temp IDs by supply-
ing server-side functions for user sessions shared between
two servers and JavaScript code for resolving Temp IDs
(i.e. retrieving the corresponding data) via asynchronous
requests (AJAX). It also offers solutions to problems

arising from the same origin policy [7], which poses
problems in the event that MDAT and IDAT servers
are run under different hostnames. We used the model
of the DSLib, especially the concept of Temp IDs, as
building blocks for supporting re-identification in our
pseudonymization interface. However, in contrast to the
TMF concept, we assume that user authentication and the
web site are hosted together with MDAT and that IDAT
is loaded via Temp IDs. This has proven more suitable
in practice as IDAT are most often handed by a trusted
third party not directly involved in the research project (as
already noted in the list of aims).

Optimal patient identifiers
For use as a pseudonym, Faldum and Pommerening have
proposed an “optimal code for patient identifiers” [8]. A
“PID” is a string of eight characters from an alphabet of
numbers and uppercase letters, excluding easily confus-
able entries such as “BIOS”/”8105”. Generation happens
deterministically by encrypting a counter that is incre-
mented for every new entry. The encryption algorithm
uses three secret keys stored in the PID generator’s con-
figuration. This procedure ensures that a PID contains
neither information on the original IDAT nor on the order
of generation, i.e. two instances with different values for
the keys produce PIDs in a different order even if the same
data is entered. Faldum and Pommerening have further
shown that in a given PID string, up to two errors can
be detected and one erroneous character as well as the
transposition of two adjacent characters can be corrected.

Although the presented interface does not enforce the
use of PID strings as pseudonyms, we encourage its use
due to the stated reasons. Regarding the use in web appli-
cations, the brevity of the PID string and its limitation to
ASCII letters and numbers support its handling in URLs
and text-encoded data.

Record linkage
In general, record linkage is the process that determines
which entries in a set of personal records belong to one
person. In the case of a pseudonymization framework,
record linkage ensures that multiple requests for the same
personal record return the same pseudonym, ideally even
when slight discrepancies such as spelling errors occur
(disregarding use cases where multiple pseudonyms for
one person exist within different domains). See Table 1 for
an example.

Table 1 Exemplary record linkage dataset

First name Last name Date of birth

Ivan Peter Fellegi 1935-06-22

Ivan Felligi 1935-06-22

Lablans et al. BMC Medical Informatics and Decision Making (2015) 15:2 Page 4 of 10

There is considerable research in designing and improv-
ing record linkage algorithms, for an overview, see [9,10].
The record linkage process in itself is not part of the
pseudonymization interface and thus out the of scope of
this article. However, the ability to identify patients across
multiple data sources is an essential motivation to del-
egate pseudonymization to a centralized service instead
of generating pseudonyms locally. We therefore recom-
mend that every implementation of the interface provide
a reasonable record linkage algorithm.

Development process
Having chosen the resource-oriented architecture pattern,
we translated the use-cases (outlined in the introduction)
into resources and methods. As a proof of concept, we
developed a Java implementation of the resulting inter-
face: Starting with a top-down approach, we implemented
resources and methods using the Jersey framework for
RESTful web services [11]. In a following bottom-up
phase, we derived the required backend elements such as
persistency methods and data classes from the resources
and methods and implemented them. Lastly, we added the
code for serving requests and record linkage.

Results
Web interface
In the most common use case of a web-based medical reg-
istry, three parties are involved in a request to the patient
list. Apart from the patient list itself, this includes the user
who wants to retrieve a PID for a patient, and the MDAT
server, which also hosts the HTML interface. As shown
in the following, the MDAT server serves as a kind of
intermediary between the human user and the patient list.

Resources
In the following, we first introduce the most important
resources of the patient list’s interface. Then we demon-
strate its usage by an example.

Sessions (/sessions) Similar to a browser’s session
with a web server, a session in the patient list allows
data associated with a client to be stored beyond
a single request. In order to maintain compatibil-
ity with the REST paradigm’s property of stateless-
ness (compare section ‘The RESTfulness of the patient
list interface’), a session is modeled as a resource
/sessions/{sessionid}, where {sessionid} is a
unique identifier. Data items belonging to a session are
modeled as subordinate resources, tokens (as described
hereinafter) being the most important ones.

