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Graphene and its quasi-one-dimensional counterpart, graphene nanoribbons, present an ideal platform for
tweaking their unique electronic, magnetic and mechanical properties by various means for potential
next-generation device applications. However, such tweaking requires knowledge of the electron-electron
interactions that play a crucial role in these confined geometries. Here, we have investigated the magnetic
and conducting properties of zigzag edge graphene nanoribbons (ZGNRs) using the many-body
configuration interaction (CI) method on the basis of the Hubbard Hamiltonian. For the half-filled case, the
many-body ground state shows a ferromagnetic spin-spin correlation along the zigzag edge, which supports
the picture obtained from one-electron theory. However, hole doping reduces the spin and charge excitation
gap, making the ground state conducting and magnetic. We also provide a two-state model that explains the
low-lying charge and spin excitation spectrum of ZGNRs. An experimental setup to confirm the
hole-mediated conducting and magnetic states is discussed.

C
arbon nanomaterials have gained sustained interest in recent times due to their fascinating electronic
properties, which arise from electronic confinement in a reduced-length scale. The successful isolation of
graphene by mechanical exfoliation1–3 has provided further impetus and has allowed for the first time the

understanding of various properties in a truly two-dimensional context4–6. The ultrahigh charge carrier mobility,
transparency and mechanically flexible properties of graphene provide an excellent platform for futuristic device
applications7.

Another intriguing aspect of graphene is the strong nanoscale and edge effects on its electronic and magnetic
properties. The quasi-one-dimensional ZGNRs have drawn particular attention because of their peculiar edge
ferrimagnetism that arises from the edge-localised states near the zigzag edges8–10. Intensive studies ranging from
mean-field to density functional theory have been performed to understand the carbon-based magnetism in
ZGNRs11–14. A recent experiment using scanning tunnelling spectroscopy (STS) reports the splitting of the density
of states due to the edge magnetism for chiral graphene nanoribbons15.

These theoretical and experimental studies have motivated the fabrication of spintronics devices based on
graphene nanoribbons. Although its edge-state magnetism seems to contradict the Mermin-Wagner theorem,
which rules out the possibility of long-range ordering in quasi-one-dimensional systems16, a recent theoretical
report using quantum Monte Carlo supports the existence of such a long spin-spin correlation length along the
zigzag edge and justifies the picture obtained from the one-electron theories17. Moreover, many previous studies
suggest various ways to tweak the electronic properties of ZGNRs to achieve magneto-transport by means of
doping, chemical modifications or external perturbations18–22.

From the viewpoint of device applications, it is necessary to clarify the interplay between the edge magnetism
and the hole-doping effect, as the electron density in the graphene system can be easily tuned using the back gate
electrode23–25. However, the hole-doping effect on edge magnetism has not been studied with the appropriate
inclusion of electron-electron interactions.

In this study, we theoretically investigate the magnetic and conducting properties of ZGNRs and their
response to doping. The development of gapless charge and spin excitations with hole doping, i.e., hole-
mediated metallic ferromagnetism, is also discussed for the first time in terms of its potential applications.
Our theoretical analysis is based on a large-scale numerical simulation using the many-body configuration
interaction (CI) method with the complete active space (CAS-CI) approximation, which correctly includes
quantum fluctuations. We show that the microscopic origin of magnetism in ZGNRs can be well understood
on the basis of a generic two-state model.
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Results
We model the systems within a Hubbard Hamiltonian with onsite
electron-electron interactions. The Hamiltonian reads as

H~{t
X
i,jh i,s

a{i,saj,szh:c
� �

zU
X

i

ni:ni;

where a{i,s (aj,s) creates (annihilates) one electron with spin s on site i
and ni,s is the number operator. ‘‘U’’ denotes the onsite Coulomb
interaction, and the nearest neighbour hopping integral "t" has been
set to unity. We restrict our calculations within the weak coupling
limit and consider the U/t ratio as one. This assumption ensures the
absence of polarisation of spins for the bulk sites in the graphene.
Note that the above Hamiltonian conserves the electron-hole sym-
metry, and therefore, hole doping and electron doping are expected
to show identical behaviour.

