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Some of the most potent inflammatory mediators share a lipid origin. They regulate a wide spectrum of cellular processes including
cell proliferation and apoptosis. However, the precise roles and ways (if any) in which these compounds impact the growth
and apoptosis of leukemic blasts remain incompletely resolved. In spite of this, significant advances have been recently made.
Here we briefly review the current knowledge about the production of lipid mediators (prostaglandins, leukotrienes, platelet-
activating factor) by leukemic blasts, the enzymatic activities (phospholipase A, cyclooxygenases, lipoxygenases) involved in their
productions and their effects (through specific membrane bound receptors) on the growth, and apoptosis of leukemic blasts.

1. Introduction

Some of the most potent inflammatory mediators share a
lipid origin. The action of phospholipase A, (PLA;) on
membrane phospholipids produces free fatty acids such as
arachidonic acid (AA) and the phospholipid backbone. To
the former belongs eicosanoids (such as prostaglandins,
prostacyclin, thromboxane, and leukotrienes) through the
cyclooxygenase (COX) and lipoxygenase (LOX) pathways;
and to the latter, platelet-activating factor (PAF) (Figure 1)
[1, 2]. While countless studies have highlighted the actions of
eicosanoids and PAF on normal human mature myeloid and
lymphoid cells (from hematopoietic progenitors to mature
blood cells), their effects on leukemic blasts are poorly
documented, and furthermore, their putative involvements
during leukemic diseases remain almost speculative. This
paper focuses on new results about lipid mediators and
human leukemic blast cells from acute myeloid (AML) and
acute lymphoid (ALL) patients. The vast majority of results
reported previously have been obtained with AML blasts
without maturation according to the classification system of
the World Health Organization, thus corresponding to the
past AML Mj_, nomenclature.

2.PLA,, PLA, Receptors, and Human
Leukemic Blasts

PLA, catalyzes the hydrolysis of the sn-2 position of
membrane glycerophospholipids to liberate the eicosanoid
precursor AA (Figure 1) [3, 4]. Three distinct families
are documented: low molecular weight soluble forms of
PLA, (sPLA,); Ca?*-dependent high molecular weight PLA,
(cytoplasmic PLA;, cPLA;); cytoplasmic Ca?"-independent
high molecular weight PLA; (iPLA;). In addition, the sPLA,
family is implicated in several biological processes such as
inflammation and host defence [3, 4]. Nine isoenzymes have
been identified. The cPLA; family consists of four members,
with cPLA,-IVA being the central regulator of the stimulus-
coupled cellular AA release [3, 4]. The iPLA, (PLA,-VI) plays
a major role in phospholipid remodelling. Freshly isolated
leukemic blasts from AML and ALL patients express mRNA
from four out of five cPLA, (PLA,-IVA, PLA,-IVB, PLA,-
IVC, and PLA,-VI) and six out of nine sPLA, (PLA,-IB,
PLA,-IIA, PLA,-IID, PLA,-V, PLA,-X, and PLA,-XII) and
that transcript levels exhibit wide variations as compared
to control blood mononuclear cells [5]. One of the most
notable findings is that AML and ALL blasts express high