Sessions are created and managed by the MDAT server.
It is advisable that the MDAT server mirror every browser
session with a session on the patient list server, although
this cannot be enforced due to the fact that authentication

of individual users is a duty of the MDAT server (see bul-
let point “Possibility to delegate user authentication” in
section ‘Aim’). Mapping sessions to users can easily be
implemented by creating a session once a user logs in and
storing the session id in the user account data. . Once the
user logs out, the MDAT server only has to delete the
corresponding session resource in order to invalidate all
tokens associated with that session (see the next section
on tokens).

Tokens (/sessions/{sessionid}/tokens) A token
represents the authorization to perform a specified action
in the patient list, for example to request a PID for a
new patient. As expressed by the resource path, every
token belongs to one session. Tokens are usually handed
to the user’s web browser by the MDAT server. No other
authentication is required other than knowing the token
identifier, which is a random UUID as proposed in RFC
4122 [12].

Patients (/patients) Obviously, patients are the most
important entities in a patient list, identified by a PID.
A PID request is modeled as a POST request to this
resource. The request bears a set of identifying attributes.

Example communication
Figure 1 shows an example communication in which
a pseudonym for a patient is retrieved in order to
enter medical data into a pseudonymized registry. We
assume that the pseudonymization service is available
at https://pseudonymization.org/foo and is
accessed by the MDAT server with the fully qualified
domain name mdat-server.org. The pseudonymiza-
tion process is initiated by a user through her web browser.
Both the web browser and the MDAT server act as clients
of the patient list.

First, the user logs into the registry system with her cre-
dentials 1©. After successful authentication, the MDAT
server registers a session on the IDAT server through
a POST request to the /sessions resource 2©. The
MDAT server authenticates itself against the patient list
by supplying a secret key, “sesame” in this example, in the
HTTP header mainzellisteApiKeya. A new session
is created and its URL is returned 3©. This session is asso-
ciated with the browser session between the user’s web
browser and the MDAT server, although the web browser
never accesses it directly. The MDAT server now com-
pletes its own initialization of the user session and returns
the start page of the registry application 4©.

Next, we assume that the user wishes to enter medical
data of a new patient. She clicks on a button or link that
the MDAT application provides for requesting a new PID
5©. The MDAT server now creates a token by a POST

request to the tokens resource within the active session

Lablans et al. BMC Medical Informatics and Decision Making (2015) 15:2 Page 5 of 10

Figure 1 Example communication between user, web browser, MDAT server and pseudonymization service (IDAT server).

(/sessions/{session-id}/tokens, 6©). Supplied
with the request is a JSON object with the components
type and data. The token type is a string that defines for
what action the token is valid. In this case, the token type
is addPatient, i.e. the token allows a patient to be added
to the list. The data component of the token is another
JSON object where, depending on the token type, specific
key-value pairs can be stored. For an addPatient token,
a callback address can be supplied, to which the patient
list posts a request after a successful PID request has been
made with the token. The purpose of the callback is that
the MDAT server is notified of the result of a PID request
in advance of the user’s web browser. It can then perform
initializations such as creating a medical record for a new
patient or redirecting the user to the requested patient.

Having received the new token 7©, the MDAT server
redirects the user to an HTML page on the IDAT server,
which provides a form to enter IDAT for a PID request (8©,
9©, 10©). The token identifier is added as a URL parameter

for authorization. In this example, it is assumed that the
form is opened in a new browser window, but principally
it could be embedded in an IFrame. The form is submit-
ted by a POST request to the /patients resource, again
with the token identifier added for authorization 11©. The
IDAT server now utilizes its record linkage component
to decide whether to return an existing or a new PID 12©.
The MDAT server is notified of the result through the
callback address stored in the token 13©, and the PID is pre-
sented to the user in the IDAT window 14©. She can now
copy it to the MDAT form 15© and proceed with entering

Lablans et al. BMC Medical Informatics and Decision Making (2015) 15:2 Page 6 of 10

the patient’s MDAT. As a convenient alternative, the user’s
web browser can be referred to an arbitrary page on the
MDAT server by supplying a redirect URL upon creating
the token.

The Temp IDs used for re-identification in the
user’s web browser are realized by another token type,
readPatients, thereby omitting the need of an addi-
tional data structure. Like the addPatient token, it is
created by a request from the MDAT server to the tokens
resource. The token identifier can then be embedded in
the HTML output of the MDAT server and resolved in
the web browser by JavaScript code. Another use case
that can be implemented by this token type is the trans-
formation of one pseudonym into another (“second-level
pseudonymization”). For this purpose, the token can be
configured to allow reading pseudonyms of a specified
type (i.e. domain).