Figure 1a shows a schematic representation of the ZGNRs. The
lattice constant has been considered to be unity. The width of the
ZGNRs is defined by the number of zigzag lines (Nz) along the
transverse ribbon direction. The edges are assumed to be passivated
by hydrogen atoms, and therefore, the electronic states near the
Fermi energy remain unaltered. Within the non-interacting case,
the top of the valence band and the bottom of the conduction band
are partially flat between k 5 p (the Brillouin zone (BZ) boundary)
and k 5 2p/3 (the Dirac point) at the Fermi energy. As shown in
Figure 1b, this flat region increases with increasing ribbon width.

We calculate the many-body charge gap (Dc) and spin gap (Ds) and
their response to the hole doping as follows26,27:

Dc kð Þ~ E0 Nez1,S0ð ÞzE0 Ne{1,S0ð Þ{2E0 Ne,S0ð Þ½ � kð Þ

Ds kð Þ~ E0 Ne,S0z1ð Þ{E0 Ne,S0ð Þ½ � kð Þ

Here, E0(Ne,S0) represents the lowest energy in the subspace of
Ne (5 N2nh) electrons, where nh denotes the number of holes doped
in the half-filled system (N) with the lowest Sz

tot (the z-component of
total spin) 5 S0 (5 0 or 1/2 for even or odd Ne, respectively) at each k-
point. In this paper, to probe the different spin sectors, we vary the
Sz

tot. The number of electrons and Sz
tot both commute with the

Hubbard Hamiltonian and therefore can be used as good quantum
numbers. Note that the Dc and Ds are calculated at discrete k-points,
and the scattering processes connecting the different k-points are
neglected. This approximation occasionally fails to capture the essen-
tial physics of spin excitations in the case of narrow ribbons, which
will be discussed in the spin gap section. However, the low energy
charge and spin excitation properties for wider ribbons can be sat-
isfactorily captured by this approximation, as is evident from our
calculations for finite size systems in the latter part of the article.

Two-state model. In a weak coupling regime, the charge and spin
excitation properties of the ZGNRs are governed by two bands
(shown in Fig. 1b). Thus, the whole problem can be effectively
mapped into a two-state model for the half-filled case. At each k-
point, the two-state model is defined by four possible basis states, as
shown in Figure 1c. In the U 5 0 limit, the system is stabilised only by
kinetic energy, and the ground state is defined only by w1.

Before showing the detail of the two-state model, we shall try to
avoid confusion between molecular orbital space and real space
descriptions, as the two-state model is constructed in molecular

Figure 1 | Geometry and band structure of ZGNRs with two-state model. (a) The structure of ZGNR, with Nz being the width. The unit cell (dashed

rectangle) consists of same number of A (filled circles) and B (open circles) sublattice points. (b) Tight binding energy spectrum of ZGNR in momentum

(k) space. The top of the valence band and the bottom of the conduction band of ZGNRs with Nz 5 4 and 20 are depicted as the solid lines. These two

central subbands construct the two-state model. The shaded region designates the bulk graphene spectrum near the Fermi energy (E 5 0) with linear

dispersion around Dirac point (k 5 2p/3). (c) The four basis states ( w1, w2, w3 and w4 ) to construct the two-state model for half-filled system with Sz
tot 5 0.

(d) Y(Ne,S0) is the wave function for the ground state for half-filled system. Y(Ne 1 1,S0) and Y(Ne - 1,S0) are the wave functions for the system with one

more and one less electron than half-filling, respectively. Y(Ne,S0 1 1) represents the ground state of half-filled system with Sz
tot 5 1. The wave function

coefficients are represented in terms of c.
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orbital space rather than in real space. Let us first discuss the simplest
example of a system with two atomic sites. As we know, in real space,
the introduction of U begins localising one electron at each atomic
site. Therefore, the ground state for half-filling and Sz

tot 5 0 with

non-zero U can be represented as a singlet state,
1ffiffiffi
2
p :;{;:j i, in real

space. In molecular orbital space, this ground state can be described

as
1ffiffiffi
2
p w1{w4j i, which corresponds to Y(Ne,S0) with equal c1 and c2,

as shown in Figure 1d within the two-state model. Note that w2 and
w3 contribute to the excited states but not to the ground state.