amounts of PLA,-VI and PLA,-X. This could be extremely
significant as these two enzymatic activities play a major
role in AA release for the generation of COX- and LOX-
derived lipid mediators. Thus, AML and ALL blasts have
the potential to express multiple isoforms of cPLA, and
sPLA, which could be of importance given the role of these
enzymes in inflammation, generation of lipid mediators,
anticoagulant activity, and bacterial infection. Biological
activities of PLA; are attributed to their enzymatic capacity
to hydrolyze membrane phospholipids. However, in addition
sPLA, exerts various biological proinflammatory responses
through the binding to the cell surface PLA, receptor (PLA,-
R) [6]. Of interest is the functional membrane PLA,-R
found on AML and ALL blasts strengthening a role for PLA,
signalling in these cells (Denizot and coll., in preparation).
The concept of anti-inflammation is currently evolving
with the discovery of endogenous inhibitory circuits, such
as the annexin (ANX) system, that are important in the
control of the host inflammatory response [7]. ANX-1
(also termed lipocortin) is a well-known cPLA;inhibitory
protein produced by and acting on several blood cell types
such as monocytes/macrophages and polymorphonuclear
leukocytes. The ANX-1 protein level is markedly elevated in
AML blasts [8], where ANX-1 is not only considered as an
anti-inflammatory and tumor suppressor molecule (through
its inhibiting cPLA; activity) but also as one of the “eat-me”
signals on apoptotic cells to be recognised and ingested by
phagocytes [8]. It is, thus, tempting to speculate that PLA,-
R and ANX-1 might take an important place in the “yin”
and the “yang” of the inflammatory reaction occurring in
AML blasts. During the past decade, considerable research
has been directed towards the identification of new biological
targets for AML treatment. It is tempting to suggest that
PLA,-R antagonists might be one of them especially with
respect to the emerging roles for PLA, enzymes in cancer [9].

3. COX and Human Leukemic Blasts

In the COX pathway, AA is converted to PGH, by COX-1
or COX-2 enzymes. PGH, is subsequently metabolised to
generate different prostanoids, depending on the enzymes
expressed in the cell [1]. The COX-1 isoform is typically
constitutively expressed unlike the inducible COX-2 one.
The growth-promoting properties of COX-2 in physiological
responses are diverted in malignancies [10]. COX-1 and
COX-2 transcripts are documented in AML and ALL blasts
[11], but only the COX-1 protein is found. Similarly COX-
1, but not the COX-2 protein, is detected in human primary
promyelocytic blasts during differentiation [12]. In fact, the
AML and ALL blasts can express the COX-2 protein in
response to lipopolysaccharide (LPS) but only in the subsets
of patients [13]. The ability of ALL blasts to express COX-
2 is consistent with its presence in stimulated normal B-cells
and in chronic lymphocytic leukaemia (CLL) B-cells [14, 15].
The production of COX-2 in response to LPS by AML blasts
is consistent with data reporting that LPS is a potent inductor
of COX-2 in mature monocytes/macrophages [16] and that
stimulated HL-60 cells (an AML cell line with an My/;
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subtype) express COX-2 [17]. The heterogeneity in the LPS-
stimulated COX-2 expression by AML blasts is not linked
to a different Toll-like receptor (TLR2 or TLR4) expression
[13] and remains an open question that requires further
evaluation.

4. PGE,, EP Receptors, and Human
Leukemic Blasts

Following the action of the COX pathway, PGH, is sub-
sequently metabolized to generate different prostanoids,
depending on the enzymes expressed in the cell. Prostanoids
include prostacyclin (PGI,), thromboxane A, (TXA;), and
prostaglandin E, (PGE,), synthesized by a PGI, synthase, a
TXA synthase, and a PGE synthase, respectively [1]. Three
PGE synthase isoforms exist: inducible membrane-bound
PGE synthase-1 (mPGES-1), constitutive membrane-bound
PGE synthase-2, and cytosolic PGE synthase. In addition,
the ability of PGE, to regulate the immune system has
been widely explored [18]. Data reporting the ability of
PGE, to modulate several functions in mature blood cells
such as monocyte-macrophages, dendritic cells, and T and
B lymphocytes can be readily found. Human AML and
ALL blasts spontaneously release PGE, [11], with PGE,
synthesis being inhibited by indomethacin. Transcripts for
mPGES-1 are detected in AML and ALL blasts suggesting
its role in PGE, synthesis (Denizot and coll., unpublished
results). PGE, effects are well known and are mediated
through interactions with four distinct membrane-bound
G-protein-coupled EP receptors: EP;, EP,, EP3, and EP,4
[18]. EP, and EP, are coupled to Gy and stimulate cAMP
production which leads to gene regulation. EPs is coupled to
Gj and inhibit cAMP synthesis. EP; is coupled to G/, and
ligand binding induces intracellular calcium level variations.
Functional EP, receptors are present on AML and ALL
blasts [19, 20]. In contrast to EP, receptors, no functional
EP;, EP3, and EP4 receptors are found [20]. In view of the
potentially important role of PGE, in processes of cancer
and leukocyte maturation and function, PGE, effects have
been investigated on blast cell proliferation and apoptosis.
PGE, enhances the spontaneous and LPS-stimulated growth
of AML blasts without affecting their apoptosis [11]. In
summary, AML and ALL blasts secrete PGE,. A role for PGE,
as a compound contributing to AML cell proliferation (via an
EP; receptor-mediated pathway) can be hypothesized.

