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Tumor-associated macrophages (TAMs) can directly clear tumor cells and

enhance the phagocytic ability of immune cells. An abundance of TAMs at

the site of the glioblastoma tumor indicates that TAM-targeting

immunotherapy could represent a potential form of treatment for this

aggressive cancer. Herein, we discuss: i) the dynamic role of TAMs in

glioblastoma; ii) describe the formation of the immunosuppressive tumor

microenvironment; iii) summarize the latest clinical trial data that reveal how

TAM function can be regulated in favor tumor eradication; and lastly, iv)

evaluate the implications of existing and novel translational approaches for

treating glioblastoma in clinical practice.

KEYWORDS
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1 Introduction

Glioblastoma (GBM) is the most common malignant tumor affecting the central

nervous system (CNS), which in 2021, was classified as a grade 4 tumor by the World

Health Organization (WHO) (1). The median survival of patients with GBM undergoing

radiotherapy plus temozolomide treatment is ~14.6 months, with 89% of patients dying

after 5 years (2, 3). Thus, a new therapeutic approach is urgently needed to overcome the
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limitations of the currently available treatment options, such as

the low concentration of the tumor-targeting drug at the tumor

site and the strong adverse effects associated with some forms of

treatment. Immunotherapies like immune checkpoint blockade

(ICB) significantly extended patient overall survival (4). The

discovery of functional lymphatic vessels dispelled the

traditional view of the brain as an immune privileged organ.

In addition, evidence has emerged showing that immune cells

migrating from the draining deep cervical lymph nodes could

directly prevent GBM growth and metastasis (5–9).

The immune cell composition of the GBM tumor is as

follows: 20–40% leukocytes, up to 80% tumor-associated

macrophages (TAMs), and much fewer tumor-infiltrating

lymphocytes (TILs), whose activity is limited due to the

unique immunosuppressive tumor microenvironment (TME)

(10–13). Thus, a potential therapeutic strategy for GBM would

be to target TAMs.

Herein, we discuss recent advances in the interactive

relationship between GBM and TAMs and summarize the

significant breakthroughs in the immunotherapeutic

approaches that focus on targeting this cell subset in GBM

while overcoming some limitations of conventional

immunotherapies. A comprehensive understanding of the

interaction between TAM-targeting clinical and translational

research will further promote the development of therapeutic

strategies in GBM.
2 The role of TAMs in GBM

The TAMs residing with the tumor tissue consist of bone

marrow-derived macrophages (BMDMs) and tissue-resident

macrophages (TRMs) (14). And the TAMs contribute to

tumor proliferation (13, 15), invasion (16), metastasis (17),

and angiogenesis (18, 19) in various cancer types. However,

the TRMs in different organs might play contradictory roles in

tumor progression. For instance, the TRMs are demonstrated to

promote lung tumor invasiveness and metastasis while the

ablation of TRMs in breast cancer has no impact on tumor

growth (20–22). Therefore, how the unique TRMs microglia

(MG) affect the GBM progression merit further investigation.

Moreover, the distribution of TAMs in GBM is spatially

heterogeneous: BMDMs are recruited to the hypoxic tumor

parenchyma, while MG are localized to the peritumoral

regions (23, 24). Herein, we investigated the relationship

between TAMs and GBM outlined in Figure 1.
2.1 The polarization of TAMs in GBM

TAMs are usually simply divided into interferon-gamma (IFN-

g)-activated M1 polarized macrophages and IL-4-activated M2

polarized macrophages (Figure 2). M1 macrophages are capable
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of releasing proinflammatory cytokines, presenting antigens to

immune cells, and phagocytosing GBM cells. Meanwhile, M2

macrophages contribute to the immunosuppressive TME and

promote tumor progression and invasion (25). M2 macrophages

are the predominant macrophage subset at the GBM tumor site.

However, in GBM, they often exist as a heterogeneous population

comprising the IL-4- and IL-13-activated M2a subset, the M2b

subset (activated by IL-1R ligands or immune complexes plus

lipopolysaccharides, LPS), and the M2c subset (activated by IL-10

and transforming growth factor beta, TGF-b) (26, 27). However,
tumor samples from patients with GBM have revealed that TAMs

are actually a mixed M1/M2 subset expressing both M1 and M2

surface markers, which might be related to GBM heterogeneity (28,

29). Thus, future studies should initially focus on accurately

classifying TAMs before investigating their role in the

GBM microenvironment.
2.2 The interaction between MG
and GBM

MG originate from the yolk sac of primitive myeloid

progenitors and can promote the development of the brain

and protect neuronal function. The colony-stimulating factor-

1 (CSF-1) maintains MG self-renewal in situ (30, 31). Studies in

mice have demonstrated that MG can be further divided into at

least two subsets: i) homeostatic MG, and ii) neurodegenerative

MG, which are induced by the triggering receptor expressed on

myeloid cells 2 (TREM2) - apolipoprotein E (APOE) pathway;

both of these MG subsets play a key role in detrimental

neurodegenerative disorders such as Alzheimer’s disease (32,

33). However, current studies have mainly focused on the whole

MG population and ignored the specialized functions of specific

MG subsets. Therefore, the roles of different types of MG in

GBM still need to be explored.

The overexpression of the neuropilin-1 (Nrp1 in mice and

NRP1 in humans) in GBM has been shown to support tumor cell

growth, metastasis, and immune evasion (34). Nrp1 promotes

angiogenesis via the release of vascular endothelial growth factor

A (VEGFA), which causes TAMs to adopt an anti-inflammatory

phenotype by decreasing the secretion of pro-inflammatory

factors and contributing to the immunosuppressive TME (34).

Nrp1-deficient MG promoted a reduction in the levels of

interleukin (IL)-1a, CC motif chemokine receptor 8 (CCR8),

and hypoxia-inducible factor 1-a (HIF1-a) and therefore

delayed the progress of angiogenesis while promoting

cytotoxic T cell and MG infiltration and decreasing the

proportion of BMDMs in the tumor tissue. Nrp1-MG-

knockout (Nrp1MGKO) mice had smaller tumors and longer

overall survival, compared to wild-type animals (35). Besides,

high Nrp1 expression showed an inverse correlation with the

prognosis of GBM patients (36). Therefore, Nrp1 could represent

a potential biomarker for predicting the prognosis of patients
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with GBM and serve as a therapeutic target in combination with

currently available standard treatment forms, after conducting

large-scale clinical experiments.