The charge excitation process can be understood based on the two-
state model as follows. The effect of U becomes more pronounced over
the flat band region (2p/3 # k # p for wide ZGNRs), as the on-site
Coulomb interaction, U, is effectively evaluated as U/W, where W is
the bandwidth28. Because W is very small over the flat band region for
any U . 0, the effective interaction becomes very high. Thus, the
ground state, Y(Ne,S0), is described as a linear combination of w1

and w4 (see Fig. 1d), which has been confirmed by analysing the
coefficients of the wavefunctions obtained from the CI calculations.
However, as we move away from the flat band region (jkj# 2p/3), the
decrease in U/W increases the contribution of w1 to the ground state.

In the case of one fewer electron than half-filling, the ground state
is singly occupied in the lower flat band and is expressed as Y(Ne -
1,S0), as shown in Figure 1d. Due to the single occupancy, this state is
independent of the parameter U. However, the state with one more
electron than half-filling cannot avoid the pairing of electrons, and
hence the ground state, Y(Ne 1 1,S0), costs U amount of energy.
Therefore, the difference between E0(Ne 11,S0) and E0(Ne21,S0)
always remains U26. Thus, the charge gap, Dc, is solely determined
by the relative position of E0(Ne,S0) with respect to the states with one
extra and one fewer electron. This behaviour will be confirmed in the
CAS-CI calculation later.

The two-state model provides a microscopic understanding of the
spin gap behaviour within the many-body framework. Because in the

spin excited state, Y(Ne,S0 11) (shown in Fig. 1d), the valence and
conduction bands are occupied by single electrons with the same
spin, its energy E0(Ne,S0 11) becomes independent of U. Thus, Ds

is determined only by E0(Ne,S0). The most intriguing behaviour of the
zero spin gap is observed when Y(Ne,S0) has equal contributions
from w1 and w4. The top of the valence band is doubly occupied in
the w1 configuration, whereas in the w4 configuration, the bottom of
the conduction band is doubly occupied (see Fig. 1d). When each of
them contributes 50% to construct the ground state, it effectively
becomes similar to the state with single occupancy of the top of the
valence band and the bottom of the conduction band. Therefore, the
energy of the ground state, E0(Ne,S0), becomes equal to the energy of
the spin excited state, E0(Ne,S0 11), closing the spin gap. This cri-
terion actually can be satisfied in the flat band region, where U/W is
large enough. Because of the vanishing W over this region, any U . 0
is enough to make the ground state a magnetic state. This magnetic
ground state, arising from degenerate flat bands near the Fermi
energy, is analogous to Mielke’s flat band ferromagnetism29,30.

Charge gap. We characterise the conducting properties of ZGNRs by
evaluating the charge gap, Dc, which is the energy difference between
charging and discharging an electron to the system. The decrease in
the charge gap indicates the enhancement of conduction behaviour.
Our theoretical analysis supports the pictures obtained from one-
electron theory regarding charge excitation.