5. TXA,, PGI;, and Human Leukemic Blasts

TXA, and PGI, are two other potent COX metabolites.
TXA, is produced abundantly by platelets upon exposure
to injured blood vessels and thus exhibits potent platelet-
aggregating and vessel-contracting activities. PGI, is the
major COX-derived product of AA formed in the macrovas-
cular endothelium and is a potent inhibitor of platelet aggre-
gation activity and vessel vasodilatation activity [21]. AML
and ALL blasts express low levels of TX synthase transcripts
compared to normal blood mononuclear cells (Denizot and
coll., unpublished results) and additionally produce very
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Ficure 1: Simplified representation of the pathways involved in eicosanoid and platelet-activating factor formation and signal transduction.
Enzymatic activities and receptors are in rectangles and ovals, respectively. PLA,, phospholipase A,; COX, cyclooxygenase; LOX, lipoxyge-
nase; PGH,, prostaglandin H,; PGE,, prostaglandin E,; PGI,, prostacyclin; TXA,, thromboxane A,; HPETE, hydroperoxyeicosatetraenoic
acid; LTBy, leukotriene B4; HETE, hydroxyeicosatetraenoic acid; PAF, platelet-activating factor; PAFR, PAF receptor; EP;_4, subtype 1-4 of
the PGE, receptor; IP, PGI, receptor; TXA,R, TXA, receptor; BLT,_,, subtype 1 and 2 of the LTBy receptor.

low amounts of TXA; in response to a calcium ionophore
stimulation [22]. HL-60 cells have also been shown to
release TXA,, but only after induction of differentiation
[23, 24]. PGI synthase transcripts are absent in AML and
ALL blasts, a result similar to that found in control blood
mononuclear cells (Denizot et coll., unpublished results).
In accordance with the absence of PGI transcripts in AML
and ALL blasts, calcium ionophore-stimulated blasts do not
release PGI, (Denizot et coll., unpublished results). TXA,
and PGI, act through membrane receptors (namely TXA;R
and IP for TXA; and PGI,, resp.) [25, 26]. As to whether
AML and ALL blasts release TXA; and PGI,, they express
levels of transcripts for TXA;R and IP equal or higher
than those found in control blood mononuclear cells [27].
TXA,R and IP receptors belong to the class of Gs-protein-
coupled receptors [25, 26]. Stimulation of leukemic blasts

with U-46619, the TXA, receptor agonist U-46619, and PGI,
stimulate in a dose-dependant manner cAMP synthesis from
leukemic blasts showing the presence of functional TXA,R
and IP receptors, respectively [27]. However, simulation of
leukemic blast with U-46619 and PGI, has no effect on
their growth and apoptosis rate. At the present time the
physiological meaning of functional TXA;R and IP receptors
on leukemic blasts remains an open question. In conclusion,
among the various COX-derived metabolites of AA only
PGE, has, thus, a significant effect on the growth of AML
blast cells [11], and none of them affect their apoptosis rate.