Reference implementation
As proof of concept and reference implementation, we
have developed “Mainzelliste”. Figure 2 illustrates its gen-
eral components and its interfaces to the outside world:
Clients (i.e. other servers, the administrator and users)
connect to the application via the described REST inter-
face. A “Resources” component provides methods to
which the incoming requests are mapped by the use of
JAX-RS annotations. It then uses the following backend
components to fulfill the request:

• Session handling: Provides a (non-persistent)
container to store sessions and tokens and provides
methods to access them.

• HTML rendering: Utilizes JavaServer Pages to render
the HTML interface for admin and user access.

• Matching: Contains the classes that are involved in
the record linkage, including preprocessing of
incoming fields.

• PID generation: Provides generation and verification
functions for ID strings, such as the algorithm by
Faldum and Pommerening [8].

• Persistency: Provides high-level methods to save and
retrieve data to and from the database, such as “get a
list of all patients” or “add patient (. . .) to the list”.
The persistency component accesses a relational
database through a persistency layer, which handles
the necessary object-relational mapping.

• Configuration: This singleton object provides access
to the application’s configuration read from a
properties file at startup. All other components
retrieve their specific configuration properties from
this component.

Mainzelliste satisfies the functional requirements
stated in the introduction: It generates non-speaking

pseudonyms, supports re-identification in a web browser
and offers all functions through the described RESTful
web service. Its record linkage implementation is based on
the “Epilink” algorithm proposed by Contiero et al. [13].

Mainzelliste has proven to be production stable and has
been released as open-source software to be freely used,
reverse-engineered and modified by any interested party.

Discussion
In order to discuss the advantages and shortcomings of
our interface, we compare the reference implementation
described in the preceding section to similar software
applications.

Related work
PID generator: interface and compatibility
In order to accommodate the needs of research communi-
ties for a first-level pseudonymization tool, Pommerening
et al. designed the PID generator [14]. Its main features
are a rule-based record linkage algorithm and the cre-
ation of non-speaking pseudonyms via the algorithm by
Faldum and Pommerening (see section ‘Optimal patient
identifiers’). The PID generator and its drawbacks were a
major motivation for developing Mainzelliste as a possible
replacement.

Since its initial release in 2003, the PID generator has
been in use by 10-20 networks (a figure estimated in 2012
by the TMF office, its main distributor), rendering it a
de-facto standard for German networks. However, hav-
ing aged with little improvements, we do not deem the
PID generator suitable for a state-of-the-art implementa-
tion of research infrastructure anymore. This verdict is
for two reasons: First, the original PID generator offers
only a command-line interface, meaning that network
access has to be provided by an additional layer [15] using
software components that have meanwhile become out-
dated. Second, its inability to handle Unicode characters
and its incompatibility with 64-bit systems pose difficul-
ties for the application in an international context and
in combination with current computing infrastructure.
More recent implementations such as those presented
here overcome these restrictions through their web inter-
face and their use of Java, thus providing compatibility
with a variety of platforms.

IHE PIX/PDQ
While a patient list as outlined in this paper is to some
extent comparable to a PIX/PDQ provider, there are
subtle but important differences. Concerning the over-
all structure, the PIX profile is based on connecting
several domains (like departments or different software
systems of a hospital) in which patients are already
uniquely identified. The central component that links the
domain-specific identifiers of a patient (“Patient Identifier

Lablans et al. BMC Medical Informatics and Decision Making (2015) 15:2 Page 7 of 10

Figure 2 Components of the Mainzelliste reference implementation. The arrows indicate in which direction components of the application
access each other. See section ‘Reference implementation’ for a description of the components and their relations.

Cross-reference Manager”) receives patient data not from
arbitrary sources, but from only one specific data provider
(“Patient Identity Source Actor”) for each domain [16]. In
the case of a research network, however, there is often only
one domain (i.e. each patient is assigned a single, network-
wide patient identifier), but requests to enter patient data
come from a large number of users.