Figure 2a shows the charge gap Dc for half-filled ZGNRs over the
BZ using CAS-CI. The observations within the two-state model
remain unchanged even for higher numbers of bands in the CAS-
CI calculations, where 4900 numerical basis states were considered.
The minimum in Dc decreases and shifts towards the Dirac point
with increasing width to resemble the conical spectrum of bulk gra-
phene. The minimum charge gap, Dc(min.), varies inversely with the
width of the ZGNRs (see Fig. 2b) and approaches zero at infinite
width, i.e., bulk graphene. All of these observations are qualitatively
in agreement with the one-electron approaches such as mean-field or

Figure 2 | Charge gap, spin gap and spin density of half-filled ZGNRs. (a) The charge gap (Dc) behavior over the BZ for ZGNRs with Nz 5 4 and 20 (solid

lines) and for bulk graphene (dashed line) at half-filling. (b) The minimum of charge gap, Dc (min.) (circles) near the Dirac point as a function of Nz and

fitted (solid line) with the equation: Dc 5 1.736/ Nz. The Dc at k 5 p for varying Nz is shown by dashed line with squares. (c) The spin gap (Ds) behavior

over the BZ for ZGNRs with Nz 5 4 and 20 (solid lines) and for bulk graphene (dashed line) at half-filling. (d) and (e) shows the spin density profile of

half-filled ZGNR with Nz 5 20 for Sz
tot 5 S0 and S0 1 1, respectively as a function of wavenumber (k) along the width (designated by site index). The color

bar shows the absolute scale of spin density.
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local density approximation (LDA)15,21 and with the analytic
results31. Interestingly, in this weak coupling regime, the Dc at BZ
boundary (k 5 p) is exactly equal to the U/t ratio and remains
unaltered with increasing width (see Fig. 2b). This equality originates
from the fact that at k 5 p, the ground state energy has a vanishing
contribution from the kinetic energy term of the Hubbard
Hamiltonian and is governed only by the interaction parameter. In
the weak coupling regime, the half-filled system and the system with
one fewer electron both become the ground state of the interacting
part of the Hamiltonian, and thus, the energy of removing one elec-
tron from the half-filled state amounts to zero at k 5 p, resulting in a
charge gap of U/t.

Spin gap. To investigate the behaviour of spins in ZGNRs, we
calculate the spin gap, Ds, which is the amount of energy required
to flip one spin in the system. With decreasing Ds, the system
becomes more subject to magnetic excitations. A zero spin gap
refers to the degenerate magnetic ground state.

Figure 2c shows the Ds for half-filled ZGNRs of different widths
over the BZ, obtained using the CAS-CI with 4900 basis states. With
increasing width, the ZGNRs show gapless spin excitation over a
larger region within k 5 p and the Dirac point. This behaviour is
due to the increasing flat band region with increasing width, as we
have described within the two-state model. Note that the appearance
of a zero spin gap is unlikely for very narrow ribbons with only two or
three zigzag chains, as evident from previous studies on spin lad-
ders11,32. The difference in spin excitation behaviours for odd and
even numbers of legs of spin ladders is not observed in our calcula-
tions33,34. This discrepancy can be attributed to the absence of back-
ward scattering and umklapp scattering in our calculations.
Nevertheless, we will present the systematic investigation of finite
size systems, including these scattering processes, later in this article
to validate our observations. Moreover, it has been observed that the
spin gap progressively decreases with increasing width of the ladder.
Therefore, we emphasise that our observations are robust in the case
of wider ZGNRs.

The antiparallel alignment of spins within the opposite edges of
ZGNRs8,13,21,35,36 remains unaltered within the many-body level of
theory, due to the bipartite nature of the graphene lattice. As seen
in Figure 2d, at k 5 p, the spins are completely localised in antipar-
allel fashion on the opposite edges for half-filled ZGNRs with Sz

tot 5

S0. However, a gapless spin excitation over the flat band region indi-
cates that the state with Sz

tot 5 S0 1 1, which shows parallel spin
orientation between opposite edges (see Fig. 2e), is degenerate to the
antiferromagnetic ground state, as suggested by Lieb’s theorem37.
This observation suggests that once the complete ferromagnetic state
is achieved by applying an external magnetic field, it persists as a
stable state even after switching off the magnetic field in the case of
undoped ZGNRs.