6. LOX and Human Leukemic Blasts

The LOX pathway involves the conversion of AA to 5-,
12-, or 15-hydroperoxyeicosatetraenoic acids (HPETE) by
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FIGURE 2: Simplified representation of the relationships between lipid mediators and leukemic blasts. Leukemic cells express several cPLA,
and sPLA,. COX activities can metabolise AA into PGE, and TXA,. LOX activities can metabolise AA into ITB, and 12-HETE. Leukemic
cells can release PAF. Functional TXA,, IP, EP,, PAF, and PLA, receptors are found on leukemic cells. BLT1 and BLT2 transcripts are detected
suggesting (?) LTB, receptors. The immunoregulatory effects of lipid mediators are currently speculative except for the role of PGE, on AML

blast growth. Related references are in square brackets.

5-, 12-, or 15-LOX, respectively, HPETEs being rapidly
metabolized to 5-, 12, or 15-hydroxyeicosatetraenoic acids
(HETE). 5-HPETE could be dehydrated into leukotriene
A4 (LTA4), which was enzymatically hydrolyzed to LTB,4
(Figure 1) [1]. The ability of LTB4, 12-HETE, and 15-
HETE to regulate important functions of the immune
system has been widely explored. These compounds activate
various blood cell types and stimulate their proinflammatory
cytokine productions [28-30], indicating an ability of LTBy,
12-HETE, and 15-HETE to augment and prolong tissue
inflammation. Leukemic blasts express 5-LOX, 12-LOX, and
15-LOX transcripts, their expression being in general lower
than in blood mononuclear cells from a healthy donor [22,
31, 32]. Leukemic blasts produce in vitro lower amounts
of ITB4 than healthy donors [22, 31, 33]. This reduced
capacity of AML blasts to produce LTB, is located at the 5-
LOX level. Stimulated leukemic blasts produce 12-HETE but
not 15-HETE [22]. The various LOX-derived metabolites of

AA regulate a wide spectrum of cellular processes including
cell proliferation and apoptosis. 12-HETE and 15-HETE
stimulate the proliferation and differentiation of normal
CD34%" cells [34]. LTB4 induces proliferation and exerts an
antiapoptotic effect on blood CD34" cells [35]. However,
LTBy, 12-HETE, and 15 HETE have no effect on the growth
and apoptosis rate of AML and ALL blasts in vitro [22].
As to whether receptors for 12-HETE and 15-HETE remain
to be molecularly identified, two G-protein-coupled seven
transmembrane domain receptors for LTB4 were identified:
BLT1 and BLT?2 [36]. Amounts of BLT1 transcripts are similar
in AML and ALL blasts as well as control blood mononuclear
cells, while amounts of BLT?2 transcripts are markedly higher
[22]. At this time the physiological meaning (if any) of BLT1
and BLT2 transcripts in AML and ALL blasts remains an
open question. A similar question exists for the significance
of ITB4- and 12-HETE-derived leukemic blasts. One might
suggest that these compounds could initiate, augment, and



Journal of Oncology

prolong tissue inflammation and damages by affecting the
cytokine network, but currently no studies have provided
evidences in support of this.