In addition to these structural differences, typical data
flows of a research network do not translate easily into
PIX/PDQ transactions. Consider, for example, the case of
supplying identifying data and retrieving a pseudonym.
The transaction “Patient Identity Feed”, by which a patient
is registered at the PIX provider, does not return a
result and requires an existing patient identifier to be

transmitted in the request. To retrieve patient identifiers
(i.e. pseudonyms), PIX/PDQ provides “PIX query”, but
this transaction does not accept IDAT; rather, it requires
the sender to provide an existing patient identifier. Rel-
atively speaking, the best suitable option for the men-
tioned use case (retrieving a pseudonym for a patient)
is the “Patient Demographics Query” transaction, which
accepts identifying data as search criteria. Utilizing PDQ
as a pseudonymization function, however, would require
behavior not expected from its specification and nor-
mal use: First, PDQ is meant as a read-only query, but
pseudonymizing a new patient would require creating a
new patient record and identifier. Second, PDQ allows a
list of patients to be retreived when providing incomplete

Lablans et al. BMC Medical Informatics and Decision Making (2015) 15:2 Page 8 of 10

data (e.g. last name only) – the use for pseudonymiza-
tion would require deactivating this functionality, thereby
violating the specification.

Open EMPI: REST-RPC Hybrid vs. “true” REST
OpenEMPI (Enterprise Master Patient Index) is an open-
source application that provides a central patient registry
[17]. It implements the IHE profiles “Patient Identity
Cross-referencing” (PIX) and “Patient Demographics
Query” (PDQ) and shares their drawbacks mentioned
in the previous paragraph, making it more a candidate
for integration in a clinical context (e.g. a clinical data
warehouse) than for a distributed research project. The
interface of OpenEMPI, although described as being
RESTful, is in fact of the style denoted as “REST-RPC-
Hybrid” by Richardson and Ruby [2] – remote procedure
calls embedded in a resource-based interface. Specifi-
cally, OpenEMPI utilizes resources to represent functions
that could simply be modeled by standard HTTP meth-
ods. For example, removing a record is not modeled as
a DELETE on a resource that represents the patient,
but as a PUT on a resource that represents the func-
tion (/person-manager-resource/deletePerson),
with the data necessary to identify the patient attached
in the request body [17]. This is a reasonable approach
to building a web interface, but the result is consid-
erably less intuitive and self-explanatory than a true
RESTful interface. In practice, developers who program
client applications will have to consult the interface
documentation more often if every function is modeled
by a resource than if well-known HTTP methods are
utilized.

E-PIX: “Big Web Service” vs. REST
At the university of Greifswald, Schack et al. have devel-
oped the pseudonymization tool E-PIX, implemented as
a Java EE compliant application, for use within their
research project GANI_MED (Greifswald Approach to
Individualized Medicine) [18]. In contrast to Mainzelliste,
whose REST interface sticks with the capabilities provided
by HTTP, E-PIX utilizes additional layers, namely SOAP
and WS-Security, to understand and process requests. We
agree with Richardson and Ruby that the complexity of
such “Big Web Services” ties up resources better put into
features and performance – concerning the development
of the software itself as well as of clients connecting to
it [2]. However, one must keep in mind that E-PIX was
initially developed for use in an application where integra-
tion into the existing clinical IT infrastructure was impor-
tant and no significant network limitations (bandwidth,
latency) had to be considered.

In contrast to our design, E-PIX handles user roles
and authorization as part of the IDAT application. As
stated before, we deem that impractical for the frequent

case that a pseudonymization service is run by external
providers. Once again, the different approach of E-PIX
is motivated by its use in a clinical environment and
seems reasonable for the originally intended clinical use
case.

The developers of E-PIX have integrated the Main-
zelliste interface into E-PIX. As a result, E-PIX can be
integrated in a clinical context (due to its conformance
to relevant IHE profiles) as well as in web-based research
network applications.