Hole doping. Now, let us investigate the magnetic and conducting
properties of ZGNRs in the presence of holes. Our calculation
indicates the reduction of charge and spin gaps upon hole doping,
i.e., hole-induced metallic magnetism. Figure 3a shows the charge
gap Dc variation with hole doping over the BZ for Nz 5 20 ZGNR.
The charge gap decreases drastically as the system moves away from
the half-filled state, indicating a hole-induced transition towards the
metallic phase. Note that the Dc for even and odd numbers of holes
merge to two different values near the Dirac point, due to the
systematic removal of electrons from the doubly occupied valence
bands. However, this odd-even effect becomes indistinguishable for
ZGNRs with larger widths when the charge gap for the hole-doped
ZGNRs becomes negligibly small. Therefore, we observe a hole-
mediated opening of conduction channels through the ZGNRs.

Figure 3b shows the spin gap Ds for different hole dopings for Nz 5
20 ZGNR. For single-hole doping, the spin needs to be excited from
the band below the top of the valence band to the bottom of the

conduction band. Therefore, the spin gap in this case is always higher
than in the half-filled case, where the spin excitation comes from the
top of the valence band. However, with increasing width, the closer
spacing of the two top valence bands makes the spin gap for both
cases almost equal over the k region from the BZ centre (k50) to the
Dirac point. However, from the Dirac point to the BZ boundary, the
Ds increases due to the appearance of edge states. The Ds for systems
up to three-hole doping also shows a monotonic increase over this
region, due to spin excitation to the top of the valence band, i.e., the
edge state. The spin gap for these systems with up to three holes,
however, decreases over the k region from the BZ centre to the Dirac
point. Higher hole doping results in a gradual closing of the spin gap
over the full BZ, and consequently, the system turns out to be magnetic.
With increasing width, the Ds decreases without altering the qualitat-
ive behaviour. This decrease in the spin gap indicates hole-induced
magnetism in ZGNRs. The observed odd-even effect in Ds also
becomes indistinguishable with increasing ZGNR width.

This appearance of magnetism drives us to explore the spin struc-
ture in ZGNRs with hole doping. Figure 4 shows the momentum-
dependent spin density profile over the full BZ for an Nz 5 20 ZGNR
for the spin-excited state, i.e., Sz

tot 5 S0 1 1. With increasing hole
doping, the spin-excited state of ZGNRs gradually stabilises and
eventually turns out to be the ground state. The increase in width
makes this process easier. As seen in the figure, the spin density
mainly localises on the ZGNR edges at the BZ boundary for lower
hole doping and gradually penetrates to the bulk sites as we move
away from k 5 p. With increased hole doping, the absolute spin
density on the edge atoms over the flat band region gradually
decreases because of the systematic disappearance of electrons from
the edge states. However, most importantly, all the remaining elec-
trons align with the same spin orientation throughout the whole
width, giving rise to a net magnetic moment for the hole-doped
ZGNRs.

For further verification, in Figure 5, we plot the spin-spin correla-
tion (ÆSi

zSj
zæ) between two opposite-edge atoms (i and j) for a Nz 5 20

Figure 3 | Charge gap and spin gap of hole-doped ZGNRs. (a) The charge

gap (Dc) and (b) spin gap (Ds) of ZGNR with Nz 5 20 over k 5 p/2 R p for

different hole (nh) doping.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 2 : 519 | DOI: 10.1038/srep00519 4



ZGNR with Sz
tot 5 S0 over the full BZ for different dopings. At k 5 p,

the half-filled ZGNR shows complete antiferromagnetic correlation
between the two opposite edges, which decreases monotonically
towards the Dirac point. We observe that the correlation within
the bulk sites increases as kR2p/3 from its zero value at k 5 p and
that in the vicinity of Dirac point, all the correlations within the bulk
and edge sites become comparable.