7. PAF, PAFR, and Human Leukemic Blasts

PAF is a phospholipid mediator that sparks off a wide
range of immunoregulatory activities on blood cells such
as polymorphonuclear neutrophils, eosinophils, monocytes,
macrophages, and lymphocytes [2]. PAF is released in vitro
from several leukemic cell lines of B and T origin [37] as well
as from freshly isolated neoplastic cells of leukemic patients
[38]. However, in spite of experimental evidence reporting
its in vitro release from leukemic cells, no clinical studies
provide evidences to support this view in vivo. In contrast,
decreased levels of PAF are found in the blood of patients
with lymphoid and nonlymphoid hematologic malignancies
[39]. Blood PAF levels are regulated by an acetylhydrolase
activity (AHA, also named PLA,-VIIA) found in serum and
plasma. Plasma AHA is not altered in leukemic patients
[39] suggesting a lowered PAF production by leukemic cells
rather than an increased PAF catabolism. PAF acts through
membrane and nuclear PAF receptors (PAFR) that belong
to the G-protein-coupled family [40, 41]. As to whether
membrane PAFR is found on AML and ALL cells [42,
43], intracellular ones were detected [42]. Studies report
that mature monocytes, macrophages, polymorphonuclear
leukocytes, and B lymphocytes produce cAMP in response
to PAF [44, 45]. This is not the case for AML and ALL
blasts [46]. PAF modulates Ca®" flux through a Gg-protein-
mediated pathway [47]. The Gq proteins mediate their
effects by activating phospholipase C and thus, generating
second messengers, inositol-1,4,5-triphosphate (IP3) and
diacylglycerol, thereby leading to the activation of protein
kinase C and the mobilisation of intracellular calcium. PAF
stimulates in a receptor-dependent process Ca’" flux from
AML and ALL blasts showing the presence of functional
PAFR [48] and highlighting that PAFR signals via the Gq
instead of the Gi/Gs protein pathways. Hence, the role of PAF
in leukemic blasts still remains an open question. PAF has no
significant effect on growth and apoptosis rate in these cells
[49] suggesting that PAF is not an important modulator of
blast cell physiology. The lack of PAF effect is linked to low
levels of PAFR in AML and ALL blasts compared to those
found in mature leukocytes [49]. Further, strengthening
this issue, the differentiation of HL-60 cells towards the
macrophage phenotype is associated with the induction of
PAFR gene expression. Thus, PAFR mRNA accumulation is
correlated to the induction and development of specific PAF
responsiveness [50]. Recently WEB-2170, a PAFR antagonist,
has been reported to induce apoptosis in AML cells [51,
52]. In fact, WEB-2170 does not behave as a pure PAFR
but instead as an inverse agonist leading to a marked
cytoplasmic increase of PTEN proteins (PTEN is a pro-
tein/phosphoinositide phosphatase regulating the PI3K/Akt
signaling pathway). Consequently, these recent results [49,
51, 52] support the view that PAF has probably no significant
role in the growth and apoptosis of leukemic blasts.

8. Conclusion

Data reporting our knowledge concerning the enzymatic
activities (such as PLA,, LOX, COX) implicated in lipid
mediator synthesis and their receptors on AML and ALL
blasts are schematised in Figure 2. Aberrant expression of
several PLA, enzymes is common place in tumors derived
from many different organ sites [9]. Numerous studies report
that altered AA metabolism in a solid tumor microenviron-
ment has a profound impact on the pathogenesis of tumor
development [1]. A multitude of biological activities of PAF
are evidenced both on the normal cell as well as on their
cancer counterpart [2]. There is evidence, however, that it is
not the case for leukemic blast cells. Among the various pro-
inflammatory lipid molecules so far tested (PAE, PGE,, PGI,,
TXA,, LTBy, 12-HETE, 15-HETE), none of them exhibit
any role on leukemic blast apoptosis despite the expression
of functional receptors (PAFR, EP,, IP, TXA;R). Among
the various compounds so far tested only PGE, clearly
demonstrated a potential role in AML cell growth in vitro.
However, it is difficult to compare the yM amounts of PGE,
used in most of the in vitro studies with the fM amounts of
PGE,; found in the blood at steady state conditions. Studies
showing the effects of continuous addition or infusion of low
doses of PGE, (which seems to be a more relevant protocol
of stimulation to obtain information for the in vivo effects
of PGE,) are extremely rare. Moreover, data obtained in
vivo and in vitro are sometimes discordant. In fact, there is
absolutely no evidence that PGE, is implicated in the growth
of AML blasts in vivo. Thus, in conclusion the biological
effects of eicosanoid and PAF are particularly important in
immunity and inflammation. Though their roles are well
known in numerous pathology and cancers, no such role is
currently known for leukemic blast growth.
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