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Genomic deletions provide a powerful loss-of-function model in noncoding regions to assess the role of purifying selection
on genetic variation. Regulatory element function is characterized by nonuniform tissue and cell type activity, necessarily
linking the study of fitness consequences from regulatory variants to their corresponding cellular activity. We generated a
callset of deletions from genomes in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and used deletions from The
1000 Genomes Project Consortium (I000GP) in order to examine whether purifying selection preserves noncoding sites of
chromatin accessibility marked by DNase | hypersensitivity (DHS), histone modification (enhancer, transcribed, Polycomb-
repressed, heterochromatin), and chromatin loop anchors. To examine this in a cellular activity-aware manner, we devel-
oped a statistical method, pleiotropy ratio score (PlyRS), which calculates a correlation-adjusted count of “cellular pleiot-
ropy” for each noncoding base pair by analyzing shared regulatory annotations across tissues and cell types. By
comparing real deletion PIyRS values to simulations in a length-matched framework and by using genomic covariates in
analyses, we found that purifying selection acts to preserve both DHS and enhancer noncoding sites. However, we did
not find evidence of purifying selection for noncoding transcribed, Polycomb-repressed, or heterochromatin sites beyond
that of the noncoding background. Additionally, we found evidence that purifying selection is acting on chromatin loop
integrity by preserving colocalized CTCF binding sites. At regions of DHS, enhancer, and CTCF within chromatin loop an-
chors, we found evidence that both sites of activity specific to a particular tissue or cell type and sites of cellularly pleiotropic

activity are preserved by selection.
[Supplemental material is available for this article.]

Large-scale sequencing studies have provided tremendous insight
into biological function and human disease, with statistical signa-
tures of natural selection serving as a primary identifying feature.
The classic example is the analysis of selective constraints on pro-
tein-coding genes evident from the depletion of missense or non-
sense genetic variants. These advances, however, are not directly
translatable to the analysis of noncoding DNA, which has increas-
ingly become a focus of human genetics research. Genomic studies
have revealed numerous regions of regulatory activity marked by
chromatin accessibility or histone modification (The ENCODE
Project Consortium 2012; Roadmap Epigenomics Consortium
et al. 2015). Association signals for common human phenotypes
are enriched in these regulatory regions of the genome (Maurano
et al. 2012; Trynka et al. 2013; Gusev et al. 2014; Finucane et al.
2015), showcasing the importance of specialized cellular function.
In contrast to protein-coding sequences, the function of regulatory
sequences is not determined by triplet codon structure, thereby
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providing no obvious analog to protein-truncating single-nucleo-
tide variants (SNVs) to identify loss of function. This lack of knowl-
edge of the mutational consequences of individual nucleotides
within regulatory sequences complicates the ability to study their
function through the lens of purifying natural selection. Previous
work focusing on SNVs within noncoding regions developed so-
phisticated genetic models that relied on functional proxies such
as transcription factor binding sites, nucleotide conservation
across species, or machine learning (Kircher et al. 2014; Ritchie
et al. 2014; Lee et al. 2015; Quang et al. 2015; Zhou and Troyan-
skaya 2015; Ionita-Laza et al. 2016; Huang et al. 2017; Rojano
et al. 2019). However, it is difficult to clearly interpret these find-
ings in terms of selection against the disruption of regulation.
In contrast to SNVs, deletions are a class of variation that provide
a direct loss of normal regulatory function at a locus by physically
removing the sequence of a regulatory element in at least a hetero-
zygous manner. This logic underlies experimental studies of regu-
latory function using CRISPR-Cas9 systems (Zhu et al. 2016; Liu
et al. 2017). Yet, natural population genetic variation provides a
more unbiased genome-wide view of the action of selection on de-
letions. Work performed by sequencing consortia has shown the
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reduction of deletion variation in various categories of regulatory
sequences (Sudmant et al. 2015a,b; Abel et al. 2020).