The RESTfulness of the patient list interface
Having criticized the hybrid REST interface style of Open-
EMPI, it is worth questioning whether our pseudonymiza-
tion interface is truly “RESTful”. In fact, there is one
arguable point: The statelessness of the protocol. Field-
ing describes statelessness as the fact that “each request
from client to server must contain all of the informa-
tion necessary to understand the request, and cannot take
advantage of any stored context on the server” [1]. In
Richardson’s and Ruby’s terms, statelessness means that
“[t]he server never relies on information from previous
requests” [2]. In case of the patient list, the fact that access
to a session relies on that session being created before-
hand looks like a violation of this requirement: A POST
to /sessions/abc/tokens can only be successful if a
session named “abc” has been created by a previous POST
/sessions, and the server has to memorize the result of
the first request to serve the second. However, this argu-
ment can be refuted by an alternative view: Creating a
token does not rely on the specific request by precisely this
client, but on the sole existence of the session. After all,
the session is not private between one client and the server
(similar to the working directory in an FTP session), but
disclosed as a resource with its own URI. In fact, any other
client could access the session, provided that he knows its
URI and has a valid access key. Therefore, the existence
of the session falls into the category that Richardson and
Ruby denote as “resource state”, meaning state informa-
tion that “is the same for each client”; they argue that this
kind of state information is exempted from the postulation
of statelessness.

The question as to what extend the patient list operates
statelessly is not purely academic, but a question of flex-
ibility: Thanks to the statelessness of the protocol, there
are few restrictions on the order in which requests can
be made. For example, a client can choose based on the
given application’s requirements to either first create ten
sessions, and thereafter one token in each of them, or
to instantiate sessions and their associated tokens alter-
nately – in terms of Richardson and Ruby, the client
itself is “in charge of managing its own path through the
application” [2].

Lablans et al. BMC Medical Informatics and Decision Making (2015) 15:2 Page 9 of 10

Distribution and dissemination
The described RESTful pseudonymization interface has,
in addition to the reference implementation, already
been implemented by another pseudonymization ser-
vice (E-PIX, see section ‘E-PIX: “Big Web Service” vs.
REST’), a widely used commercial electronic data cap-
ture system [19], and, to a large extent, by the German
National Cohort [20,21]. Also, Skripcak et al. have used
the interface with OpenClinica as part of a platform for
radiotherapy [22].

The Mainzelliste reference implementation is, in addi-
tion to several of our own projects [23-25], already in
production use for a European-wide web-based registry
for childhood interstitial lung diseases [26]. Further usage
metrics are hard to obtain due to its release as AGPL-
licensed software that is free to download and redistribute.
The BitBucket repository has been forked six times and
we receive enhancement requests and various feedback
on a mailing list consisting of thirteen sites located in
Switzerland and Germany.

However, dissemination currently seems to stop at the
German linguistic border. As a consequential next step,
we aim to extend further development of the interface
as well as its reference implementation to the interna-
tional scientific community and its software developers.
To do so, we are currently establishing thorough English
technical documentation, a bug tracker to process change
requests, and a system for backward compatibility.

Conclusion
We have presented a RESTful pseudonymization inter-
face that fits the requirements of web-based applica-
tions in medical research networks. Apart from first-level
pseudonymization and record linkage, it supports trans-
parent re-identification and delegation of authentication.
Thanks to being RESTful, it is firewall-friendly, flexible
and easily implemented. Integrated into two patient list
applications and a widely used commercial EDC system,
the interface has gained somewhat wide distribution.

We have also provided a reference implementation com-
prising a flexible record linkage framework and a sci-
entifically grounded algorithm to generate non-speaking
pseudonyms. Mainzelliste is suited for production envi-
ronments and available as free software under the GNU
Affero General Public License (AGPL version 3 or later)
at http://www.mainzelliste.de, with its source
code available in a public repository at https://
bitbucket.org/medinfo_mainz/mainzelliste.

Endnote
aThe naming of the parameter relates to the reference

implementation “Mainzelliste”, see section ‘Reference
implementation’.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
ML and AB designed the REST interface and implemented the reference
implementation. FÜ critically reviewed the manuscript. All authors read and
approved the final manuscript.

Acknowledgements
This work is a result of projects funded by the German Federal Ministry of
Education and Research (Cluster for Individualized Immune Intervention,
131A029I), the German Consortium for Translational Cancer Research and the
German Federal Ministry of Health (Open Source Registry System for Rare
Diseases in the EU, IIA5-2513-FSB-511).

Received: 19 September 2014 Accepted: 12 December 2014

References
1. Fielding RT. Architectural styles and the design of network-based

software architectures. PhD thesis, University of California; 2000.
2. Richardson L, Ruby S. Restful Web Services, 1st edn. Sebastopol, CA:

O’Reilly; 2007.
3. Fielding RT. REST APIs Must Be Hypertext-driven. http://roy.gbiv.com/

untangled/2008/rest-apis-must-be-hypertext-driven. Accessed 17 Apr
2014.