Additionally, Toll-like receptor 2 (TLR2) was correlated with

GBM malignancy. It was observed that the Tlr2 expression level

in the MG of mice was markedly higher in high-grade GBMs

than in low-grade GBM tumors (37). The activation of TLR2-

induced matrix metalloprotease (Mt1-mmp) and Mmp9

expression in MG and resulted in tumor expansion and

metastasis. Meanwhile other TLR subtype-specific agonists

such as polyinosinic: polycytidylic acid (poly I:C; a TLR3

agonist), flagellin (a TLR5 agonist), and polyuridine (polyU, a

TLR7/8 agonist) had little effect on Mt1-mmp gene expression

(38, 39). Recently, ortho-vanillin (O-Vanillin) was shown to

block TLR2-mediated signaling and lower the levels of IL-6,

inducible nitric oxide synthase (iNOS), MT1-MMP, and MMP9,

to attenuate GBM growth and invasion (40). In contrast,

Panagioti et al. tried to reverse the local immunosuppressive

TME in GBM by promoting TLR2 activation. This was achieved

using the Helicobacter pylori-derived neutrophil-activating

protein (NAP), which enhanced the outcome of anti-

programmed cell death 1 (PD-1) immune-checkpoint blockade

by activating TLR2 signaling (41). These seemingly

contradictory results suggest that future immunotherapy
Frontiers in Immunology 03
designs should take into consideration the combined effects of

TLR2 activation or inhibition rather than focus on isolated

signaling pathways.

The high expression of major histocompatibility complex

class II (MHC-II; the canonical lymphocyte-activation gene 3

ligand, LAG3 ligand) on MG can elevate the expression of

exhaustion-associated biomarkers (e.g., LAG3) in T cell

populat ions , contributing to the formation of the

immunosuppressive TME (42). Meanwhile, a close correlation

between the tumor suppressor protein p53 (TP53) and MG

infiltration was identified. Mutant TP53R248L-overexpressing

GBM cells significantly increased the expression of C-C motif

chemokine ligand 2 (CCL2). This led to the recruitment of

BMDMs and a reduction in the proportion of MG, which

worsened the prognosis of patients with GBM (43). To date,

there are few studies investigating the effect of GBM on local

MG, and these complex interactions need to be further explored.
2.3 The interaction between BMDMs
and GBM

Unlike tissue-resident MG, BMDMs are mainly derived

from monocytes in the blood (24). GBM cells disrupt the
FIGURE 1

The interactive mechanism between GBM and TAMs. The activation of tumor-promoting genes (e.g., Tlr2, Marco, and Ahr) in TAMs influences
tumor growth, metastasis, angiogenesis and immune evasion. The overexpression of some genes in GBM (e.g., Ido1, Tdo2, Il4i1, and Usf1)
damages the activity of TAMs.
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integrity of the blood-brain barrier (BBB) during tumor

initiation and release multiple cytokines such as the

chemokine stromal cell-derived factor 1-a (CXCL12) to recruit

monocytes or macrophages to the tumor site (44, 45). BMDMs

are preferentially localized to the perivascular spaces within the

tumor parenchyma due to their ability to survive in a hypoxic

environment. Thus, the spatial heterogeneity of TAMs in GBM

is unique (23, 24).

The presence of BMDMs can promote the growth and

proliferation of GBM. For instance, TAMs exhibiting a high

expression of the macrophage receptor with collagenous

structure (MARCO) maintain the stemness of GBM stem

cells (GSCs) by upregulating a set of stemness-associated

factors such as leukemia inhibitory factor (LIF) and the

homeobox protein NANOG. This in turn promotes tumor

proliferation via the secretion of TGF-b and the metastasis of

GBM through the augmented expression ofMmp2,Mmp7, and

Mmp9 (46, 47). In addition, the mixed culture system

consisting of GBM cells expressing high levels of upstream

stimulating factor 1 (USF1) and human macrophages

enhan c ed th e s t emne s s o f GSCs ( 48 ) . CD90 , a

glycosylphosphatidylinositol-anchored protein regulated by

USF1, has been shown to interact with macrophage surface

integrins such as CD11b and promote the adhesion of

macrophages and tumor cells, thus accelerating the

interaction between GBM and BMDMs (48). At present, the
Frontiers in Immunology 04
mechanism underlying the role of BMDMs in GBM is unclear

and requires delineation to provide a sufficient theoretical basis

for the development of TAM-targeting therapies in GBM.

GBM cells have a profound and lasting effect on macrophage

function by shaping the immunosuppressive TME. GBM cells

deliver immunosuppressive proteins such as CD73, CD39,

programmed cell death ligand 1 (PD-L1), and cytotoxic T

lymphocyte-associated protein 4 (CTLA-4) into the local

microenvironment through extracellular vesicles, leading to

immune cell function impairment and tumor progression (49).

The expression of IL-4-induced-1 (IL4I1), tryptophan 2,3-

dioxygenase 2 (TDO2), and indoleamine 2,3-dioxygenase 1

(IDO1) in GBM initiates the catabolism of tryptophan (Trp)

into kynurenine (Kyn) to activate aryl hydrocarbon receptor

(AHR) in TAMs, inducing the upregulation of CCR2 and

Krüppel-like factor 4 (KLF4) (50, 51). Furthermore, the

activation of AHR also suppresses nuclear factor-kB (NF-kB)
signaling, which recruits M2 macrophages into the tumor

parenchyma and causes immune suppression. Meanwhile, the

AHR-mediated upregulation of CD39 has been demonstrated to

simultaneously cooperate with CD73 in the generation of

adenosine monophosphate (AMP) from ATP and produce

nucleotide adenosine, causing the suppression of CD8+ T cell

immunity and the immune evasion of GBM (50–52). CD73 is

regarded as a novel target for GBM immunotherapy and

blocking CD73 had been shown to prolong the survival of
FIGURE 2

The phenotypes of BMDMs and the inducing cytokines. M1 polarized macrophages are induced by IFN-g to release proinflammatory cytokines.
M2 polarized macrophages releasing anti-inflammatory cytokines consist of IL-4 and IL-13 activated M2a polarized macrophages, IL-1R ligands
or immune complexes plus LPS activated M2b polarized macrophages and TGF-b and IL-10 activated M2c polarized macrophages.
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patients with GBM receiving anti-PD-1 or anti-CTLA-4

treatment (53). However, Abdelfattah et al. performed a

single-cell analysis of human GBM to highlight the absence of

CD73 from GBM-associated myeloid cells (54). Therefore, the

responsiveness of patients to such targeted therapies should be

used as a key criterion for determining the immune therapeutic

targets and strategies in GBM.