The antiferromagnetic correlation between edges is largely
destroyed by hole doping. Upon hole doping, electrons first vacate
from the top of the valence band, i.e., the edge state, and hence, the
spin density on the edge atoms vanishes gradually. In the case of an
even number of holes, the spins disappear symmetrically from both
the edges, but a system with an odd number of holes does not main-
tain a symmetrical spin distribution. Therefore, the spin-spin cor-
relation shows an odd-even effect (see Fig. 5), though it is negligibly
small due to quantum fluctuations. We observe that with hole dop-
ing, the antiferromagnetic correlation within two different sublattice
points throughout the whole lattice also decreases over the full BZ.
From the behaviour of the spin density profile and the spin-spin
correlation, we can infer a hole-induced net magnetisation in
ZGNRs.

Thus far, we have neglected the effect of scattering events connect-
ing two different k-states to emphasise the simple and unified picture
for the spin and charge excitation mechanism and their direct cor-
respondence to the two-state model for ZGNRs. However, to invest-
igate the effect of such scattering events, we perform the CAS-CI
calculations for non-periodic finite size systems with long, smooth
zigzag edges, which inherently include scattering processes arising
from electronic correlations.

Figures 6a and 6b present the charge-gap and spin-gap behaviours,
respectively, for such finite size systems as a function of inverse
length (L), i.e., the number of unit cells for a fixed width, Nz 5 6.
Both Dc and Ds decrease upon hole doping, indicating conducting
and magnetic behaviours, respectively, as we have already seen for
periodic ZGNRs (see Fig. 3a and 3b). Interestingly, the very low value
of Ds even in the case of the half-filled system (nh 5 0) suggests an
easily accessible magnetic state, as we have observed over the flat
band region of periodic ZGNRs (see Fig. 2c).

We also investigated the spin-spin correlation behaviour for finite
size systems with different hole dopings. Figure 6c shows the spin-
spin correlation calculated from one edge atom (the ‘‘0’’ –th site in
the finite graphene structure, shown in the middle panel) with all
other edge atoms along the same edge (top panel) and with all other
edge atoms along the opposite edge (bottom panel). The ferromag-
netic correlation (positive ÆS0

zSj
zæ) along the same edge decreases

slowly with increasing hole doping because of the gradual disappear-
ance of electrons from the edges, i.e., from edge states. The antifer-
romagnetic correlation (negative ÆS0

zSj
zæ) within the opposite edges

shows a sharp decrease with hole doping, as observed in periodic
ZGNRs (Fig. 5). All of these observations collectively lead us to the
conclusion that the scattering events connecting different k-points in
momentum space do not alter the qualitative outcome of our study
for periodic ZGNRs.

Discussion
The observation of the magnetic ground state of ZGNRs, along with
the decreased charge gap, suggests that hole-doped ZGNRs can act as
magnetic conductors with an abundance of one type of spin in the
charge carriers. This behaviour can be exploited to fabricate spin
filters by controlling the background dielectric, as shown schematic-
ally in Figure 7. The hole doping can also be accomplished using
oxidising agents that attract the electrons from the ZGNRs without
destroying their backbone geometry. The originally antiferromag-
netic and semiconducting ZGNRs (see Fig. 7a) can be turned into
conducting spin filters by the application of gate bias (see Fig. 7b).
However, although the device setup is rather conventional22,38–43,
experimentally achieving magneto-transport requires the graphene
channel to have smooth zigzag edges and the other perturbations
such as substrate effect and electrode coupling to be minimised. In
such an experimental situation, spin-dependent transport might be
detected at low temperatures. From a theoretical viewpoint, the
knowledge of scattering process and velocity of the charge carriers
is also necessary for a complete understanding of spin-filtering beha-
viour. However, these issues are beyond the scope of the present
study. Nevertheless, we look forward to further experimental and
theoretical studies to realise this proposed experimental device setup.
We are also pursuing transport calculations at the many-body level of
theory in our follow-up studies.