4. Reng C-M, Pommerening K, Specker C, Debold P. Generische Lösungen
zum Datenschutz Für die Forschungsnetze in der Medizin: Datenschutz
und Medizinische Forschung Sind Vereinbar. Berlin: Medizinisch
Wissenschaftliche Verlagsgesellschaft; 2006.

5. Spitzer M, Ullrich T, Ückert F. Securing a web-based teleradiology
platform according to german law and “best practices”. Stud Health
Technol Inform 2009;150:730–4.

6. Lablans M, Brüntrup R, Drepper J, Ückert F. Eine generische
Softwarebibliothek zur Umsetzung des TMF-Datenschutzkonzepts A im
Webeinsatz In: Schmücker P, Elsässer K, Hayna S, editors. GMDS 2010.
Mannheim; 2010.

7. Barth A. RFC 6454: The Web Origin Concept. http://tools.ietf.org/search/
rfc6454.

8. Faldum A, Pommerening K. An optimal code for patient identifiers.
Comput Methods Prog Biomed 2005;79(1):81–8.
doi:10.1016/j.cmpb.2005.03.004.

9. Elmagarmid AK, Ipeirotis PG, Verykios VS. Duplicate record detection: a
survey. IEEE Trans Knowl Data Eng 2007;19(1):1–16.

10. Christen P. Data matching: concepts and techniques for record linkage,
entity resolution, and duplicate detection. Berlin, Heidelberg: Springer;
2012.

11. Oracle Corporation. Jersey. RESTful Web Services in Java. http://jersey.java.
net/. Accessed 7 Jun 2014.

12. Leach PJ, Mealling M, Salz R. RFC 4122: A Universally Unique IDentifier
(UUID) URN Namespace. http://tools.ietf.org/html/rfc4122. Accessed 6
Jan 2014.

13. Contiero P, Tittarelli A, Tagliabue G, Maghini A, Fabiano S, Crosignani P,
et al. The EpiLink record linkage software: presentation and results of
linkage test on cancer registry files. Methods Inf Med 2005;44(1):66–71.

14. Glock J, Herold R, Pommerening K. Personal identifiers in medical
research networks. evaluation of the personal identifier generator in the
competence network paediatric oncology and haematology. GMS
Medizinische Informatik, Biometrie und Epidemiologie 2006;2(2):06.

15. Mate S. Evaluation von i2b2 am Universitätsklinikum Erlangen. Seminar
paper, University of Erlangen-Nuremberg; 2009.

16. IHE International, Inc. IHE IT Infrastructure Technical Framework, Volume
2a (ITI TF-2a): Transactions Part A 2013. http://www.ihe.net/uploadedFiles/
Documents/ITI/IHE_ITI_TF_Vol2a.pdf Accessed 29 Aug 2014.

17. OpenEMPI. An Open Source Enterprise Master Patient Index. http://
openempi.kenai.com/.

18. Schack C, Möller A. E-PIX – Master Patient Index (MPI) Software zur
eindeutigen Wiedererkennung von Patienten innerhalb heterogener
Klinischer-Informations-Systeme unterschiedlicher Standorte. In:
Mainz//2011. Mainz, 26.-29.09.2011. Düsseldorf: German Medical Science
GMS Publishing House; 2011.

http://www.mainzelliste.de
https://bitbucket.org/medinfo_mainz/mainzelliste
https://bitbucket.org/medinfo_mainz/mainzelliste
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://tools.ietf.org/search/rfc6454
http://tools.ietf.org/search/rfc6454
http://jersey.java.net/
http://jersey.java.net/
http://tools.ietf.org/html/rfc4122
http://www.ihe.net/uploadedFiles/Documents/ITI/IHE_ITI_TF_Vol2a.pdf
http://www.ihe.net/uploadedFiles/Documents/ITI/IHE_ITI_TF_Vol2a.pdf
http://openempi.kenai.com/
http://openempi.kenai.com/

Lablans et al. BMC Medical Informatics and Decision Making (2015) 15:2 Page 10 of 10

19. interActive Systems GmbH. secuTrial 4.5.1.15 (Release Notes.) 2013.
https://secutrial.hcuge.ch/crc/docs/manuals/sT-releasenote_secuTrial_4.
5_20131216_1.8.pdf. Accessed 27 Mar 2014.