BMDMs and GBM cells collectively contribute to the

immunosuppressive TME of GBM. The abundance of signal

transducer and activator of transcription 3 (STAT3) in GBM has

been demonstrated to promote AHR expression and cooperate

with HIF-1a to increase CD40 levels, which in turn promoted

GBM immune evasion and STAT4-mediated PD-L1

upregulation (42, 51, 55). Moreover, multiple factors have

been implicated in the recruitment and polarization of

BMDMs, including slit guidance ligand 2 (SLIT2) (56), Notch1

(57), PTEN (58), NF1 (59), TGF-b (47, 60, 61), M-CSF (47, 60,

61), PD-L2 (62), IL-33 (63), arginase 1 (ARG1) (64), CD47 (65),

and CD70 (66). The complex network of interactions that exist

between BMDMs and GBM cells within the unique TME needs

to be further explored, so as to provide robust guidelines for

effective GBM treatment.
3 TAM-targeting therapies for GBM

The current standard GBM strategy is surgical resection

combined with oral temozolomide (TMZ) and radiotherapy (2,

3). Moreover, many novel approaches recently have emerged in

GBM therapy, such as 5-aminolevulinic acid, bevacizumab, and

tumor treating fields (67–69). However, the therapeutic efficacy

of these is still limited. Thus, TAM-targeting immunotherapy is

deemed as a potential method to deal with the problems in

GBM treatment.
3.1 TAM recruitment prevention

As previously alluded to, M2 TAMs are implicated in GBM

progression and invasion. Consequently, preventing TAM

recruitment to the tumor site might be a potential strategy for

eliminating the GBM tumor. Ongoing clinical trials are

concentrating on achieving this with inhibitors targeting the

colony-stimulating factor 1 receptor (CSF1R), angiopoietin-2

(ANG2), and CXCR4 (Table 1).
3.1.1 CSF1R inhibitors
CSF1R, a type III protein tyrosine kinase receptor, is widely

expressed by TAMs (70). The activation of CSF1R signaling by IL-

34 or CSF1 induces the recruitment of macrophages and shifts the

TAM phenotype from M1 to M2 (71–73). Pexidartinib (PLX3397),

the first commercial CSF1R inhibitor approved by the Food and
Frontiers in Immunology 05
Drug Administration (FDA), was recently used in a phase II clinical

trial of recurrent glioblastoma (NCT01349036). However, there was

no significant improvement in the pexidartinib group compared to

the control group even though pexidartinib was present within the

GBM tumor at its therapeutic concentration. Interestingly, the

progression-free survival (PFS) of two patients with mesenchymal

GBM was extended as a result of pexidartinib treatment (74).

However, CSF1R blockade caused the overexpression of PD-L1,

inhibiting the phagocytosis and antigen-presenting capacity of

macrophages (75, 76). The failure of pexidartinib in GBM does

not signal the absolute failure of CSF1R inhibitors. It will be

interesting to observe the outcome of a recently initiated clinical

trial (currently in the recruitment phase) that will be testing the

performance of another CSF1R inhibitor, BLZ-945

(NCT02829723). In addition, the mechanism of CSF1R blockade

should be illustrated in different GBM cell subsets.

3.1.2 ANG2 inhibitors
ANG2 is an angiogenic factor that promotes vascular

destabilization and leakage by binding to the tyrosine-protein

kinase receptor TIE2 (77). The hypoxic TME induces the high

expression of TIE2 in TAMs, which are involved in vascular

reconstruction and tumor relapse (78). Therefore, multiple

ANG2 inhibitors have been applied in GBM clinical trials.

Patients with recurrent malignant GBM were treated with the

selective ANG2 inhibitor MEDI3617 in a phase I study

(NCT01248949) (79). The results showed that both the

MEDI3617 monotherapy and the combination therapy with

bevacizumab were tolerated but ineffective. Moreover, the

treatment regimen was associated with notable adverse events,

including hypertension, proteinuria, and peripheral edema. Of

these, peripheral edema was the most frequent adverse event,

which led to treatment discontinuation. Similarly, another

ANG2 inhibitor LY3127804 also elicited frequent adverse

ev en t s l i k e hype r t en s i on and pe r i phe r a l edema

(NCT02597036) (80). A phase II clinical trial using

bevacizumab and trebananib (an ANG1/2 inhibitor) to treat

GBM indicated that patients with recurrent GBM did not benefit

from trebananib treatment (NCT01609790). On the contrary,

the PFS of the control group was significantly longer than of the

experimental group, which might be related to the complex

interactions between ANG1 and ANG2 (81). The low response

rates and numerous adverse effects are the main challenges

facing the clinical use of ANG2 inhibitors. Therefore,

measures to improve the efficacy and biocompatibility of

ANG2 inhibitors should be put in place.

3.1.3 CXCR4 inhibitors
CXCR4 is a transmembrane G-protein coupled-receptor

activated by CXCL12, which is involved in tumor growth,

invasion, angiogenesis, and TAM recruitment via the

activation of signaling pathways such as MEK/ERK and PI3K/
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mTOR (82). Plerixafor, a CXCR4 inhibitor approved by the

FDA, was combined with radiation therapy to reduce

macrophage accumulation after radiotherapy (NCT01977677).

The median overall survival was prolonged to 21.3 months and

93% of patients did not experience GBM progression at 6

months in the plerixafor group (83). Although, this clinical

trial evaluating the use of anti‐angiogenic drugs to treat GBM

achieved promising results, an increase in CXCL12 levels was

observed in the patients’ plasma (84). Therefore, a phase I study
Frontiers in Immunology 06
(NCT01339039) using a combination of plerixafor and

bevacizumab (a VEGF inhibitor) in high-grade GBM was

commissioned to alleviate this side-effect of anti‐angiogenic

therapy. However, this novel combination of drugs failed to

produce better clinical outcomes, which might be related to the

changes in the levels of cytokines such as soluble mesenchymal

epithelial transition receptor (sMET), CXCL12, and IL-8 (85).

Although plerixafor has shown great efficiency in some GBM

clinical trials, the limited number of patients involved in these
TABLE 1 The TAM-targeted clinical trials in GBM.

Agent Combination partners Trial phase Patients (n) Reported biological responses Clinical trials registry
identifier

CSF1R Inhibitors

Pexidartinib – II 38 Monocyte↓ NCT01349036

ANG2 Inhibitor

MEDI3617 Bevacizumab I 13 ORR:0% NCT01248949

Trebananib Bevacizumab II 130 NR NCT01609790

CXCR4 Inhibitors

Plerixafor TMZ, Radiation I/II 29 CXCL12↑ NCT01977677

Plerixafor Bevacizumab I 26 Lymphocytes↑
Monocytes↑
CXCL12 ↑
ANG2, sMET, IL-8↓

NCT01339039

CD40 agonists

APX005M – I 45 NR NCT03389802

2141-V11 D2C7-IT I 30 NR NCT04547777

TLR agonists

TLR3

Poly-ICLC – II 47 50% LGG respond 25% HGG respond NCT01188096

Radiation II 31 NR NCT00052715

TMZ, Radiation II 97 NR NCT00262730

GAA/TT-Peptide Vaccine I 13 91% respond NCT00795457

Peptide Vaccines I 10 55% respond NCT00874861

IMA950 Peptide Vaccine I/II 19 NR NCT01920191

Dendritic Cell Vaccine I 28 TNF-a↑ IL-6↑
Lymphocytes↑

NCT00068510

TLR4

HSPPC-96 – I 20 NR NCT02122822

– II 96 NR NCT00293423

TLR9

CpG-ODN – II 34 No Benefit NCT00190424

PD-1 Inhibitors

Nivolumab – III 529 ORR:7.8% NCT02017717

– II 29 CXCL10, CCL4, CCL3L1↑ NCT02550249

Ipilimumab I 27 No Benefit NCT03233152

Lirilumab II 397 NR NCT02813135

Cemiplimab Veledimex II 40 NR NCT04006119

Pembrolizumab Bevacizumab, Hypofractionated
Stereotactic Irradiation

I 32 NR NCT02313272

Bevacizumab II 80 ORR:20% NCT02337491
ORR, objective response rate; NR, not reported; ↑, increase; ↓, decrease.
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studies may obscure the possible serious adverse effects of

this treatment.
3.2 TAM repolarization

TAMs exhibit a high level of plasticity, meaning that

promoting a shift between M2 and M1 phenotypes is a

potential strategy for treating GBM. CD40 and TLR agonists

are currently being validated as therapeutic agents targeting

TAM repolarization in GBM clinical trials.