Figure 4 | Spin density profile of hole-doped ZGNRs. Spin density profile of hole doped ZGNR with Nz 5 20 and Sz
tot 5 S0 1 1 as a function of

wavenumber (k) along the width (designated by site index). The hole doping increases from left to right with (a) nh 5 1, (b) nh 5 2, (c) nh 5 3 and (d) nh 5

4. The color bar shows the absolute scale of spin density.

Figure 5 | Spin-spin correlation of ZGNRs. Spin-spin correlation

between two opposite edge atoms of ZGNR with Nz 5 20 over the BZ for

different hole (nh) doping. The inset shows zoomed plot near ÆSi
zSj

zæ 5 0.
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To summarise, we have investigated the electronic properties of
ZGNRs and their response to hole doping at the many-body CI level
of calculations, taking into account the quantum fluctuations. The
charge and spin excitation processes in ZGNRs have been explained
based on an effective two-state model, which considers the top of the
valence band and the bottom of the conduction band. Our study
suggests that hole doping not only causes the ZGNRs to become
conducting but also reduces the spin gap to make the ground state
magnetic. This magnetism can be enhanced further by creating nano
pores with zigzag edges in the bulk of the ZGNRs. These observations
indicate the possibility of fabricating a spin-filter device based on
ZGNRs by tuning the doping level. The fundamental understanding
of the charge and spin excitation behaviours will guide further
research in graphene and related materials and will provide tremend-
ous impetus to the fascinating research area of carbon-based mag-
netism.

Methods
Because nanoscale materials contain a large number of atomic sites, it is very difficult
to treat the electron-electron interactions properly. Although the mean field approach
or the local density approximation (LDA) allows for a numerical solution of the

Hubbard Hamiltonian even for sufficiently large widths, the one-electron description
of electronic correlations suffers severely from the lack of representation of the
quantum fluctuations. However, the many-body methods such as the density matrix
renormalisation group and exact diagonalisation are not applicable for larger system
sizes because of dimensionality limitations27.

In this paper, we employ the many-body configuration interaction (CI) method,
which is widely known in quantum chemistry and has recently been used to invest-
igate finite graphene quantum dots44,45. This multi-determinantal approach, built in
molecular orbital space, provides excellent estimates of the ground and excited
states46. To avoid the exploding size of the full-CI space with increasing width, we map
the whole system into a complete active space (CAS) with the same number of valence
and conduction bands around the Fermi energy at each k-point and consider all
possible electron occupancies to construct the many-body basis. In our calculations,
we consider 4 valence and 4 conduction bands around the Fermi energy. This choice
gives 4,900 many-body basis states in CAS for the half-filled case with Sz

tot 5 0. Note
that in the case of periodic systems, the scattering processes within different k-points
become crucial in determining the electronic or optical excitations. Although these
scattering processes have been neglected in our study for simplicity, we confirm the
qualitative observations by finite size calculations that inherently take into account
such scattering events. The hole doping has been performed by the systematic
removal of electrons from CAS at each k-point. This approach resembles the scat-
tering process in angle-resolved photoemission spectroscopy (ARPES). With hole
doping, the number of many-body basis states in CAS gradually decreases. Note that
electron doping is expected to show simliar results, since the electron-hole symmetry
is conserved in the nearest-neighbour Hubbard model.

Figure 6 | Charge gap, spin gap and spin-spin correlation of finite size graphene and their response to hole doping. (a) The charge gap (Dc) and (b) spin

gap (Ds) for finite graphene system with long zigzag edge and fixed Nz 5 6 as a function of inverse length (L), i.e., number of unit cells for different hole

(nh) doping. (c) The spin-spin correlation (ÆS0
zSj

zæ), calculated from the ‘‘0’’ –th atom, located at the middle of the edge of the graphene structure with Nz

5 6 (middle panel) with all the edge atoms (j) along the same edge (top panel) and with all the edge atoms (j) along the opposite edge (bottom panel) for

different hole (nh) doping.
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Figure 7 | Schematic representation of the possible application of
ZGNRs. (a) The semiconducting and antiferromagnetic ground state of

ZGNR with antiparallel spin orientation between opposite edges in

absence of gate bias (Vg). (b) Hole doping due to the application of gate

bias makes the ZGNR magnetic and conducting serving as spin filter.
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