20. Havemann C, Fitzer K, Ostrzinski S, Wolff R, Bialke M, Bahls T, et al.
Datenschutz- und IT-Sicherheitskonzept für die unabhängige
Treuhandstelle der Nationalen Kohorte 2014. http://www.nationale-
kohorte.de/content/treuhandstellenkonzept.pdf. Accessed 16 Sept 2014.

21. German National Cohort (GNC) Consortium. The german national cohort:
aims, study design and organization. European J Epidemiol 2014;29(5):
371–82.

22. Skripcak T. Lessons learned from integrating OpenClinica with other IT
systems. https://community.openclinica.com/sites/fileuploads/akaza/
cms-community/Tomas%20Skripcak%20-%20Lessons%20learned.pdf.
Accessed 16 Sept 2014.

23. Kadioglu D, Ückert F. Integration von Daten aus der
Gesundheitsversorgung und Biomarkeranalysen im patientenzentrierten
Biomarkerforschungs- und Entwicklungshub des Clusters für
individualisierte Immunintervention (Ci3). In: GMDS 2014. Göttingen,
07.-10.09.2014. Düsseldorf: German Medical Science GMS Publishing
House; 2014. http://www.egms.de/static/de/meetings/gmds2014/
14gmds106.shtml. Accessed 18 Sept 2014.

24. Lablans M, Borg A, Eils J, Felder B, Herzog E, Kadioglu D, et al. Konzept
der CCP-IT des DKTK. http://www.unimedizin-mainz.de/fileadmin/
kliniken/imbei/Dokumente/MI/AGVF/Konzept_CCP-IT.pdf. Accessed 18
Sept 2014.

25. Lablans M, Muscholl M, Hartz T, Storf H, Ückert F. OSSE – open source
registry software solution. In: ECRD 2014: The European Conference on
Rare Diseases & Orphan Products, Berlin; 2014.

26. chiLDEU research consortium. Ethics/Data Safety. http://www.klinikum.
uni-muenchen.de/Child-EU/en/research/ethics_data_safety/index.html.
Accessed 18 Sept 2014.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

https://secutrial.hcuge.ch/crc/docs/manuals/sT-releasenote_secuTrial_4.5_20131216_1.8.pdf
https://secutrial.hcuge.ch/crc/docs/manuals/sT-releasenote_secuTrial_4.5_20131216_1.8.pdf
http://www.nationale-kohorte.de/content/treuhandstellenkonzept.pdf
http://www.nationale-kohorte.de/content/treuhandstellenkonzept.pdf
https://community.openclinica.com/sites/fileuploads/akaza/cms-community/Tomas%20Skripcak%20-%20Lessons%20learned.pdf
https://community.openclinica.com/sites/fileuploads/akaza/cms-community/Tomas%20Skripcak%20-%20Lessons%20learned.pdf
http://www.egms.de/static/de/meetings/gmds2014/14gmds106.shtml
http://www.egms.de/static/de/meetings/gmds2014/14gmds106.shtml
http://www.unimedizin-mainz.de/fileadmin/kliniken/imbei/Dokumente/MI/AGVF/Konzept_CCP-IT.pdf
http://www.unimedizin-mainz.de/fileadmin/kliniken/imbei/Dokumente/MI/AGVF/Konzept_CCP-IT.pdf
http://www.klinikum.uni-muenchen.de/Child-EU/en/research/ethics_data_safety/index.html
http://www.klinikum.uni-muenchen.de/Child-EU/en/research/ethics_data_safety/index.html

	Abstract
	Background
	Methods
	Results
	Conclusion
	Keywords

	Background
	Aim

	Methods
	RESTful web services
	Re-identification using temporary identifiers
	Optimal patient identifiers
	Record linkage
	Development process

	Results
	Web interface
	Resources
	Sessions (/sessions)
	Tokens (/sessions/{sessionid}/tokens)
	Patients (/patients)

	Example communication

	Reference implementation

	Discussion
	Related work
	PID generator: interface and compatibility
	IHE PIX/PDQ
	Open EMPI: REST-RPC Hybrid vs. ``true'' REST
	E-PIX: ``Big Web Service'' vs. REST

	The RESTfulness of the patient list interface
	Distribution and dissemination

	Conclusion
	Endnote
	Competing interests
	Authors' contributions
	Acknowledgements
	References