3.2.1 CD40 agonists
CD40 belongs to the tumor necrosis factor (TNF)-receptor

superfamily and is primarily expressed on antigen-presenting

cells. The crosslink between CD40 and its ligand CD40L has

been demonstrated to assist dendritic cells (DCs) to activate T

cells and reprogram TAMs to inhibit tumor growth (86, 87).

Many CD40 agonists have achieved significant therapeutic

efficacy in the treatment of pancreatic cancer and lymphoma

(88–92). However, few clinical trials have assessed the value of

using CD40 agonists to treat GBM. Two phase I clinical trials of

the CD40 agonistic antibodies APX005M (NCT03389802) and

2141-V11 (NCT04547777) are currently enrolling GBM

patients. The outcomes of these trials are being awaited with

anticipation after a mouse study reported that the CD40

agonistic antibody induced ICB and extended the median

survival of GBM model mice to 37.0 days compared with 21

days in control, indicating the tremendous potential of CD40

agonists in GBM treatment (55).

3.2.2 TLR Agonists
TLRs are common pathogen recognition receptors that detect

soluble factors released during cell death that are regarded as

danger-associated molecular patterns (DAMPs) (93). Existing

studies have linked the expression of TLR2, TLR4, and TLR9 on

GBM cells to tumor proliferation, invasion, and migration (38, 94,

95). Conversely, certain TLR agonists such as poly I:C, resiquimod,

and imiquimod, were used as vaccine adjuvant to suppress tumor

growth via the reprograming and repolarizing of TAMs at the

tumor site (96–99). The TLR3 agonist polyriboinosinic-

polyribocytidylic acid-poly-L-lysine carboxymethylcellulose (poly-

ICLC) was a common vaccine adjuvant in GBM clinical trials. For

instance, therapeutic vaccination with a combination of synthetic

peptide GBM-associated antigen (GAA) epitopes and poly-ICLC

(NCT00795457 and NCT00874861) induced a robust IFN-g
production and prolonged the median PFS of patients with GBM

to 21 months post-diagnosis. The main adverse events were slight

injection site reactions and flu-like symptoms such as fever, myalgia,

and fatigue (100). In addition, other clinical trials of GBM used

poly-ICLC as an adjuvant to improve the efficacies of radiotherapy

with TMZ (NCT00262730), a DC vaccine (NCT00068510), and a
Frontiers in Immunology 07
multi-peptide IMA950 vaccine (NCT01920191); with a variety of

outcomes in patients (99, 101, 102). Additionally, a phase II study

(NCT00190424) attempted to deliver a TLR9 agonist

(oligodeoxynucleotides containing CpG motifs, CpG-ODN) to

the brain to treat recurrent glioblastoma; disappointingly, this

strategy was proved ineffective (103). The steps taken to select

appropriate treatment combinations to maximize the anti-tumor

effect while minimizing adverse events would merit

further investigation.
3.3 Immune checkpoint blockade

In recent years, ICB has demonstrated tremendous promise

as a form of cancer therapy. Several immune checkpoint

inhibitors such as anti-PD-1 and anti-CTLA-4 have been used

to successfully treat several types of cancer, including melanoma

and non-small cell lung cancer (104). Therefore, ICB is expected

to be an effective GBM treatment.

The high expression of PD-L1 on TAMs impairs their

activation, proliferation, and survival, and results in an

immunosuppressive phenotype (105). The single-cell RNA

sequencing results from patients with GBM have revealed the

broad expression of PD-L1 on TAMs, indicating that PD-L1

represent a potential target in GBM treatment (106, 107). A

recent randomized phase III study (NCT02017717) was the first

of its kind to investigate the therapeutic effect of nivolumab (a

PD-1 inhibitor) in recurrent GBM (108). Unfortunately, this

strategy did not result in a better outcome than treatment with

bevacizumab. Similarly, nivolumab failed to benefit patients with

resectable GBM in a phase II clinical trial (NCT02550249) (109).

However, preoperative treatment with the neoadjuvant

pembrolizumab (a PD-1 inhibitor) induced IFN-g expression

and significantly extended overall survival in another study of

recurrent GBM (110). In addition, many clinical trials

combining PD-1 inhibitors with other agents are underway,

such as the CSF-1/CSF-1R inhibitor (NCT02526017), CTLA-4

inhibitor (NCT03367715), IDO1 inhibitor (NCT04047706),

TIM-3 inhibitor (NCT03961971).

Although several immune checkpoint inhibitors have been

tested in clinical trials, the number of patients with GBM that

benefit is still limited. Understanding the mechanism of

potential drug resistance and identifying patients who are

more likely to respond to this strategy are the main challenges

facing the development of effective GBM treatment strategies.
4 TAM-targeting translational
research in GBM

Although several approaches targeting TAMs in GBM have

been applied to enhance antitumor immune cell responses in
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clinical experiments, the patient prognosis remains

unsatisfactory. In this section, we review the findings of

translational studies documenting the development of novel

bioactive agents such as the oncolytic virus, the small

extracellular vesicles (sEV), and nanoparticles (NPs) for the

treatment of GBM (Figure 3 and Table 2).

Novel noninvasive physical approaches with few toxic adverse

effects have been used to eliminate GBM cells in translational

studies, including photothermal therapy(PTT) (120, 124),

photodynamic therapy(PDT) (140), and sonodynamic therapy

(SDT) (116). Phototherapy consisting of PTT and PDT, relies on

phototherapeutic agents and light irradiation to kill tumor cells in

the dark (143). PTT involves the heat generated by photothermal

agents under the appropriate near-infrared light (144). In turn, the

photosensitizers under the appropriate light boost the reactive

oxygen species (ROS) production in tumor cell, which is an

important anti-tumor mechanism of PDT (145). Moreover,

SDT is a potential approach with high tissue-penetrating

properties based on ultrasound and sonosensitizers. Similar to

PDT, the ROS-based effect is one of the action mechanisms in

SDT. Besides, cell membrane disruption and lipid peroxidation

are the main reasons for cell death. However, the underlying

mechanisms of SDT hinder the process of clinical translation,

which merits further investigation.
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4.1 Oncolytic virus

As an emerging cancer immunotherapy, the oncolytic virus

can selectively replicate in tumor cells while avoiding harming

healthy tissues. Oncolytic viruses bind to tumor surface

receptors and trigger immunogenic cell death (ICD), leading

to the release of DAMPs, pathogen-associated molecular

patterns (PAMPs), and tumor-associated antigens (TAAs).

This in turn switches the TAM phenotype from M2 to M1

(146, 147). In 2015, the FDA approved the first oncolytic virus-

mediated immune therapy, talimogene laherparepvec (T-VEC),

for use in a phase III randomized controlled trial of phase III−IV

melanoma (NCT00769704). In this study, T-VEC was

engineered using herpes simplex virus type 1 (HSV-1), which

promoted the release of granulocyte-macrophage colony-

stimulating factor (GM-CSF) (148). In recent years, TAM-

targeting oncolytic viral immunotherapies have been

investigated for the treatment of GBM. The activation of

MEK-ERK signaling was shown to promote the progression of

malignant tumors, and HSV-1 increased the transport of the

MEK1/2 kinase inhibitor, trametinib, across the BBB, leading to

a reduction in the total number of TAMs at the tumor site. The

consequent activation of CD8+ T cell-mediated immunity

promoted the survival of GL261 model mice (111).
FIGURE 3

The TAM-targeting immune translational studies in GBM. The deliveries consist of oncolytic virus (e.g., herpes simplex virus, measles virus, and
adenovirus), sEVs (e.g., macrophage sEV and neural stem cell sEV), engineering macrophages and nanoparticles with PTT/PDT/SDT (e.g., liposome,
dendrimer, protein nanoparticle, and self-assembly nanoparticle).
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TABLE 2 TAM-targeting translational researches in GBM.

Delivery
types

Delivery advantages Active
components

Delivery
platforms

Assisted
treatments

Immunological effects References

Oncolytic Virus GBM targeting, Immune
stimulation, BBB permeability

HSV — Trametinib TAMs reduction (111)

ICOVIR17 — Anti-PD-1 M1 polarization, TME regulation, ECM
degeneration, reduction in immune
escape

(112)

Delta24-RGD — — M1 polarization, TME regulation (113)

NAP MV Ruxolitinib
Anti-PD-1

M1 polarization, TME regulation,
reduction in immune escape

(41)

Small
Extracellular
Vesicle

Long circulating half-life, BBB
permeability, high biocompatibility

CPPO, Ce6,
AQ4N

Macrophage sEV — M1 polarization (114)

DOX Macrophage sEV — TME regulation (115)

CAT, ICG Macrophage sEV SDT — (116)

STAT3ASO,
CpG

NSCs sEV — M1 polarization, reduction in immune
escape

(117)

Engineering
Macrophage

GBM targeting, BBB permeability,
high biocompatibility

DOX Engineering
monocyte

— M1 polarization (118)

rAAV2-IL-15 Engineering MG — NK cells activation (119)

Fe3O4 Engineering
BMDMs

PTT — (120)

TMZ Engineering
BMDMs

— — (121)

— CAR-M — M1 polarization (122)

Nanoparticle

Organic NPs Biocompatibility, stability miR155 Erythrocyte
membrane coated
NPs

— M1 polarization (123)

IR-792 Macrophage
membrane coated
NPs

PTT — (124)

Honokiol,
Disulfiram,
Copper

Liposome — M1 polarization, TME regulation (125)

DOX, pDNA-
CD47

Liposome BNCT TME regulation, reduction in immune
escape

(126)

Rg3, PTX Liposome — M1 polarization, TME regulation (127)

shRNA-CD47 PAMAM TMZ M1 polarization (128)

Rapamycin PAMAM — TME regulation (129)

Triptolide PAMAM — TME regulation (130)

siRNA-STAT3 SPNP IR M1 polarization, TME regulation (131)

Disulfiram, Cu,
Regorafenib

T12/Man-BSA
NPs

— M1 polarization, TME regulation (132)

Simvastatin,
Fenretinide

T/LF NPs — M1 polarization, TME regulation (133)

PTX, CpG PNPPTX/
MNPCpG

— M1 polarization, TME regulation (134)

CpG, Plerixafor CpG NPs/AMD-
Zn

— TAMs reduction, TME regulation (135)

PTX, R837 TfR/TATH7/
PTX/R837 NMs

— M1 polarization, TME regulation (136)

IRF5 mRNA,
IKKb mRNA

IRF5/IKKb-
encoding NPs

— M1 polarization (137)

Anti-PD-1,
Anti-CTLA-4

P/a-PD-1, P/a-
CTLA-4

— M1 polarization, reduction in immune
escape, TME regulation

(138)

Anti-PD-L1 Gluc-S-aPD-L1 — (139)

(Continued)
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Hyaluronan (HA) is considered the main TME-contributing

component of the extracellular matrix (ECM). The oncolytic

adenovirus ICOVIR17 combined with anti-PD-1 antibodies could

degradeHA,activate theNF-kBsignalingpathway, triple thenumber

ofM1macrophages, and prolong themedian survival time ofGL261

model mice to 43.5 days (112). Additionally, van den Bossche et al.

reported the application of oncolytic virotherapy (Delta24-RGD) for

improving the local immune microenvironment in GBM by

promoting the secretion of TNF-a, IL-6, and IL-8 (113). Moreover,

ruxolitinib directly inhibited the Janus kinase 1/2 (JAK1/2) and

consequently blocked the JAK/STAT signaling pathway, thus

lowering the expression of pro-proliferative, antiapoptotic, and

immunosuppressive proteins and overcoming the resistance to

viral replication in GBM. An oncolytic measles virus (MV)

platform was modified with the aid of the H. pylori-derived NAP

to activate macrophages in GBM via TLR2 targeting and promoting

the secretion of the high-mobility group box1 protein (HMGB1).

Furthermore, the combination of ruxolitinib, MV, and anti-PD-1

antibodies markedly enhanced the adaptive immune response and

prevented tumor cells from orchestrating immune escape (41).

Despite the promising outcome, this form of treatment has some

inevitable drawbacks: the long-term inhibition of IFN secretion

caused by ruxolitinib might generate an immunosuppressive

microenvironment and the intra-tumoral injection of an oncolytic

virus could serve as an obstacle to the clinical application of this

strategy in GBM. Despite these drawbacks, the therapeutic

applications of oncolytic viruses in GBM immunotherapy have

bright prospects due to the unique tumor targeting properties of

these viruses, which help drugs cross the BBB and induce local

immune responses. Therefore, clinical translational studies should

endeavor to construct modified oncolytic viruses to overcome the

limitations of conventional drug delivery systems.
4.2 SEV

sEVs originate from intraluminal vesicles (ILVs) that are

secreted by intracellular multivesicular bodies (MVBs). These

extracellular organelles have a diameter of 40−160nm and are
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characterized by a long circulating half-life, efficient BBB

penetration capability, and high biocompatibility (149). In

clinical trials, sEVs containing RNA, DNA, and protein, have

been considered biomarkers to diagnose non-small cell lung

cancers (NSCLCs), prostate cancers, and other diseases. In

addition, loaded sEVs have been used as drug delivery vectors

in the treatment of pancreatic cancer (149–151). Drug-loaded

M1 macrophage-derived sEVs have recently been shown to

switch the phenotype of TAMs from M2 to M1 in GBM by

promoting the secretion of TNF-a, IL-6, IFN-g, and IL-1b from

GBM cells. The 2,4,5-trichloro-6-carbopentoxyphenyl oxalate

(CPPO), chlorin e6 (Ce6), and banoxantrone (AQ4N) drugs

were delivered encapsulated in M1 macrophage-derived sEVs as

a form of chemiexcited photodynamic therapy (CDT). This

sEV-based treatment approach extended the median survival

of GBM model mice to 40 days (114). Because focused

ultrasound (FUS) can reversibly and transiently disrupt the

BBB to help sEVs access the cranial cavity, Bai et al. developed

a method whereby doxorubicin (DOX)-loaded macrophage-

derived sEVs are combined with FUS to trigger ICD in mice

with GBM (115). In another study, the performance of

engineered macrophage-derived sEVs containing glutathione

(GSH)-responsive silica nanoparticles (NPs) was evaluated in

GBM mouse model. The silica NPs were coated with

indocyanine green (ICG) and encapsulated with catalase

(CAT), which led to oxygen generation and reversed the

hypoxic TME of GBM (116). On a mechanistic level, ICG

plays the role of a sonosensitizer in sonodynamic therapy

(SDT) following ultrasound irradiation to increase the level of

ROS, thus causing GBM cell necrosis. Meanwhile, CAT

addressed the resistance of cancer cells to SDT, which is

limited by hypoxia. In combination, ICG and ROS successfully

enhanced SDT efficiency.

Neural stem cell (NSC)-derived sEVs were reported in

TAM-targeting immunotherapies in GBM. The NSC-derived

sEVs containing CpG-STAT3 antisense oligonucleotide (ASO)

conjugates were delivered into GBM-resident macrophages,

leading to M1 macrophage polarization. In addition, CpG

acted as a TLR9 agonist to activate the NF-kB signaling
TABLE 2 Continued

Delivery
types

Delivery advantages Active
components

Delivery
platforms

Assisted
treatments

Immunological effects References

M1 polarization, reduction in immune
escape

Ce6, Anti-PD-
L1

Ce6-aPD-L1 PDT M1 polarization, reduction in immune
escape, TME regulation

(140)

Inorganic NPs Controlled size and shape, surface
plasticity

CpG Au NPs Anti-PD-1,
RT

M1 polarization, reduction in immune
escape, TME regulation

(141)

Organic/
inorganic
Nanohybrids

Biocompatibility, stability,
controlled size and shape, surface
plasticity

MnO2, Pt MPM@P NGs — — (142)
fr
ontiersin.org

https://doi.org/10.3389/fimmu.2022.1024921
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2022.1024921
pathway and increase IL-12 levels while lowering STAT3

expression, which together relieved the immunosuppressive

effect on macrophages in the TME (117). In 2019, the FDA

reported that several patients experienced serious adverse events

after being treated with unapproved sEVs in the U.S. state of

Nebraska, indicating that the clinical safety of sEVs needs to be

improved (152). Moreover, despite their high degree of

biocompatibility, sEVs have limitations associated with their

capability to targeting tumor cells. Thus, future research should

further explore the reasons for the adverse effects associated with

exosomal delivery systems and optimize their capability to target

GBM cells.
4.3 Engineering macrophages

Recently, exogenous engineering macrophages delivery has

emerged as promising cancer immunotherapy (153).

Furthermore, engineering monocytes, MG, and BMDMs have

been applied for GBM therapeutic researches.

Monocytes can be preferably recruited into tumor site, cross

the BBB, and target tumor, serving themselves as an ideal drug

carrier with a long circulating half-life (153). An engineering

monocyte containing functionalized nanodiamonds bearing

DOX was delivered into GBM cells. The massive recruitment

of monocytes helped DOX internalized by GBM cells and

promoted the secretion of calreticulin (CRT), HMGB1, and

ATP, inducing ICD and repolar iz ing resident M2

macrophages to M1 macrophages (118).

Similarly, BMDMs and MG can directly cross the BBB to

target GBM cells by binding to the vascular cell adhesion

molecule-1 (VCAM-1). The engineering MG transfected with

recombinant adeno-associated virus serotype 2 containing IL-15

were intranasally administrated to promote the maturation and

survival of NK cells by IL-15 to kill tumor cells (119).

Additionally, Wang et al. developed an engineering BMDM

carried with a photothermal nanoprobe Fe3O4 for

postoperative photothermal therapy (PTT) in rats. Fe3O4 –

loaded BMDM were injected into the tail vein and reached the

surrounding tumor achieving PTT under 808 nm near-infrared

(NIR) light irradiation (120). Recently, a noninvasive gut-to-

brain oral prodrug BMDMs delivery system was developed for

GBM treatment. The prodrug self-assembly nanoparticles

conjugating TMZ with b-glucans could bind with the

phagocytic pattern-recognition receptor Dectin-1 which was

expressed on intestinal microfold cells and macrophages.

Therefore, this self-assemble nanoparticle overcame the

limitation of the intestinal epithelial barrier (IEB) and BBB

and released TMZ in tumor sites (121). However, low drug

loading efficiency and unstable drug release limited the

application of engineering macrophages as drug delivery.

In addition, chimeric antigen receptors macrophages (CAR-

M) were shown as an efficient immunotherapy for GBM. Chen
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et al. reported a method to engineer GSCs-CAR-M in the

postsurgical cavity (122). The pentaspan transmembrane

glycoprotein CD133, a marker for GSCs, was related to tumor

progression, metastasis, and recurrence (154). They constructed

a nanoporter-hydrogel to induce the local MG and BMDMs into

CD133-CAR-M, resulting in recognizing and eradicating GSCs.

Compared to CAR-T cells, CAR-M normally have difficulties in

expanding in vitro, which hinders the process of clinical

translation. In contrast, this novel strategy seems to be a

guideline for CAR-M construction in GBM treatment.
4.4 Nanoparticles

Based on the components of nanoparticles, NPs classically

are divided into inorganic NPs, organic NPs, and organic/

inorganic nanohybrids. Here, we discuss different types of NPs

applications in TAM-targeting treatment for GBM.

4.4.1 Organic NPs
Biocompatible organic NPs are ideal carriers for drug and

gene encapsulation (155, 156). In GBM, various organic NPs

such as liposomes, dendrimers, and protein nanoparticles have

been used in targeting TAM immunotherapies.

NPs are delivered into the tumor by the enhanced

permeability and retention (EPR) effect, while they are

normally recognized as foreign bodies in the liver, spleen, and

kidneys. Organic, cell-membrane-coated NPs have advantages

such as immune evasion, active targeting, and high

biocompatibility (157). Gao et al. reported a virus-mimicking

erythrocyte-membrane-coated nanogel containing the

microRNA miR155 and targeting macrophages and MG via

the inclusion of M2pep and HA2 peptides. In GBM, miR155 has

been shown to promote the secretion of pro-inflammatory

cytokines such as IL-6 and TNF-a, the overexpression of

iNOS (a M1 phenotype marker), and the reduction in CD206

(a M2 phenotype marker) levels (123). The flow cytometric

analysis showed that the number of M1 macrophages in the

viral-mimic nanogel group was about four times higher than that

in the control group, while the median survival time was

prolonged to 27.6 days in the group of mice receiving the

viral-mimic nanogel (123). In addition, another study

evaluated the capacity of macrophage-membrane-coated NPs

loaded with IR-792 to induce PTT in mice with GBM under

NIR-Ib (900−1000 nm) light irradiation (124). However,

methods that involve producing NPs using the cell membranes

are still under development, and the disruption of the NP cell

membrane integrity results in different endocytic mechanisms.

The current research identified that the high coating degree (≥

50%) NPs were internalized individually and the low coating

degree (< 50%) NPs needed to be aggregated together to enter

cancer cells (158). Therefore, cell membrane coating

technologies need to be optimized in terms of mass
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production efficiency and quality before consistent results can be

achieved in a clinical setting.

The liposome is one of the most promising nano-carriers in

cancer therapy; it is normally used to deliver RNA because of its

positive charge. The first FDA-approved siRNA lipid NP drug

(Onpattro) has been used in clinical practice (159). A liposomal

disulfiram/copper complex and honokiol co-delivery system

have been developed with the aim of remodeling the immune

TME of GBM. Honokiol promoted the release of IFN-g via

inhibiting the PI3K/mTOR pathway, while the disulfiram/

copper complex increased the expression levels of CRT, ATP,

and TNF-a in the TME. As a result, IL-6 secretion was reduced

while the number of M1 macrophages doubled (125). Moreover,

a multifunctional liposome delivery system, encapsulating DOX

and carborane, was reported to enhance the immunotherapy of

GBM (126). CD47, a receptor overexpressed on tumor cells,

recognized the signal-regulatory protein a (SIRPa) on

macrophages and protected the tumor cells from phagocytosis

(160, 161). The immunosuppressive TME was shaped by antigen

presentation due to DOX-induced ICD, and the reduction in

CD47 and the boron neutron capture therapy (BNCT) enhanced

immune surveillance (126). Additionally, Zhu et al. constructed

a ginsenoside Rg3 (Rg3)-based liposomal system containing

paclitaxel (PTX) to remodel the immunosuppressive TME of

GBM. The combined treatment promoted the polarization of

macrophages towards the M1 phenotype, decreased the number

of M2 macrophages (to one quarter of those in the control

group), and significantly reduced the number of regulatory T

cells (Tregs) (127). Recently, selectively-targeting liposomes

were constructed that were able to accurately deliver their

contents to a specific organ such as the liver, lung, and spleen

(162). Therefore, a brain-targeting liposome delivery system

could be a potential strategy for the treatment of GBM.

Dendrimers are regarded as promising drug-delivery NPs in

medical applications due to their stable structure and

multivalent cooperativity. Poly(amidoamine) or PAMAM is

one of the most intensively studied dendrimers in current

biomedical applications (163). Song et al. reported the use of

an implantable PAMAM-containing hydrogel loaded with

shRNA in a mouse model of postoperative GBM. GBM cells

reduced the expression of CD47 after being exposed to shCD47-

loaded PAMAM, which made them more suspectable to

immunosurveillance. The application of PAMAM-containing

hydrogel to the tumor converted M2 to M1 macrophages and

prolonged the median survival of model mice treated with TMZ

to 73.0 days (128). Notably, a TAM-targeting PAMAM loaded

with rapamycin could lead to a reduction in Arg1 expression and

immunosuppressive TME remodeling (129). Another study

documented the application of the TAM-targeting PAMAM-

containing triptolide to reshape the GBMTME via the inhibition

of STAT3 activity (130). The main problem of the PAMAM

delivery system is biotoxicity, which has delayed its

clinical application.
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Human serum albumin (HSA) was used to construct GBM-

targeting protein NPs and inhibit tumor proliferation and

invasion via the delivery of siSTAT3 (131). In this study, the

number of M1 macrophages in the experimental group

(combined with radiotherapy) increased to 2.5 times of that in

the control group. Moreover, dual-targeting biomimetic

albumin NPs encapsulated with regorafenib, and disulfiram/

copper complex had been developed to remodel the

immunosuppressive TME. In this setup, the albumin NPs can

target the GBM cells and tumor vessel endothelial cells to

regulate the TME, while the disulfiram/copper complex

induced ICD to promote antigen presentation and regorafenib

repolarized the M2 macrophages to assume the M1 phenotype

(132). Mo et al. used lactoferrin biomimetic nanoparticles to

send simvastatin and fenretinide into the GBM (133). Here,

fenretinide directly generated excess ROS to promote tumor

apoptosis, suppressed the function of M2 TAMs, and inhibited

angiogenesis. Meanwhile, simvastatin cooperated with

fenretinide to prevent GBM growth and increase the

proportion of M1 macrophages in the TME, thus prolonging

the median survival to 45 days. The NPs containing human

proteins display a high degree of biocompatibility and specificity

and therefore represent promising tools for the treatment

of GBM.

NPs simultaneously targeting GBM cells and macrophages

prolonged the median survival of mice to 50 days. When

glutathione (GSH)-responsive PTX prodrug nanoparticles were

delivered into GBM cells, the PTX induced ICD via the secretion

o f HMGB1 , which abroga t ed the TME-med ia t ed

immunosuppression in GBM. Besides, the mannose-modified

immunoadjuvant CpG NPs directly targeted macrophages to

increase the number of M1 TAMs and reduce the proportion of

Tregs within the TME, while also boosting IL-12, TNF-a, and
IFN-g expression (134). Zhang et al. reported an injectable

hydrogel containing two different kinds of NPs in

postoperative GBM treatment (135). The CpG oligonucleotide

NPs activated the polarization of M1 TAMs via the activation of

TLR9 to regulate the local microenvironment, while the self-

assembly NPs containing plerixafor downregulated the

expression of CXCR4 and reduced the secretion of CXCL12

leading to the inhibition of M2 TAM recruitment. Furthermore,

the use of two kinds of pH-sensitive self-assembling nano-

composite micelles encapsulated with PTX and imiquimod

(R837) in localized GBM therapy prolonged the median

survival time of mice to 66 days (136). The R837 resulted in

M2 to M1 macrophage polarization and promoted the secretion

of cytokines like TNF-a. Additionally, Zhang et al. constructed

the TAM-targeted mRNA self-assembling NPs by exploiting the

electrostatic interactions between the anionic mRNA and the

cationic polymer. These NPs reprogrammed macrophages in

GBM by lowering the expression of interferon regulatory factor

5 (IRF5) and IkappaB kinase beta (IKKb) (137). IRF5 directly

boosted inflammatory cytokines expression, such as IL-12, IL-6,
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IL-23, and IFN-g, while IKKb regulated the inflammatory TME

through the activation of NF-kB (164, 165). The components of

self-assembling NPs normally play different roles in tumor

treatment while certain NPs synthesis methods may contain

toxic components that trigger inevitable adverse effects.

Therefore, the self-assembly strategy is a promising approach

for building biocompatible NP-associated drug and gene

delivery systems.

BBB permeable nanoscale immunoconjugates were invented

to increase the concentration of therapeutic antibodies in the

brain (138). The angiopep-2 (AP-2) peptide conjugated to poly

(b-L-malic acid; PMLA) and the capacity to cross the BBB via

transferrin receptor (TfR)-mediated transcytosis (138).

Meanwhile, the combination of anti-CTLA-4 and anti-PD-1

antibodies relieved the immunosuppression of the GBM TME

by promoting the secretion of cytokines like IL-1b, IL-2, IL-12,
and TNF-a, which increased the proportion of M1 polarized

TAMs and enhanced the immunosurveillance at the tumor site.

Similarly, Yang et al. added multiple polyethylene glycol (PEG)

chains to anti-PD-L1 antibodies to enhance the potency of

convent ional GBM-target ing ICB therapy v ia the

overexpression of glucose transporter-1 on the GBM

vasculature (139). Furthermore, the IFN-g levels in the

engineered Gluc-S-aPD-L1 group were ~1.9−3.0 times higher

than in the control group. In another study, the self-assembling

nanocomplexes (~30 nm in diameter) were loaded with Ce6 and

anti-PD-L1 antibodies and extended the median survival of mice

to 32 days (140). The photosensitizer Ce6 induced

photodynamic therapy (PDT) under 660 nm light irradiation

and presented antigens to immune cells, while the combined

treatment with anti-PD-L1 antibodies increased the M1/M2

r a t i o t o 1 . 8 8 a n d r e d u c e d t h e p r o p o r t i o n o f

immunosuppressive cells like Tregs. Tumor-targeting

immunoconjugates composed of antibodies with the

permeability across the BBB overcome the limitation of

traditional ICB therapy; thus, their clinical value should be

investigated after addressing the challenges encountered

during production.

4.4.2 Inorganic NPs
The size, shape, and surface characteristics of inorganic NPs

can be tightly regulated, endowing these vesicles with useful

properties for use in clinical imaging, diagnosis, and treatment

(155, 156). Gold NPs are the most common type of inorganic NP

used for drug delivery. Cao et al. described the efficacy of TAM-

targeting CpG-modified gold NPs for use in radio-

immunotherapy (141). In this study, the TLR9 agonist CpG

promoted the overexpression of iNOS and IL-12, while the

combined treatment with anti-PD-L1 antibodies reeducated

macrophages in GBM and enhanced the response to

radiotherapy. The diameter of gold NPs determines their high

rates of renal clearance and hepatotoxicity which prevents these
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NPs from reaching further clinical efficacy. Thus, the application

of inorganic NPs in GBM treatment is promising but

requires optimization.

4.4.3 Organic/inorganic nanohybrids
The organic/inorganic nanohybrids combine the typical

properties of organic and inorganic NPs to produce NPs with

new properties (156). For example, Xiao et al. designed the

macrophage-membrane-coated MnO2 NPs carrying cisplatin

(Pt) to induce chemodynamic therapy (CDT). In this design,

the macrophage membrane acts as the organic component and

permits BBB penetration and GBM targeting, while the

inorganic material MnO2 triggers the Fenton-like reaction to

enhance the efficacy of CDT (142). Although studies

documenting the application of nanohybrid in GBM treatment

are scarce, the combination of organic and inorganic materials

will generate novel effects that could improve GBM outcomes

in future.
5 Discussion and outlook

The simultaneous existence of BMDMs and MG highlights

the complex interactions between GBM and TAMs. Therefore,

the roles of BMDMs and MG in GBM proliferation, metastasis,

and angiogenesis, and especially the relationship between

resident MG and GBM cells, need to be further explored.

Moreover, the development of the immunosuppressive TME,

to which TAMs contribute, represents a major obstacle to the

implementation of GBM-targeting immunotherapies

The TAM-targeting therapies evaluated in clinical trials can

be divided into three strategies: those that target i) TAM

recruitment; ii) TAM polarization, or iii) immune checkpoints.

CSF1R inhibitors, the quintessential TAM recruitment

inhibitors, cannot prolong patients’ survival time alone,

although they may be useful in combination with other

treatment forms. As we have seen, certain ANG2 inhibitors

and CXCR4 inhibitors exert favorable effects on preventing

GBM growth. In addition, the TLR agonists markedly

improved the prognosis of patients with GBM by switching

TAMs from the M2 to the M1 phenotype. Furthermore, TLR

agonists are also being used in tumor vaccines as immune

adjuvants. However, ICB including the use of anti-PD-1 and

anti-PD-L1 antibodies, whose limitations and challenges still

need to be illustrated, have for various reasons failed in GBM

clinical trials. Thus, the future potential impact of TAM-

targeting strategies should not be underestimated.

To ove rcome the p i t f a l l s o f ex i s t ing c l in i ca l

immunotherapies, numerous translational studies are

concentrating on targeting TAMs in GBM. These include the

oncolytic virus, sEVs, engineered macrophages, and NPs. In

recent years, both the oncolytic viral vectors and sEVs have
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become promising clinical translational candidates However,

engineering macrophages with BBB permeability is limited by

the current macrophage extraction technology and the current

inevitable adverse effects; future solutions will have a significant

impact on clinical translation. NPs normally are characterized by

a high degree of biocompatibility, stability, surface plasticity, and

ease of availability. Although the therapeutic effects of NPs have

been verified in animal models, their use in clinical trials

typically presents a challenge.

In conclusion, the rapid development of TAM-targeting

immunotherapy will revolutionize the standard care of

patients with GBM in the future. Clinicians should therefore

fully appreciate the limitations of this promising strategy in

clinical practice while harnessing its value for the treatment

of GBM.
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