The hallmark of human regulatory loci is their nonuniform
activity across tissues and cell types. Here, we offer a population ge-
netic analysis of natural deletions in light of variable regulatory
activity across tissues and cell types (collectively called “biosam-
ples”). Deletions that remove sites of genomic regulation with
pleiotropic cellular effects (what we term “cellular pleiotropy”;
i.e., the same regulatory locus is active in more than one biosam-
ple) might be expected to be, on average, more deleterious (i.e., fit-
ness-reducing) than deletions that remove sites with activity
specific to a particular biosample, because any changes at the
DNA level to the cellularly pleiotropic regulatory loci potentially
affect multiple biosamples simultaneously. Another possibility is
that because particular biosample regulation is what enables wide-
spread cellular diversity, these regulatory sites must be under
strong selective constraint to preserve their specialized biological
function. These two potential modes of selection that preserve
the regulation of cellular activity are not mutually exclusive, as se-
lection may be operating to remove overlapping deletions to pre-
serve the utility of both types of regulatory loci. Prior work has
provided suggestive evidence that biosample activity count is a
contributor to selective constraint in regulatory sequences
(Cheng et al. 2014; Huang et al. 2017; Quiver and Lachance
2018; Abel et al. 2020; Xu et al. 2020). Studying purifying selection
on noncoding deletions is thus inherently tied to the cellular activ-
ity of corresponding deleted regulatory sequences. These previous
studies, although providing great contributions to the field, do not
fully grant clarity of interpretation for examining these questions,
however, because biosample counts were inflated owing to a high
correlation of the cellular activity among the tissues and cell types
analyzed. Thus, the method used to numerically count affected
cellular activity influences interpretation of results. To address
this, we have developed a statistical method, pleiotropy ratio score
(PlyRS), to quantify the amount of biosample activity (i.e., cellular
pleiotropy) for individual nucleotides in light of the hierarchical
developmental structure of human biosamples, while controlling
for their correlation rather than using a simple biosample count.
We then analyzed separately several diverse epigenomic features
(open chromatin, histone modifications, and chromatin loop an-
chors), taking into account nonindependence of these individual
annotations across biosamples by using our PlyRS values. In this
way, we assessed the effect of purifying selection on millions of
nucleotide positions in the human noncoding genome by examin-
ing patterns of PlyRS values within naturally occurring deletion
sequences.

The reduction of genetic variation and a shift in the allele fre-
quency (AF) spectrum (AFS) toward rare variants are two key signa-
tures of purifying selection. If selection is operating on the removal
of deleterious deletions overlapping regulatory regions, we would
expect to see both a reduction in deletion variation overlapping
the important regulatory features and a shift in the AFS of remain-
ing overlapping deletions toward rarer alleles, relative to neutral
expectations. These conditions on segregating deletions should
be simultaneously present to confidently conclude that purifying
natural selection is acting to preserve a particular regulatory epige-
nomic feature, as either reduced deletion counts or a shift in the
deletion AFS alone may indicate deletion-calling artifacts or con-
founding genomic covariates. Both of these signatures are prone
to misspecification from various technical or biological confound-
ers, particularly for structural variation. For example, the accuracy
of deletion calls is influenced by their length and AF (Huddleston

and Eichler 2016). Longer deletions have more prevalent missing
coverage, and common deletions are observed more often in the
population, so these types of deletions are more likely to be correct-
ly identified using current methods based on analyzing short-read
sequencing data. Variant calling accuracy also depends on the
mappability of the sequence (Treangen and Salzberg 2012).
Therefore, the observed negative correlation of deletion length
and AF (Mills et al. 2011; Sudmant et al. 2015a) could be owing to
these deletion-caller algorithm biases, underlying biology, or both.

In addition to technical confounders, biological factors unre-
lated to the direct pressure of selection may affect the number of
segregating mutations and the AFS. For example, the amount of
variation is linearly proportional to mutation rate; however, the
deletion mutation rate at fine-scale is still unknown and could
be influenced by sequence GC content and other local genomic
properties. In contrast to the overall amount of variation, AFS
does not depend on mutation rate when examined in the form
of the distribution of relative proportions of variants with a given
frequency. In this representation, for small populations in which
there is only one mutation event per segregating site, as relevant
for this work, AFS depends on the genealogical history of the site
and does not depend on mutation rate. This is important for our
analysis, because the AFS test shows that the depletion of deletions
is not owing to reduction of mutation rate. Together with amount
of variation, however, AFS could be influenced by complex mech-
anisms like background selection (Cvijovic et al. 2018).

To address the technical and population genetic confounding
effects described above, we simulated length-matched positions of
each real deletion while keeping the original AF label and took into
account relevant genomic confounding variables co-occurring
with the same deletion. We examined PlyRS values within deletion
coordinates, checking for a reduction in observed PlyRS values
compared with simulations that would be indicative of purifying
selection. We also checked for a shift in the AFS of overlapping de-
letions toward rarer alleles while examining the magnitude of
PlyRS depletion compared with simulations. By using this analysis
framework of PlyRS values, we assessed the potential of purifying
selection to preserve noncoding epigenomic features by compar-
ing the observed diversity and AFS of real deletions to the expecta-
tions based on simulations.

Results

Pleiotropy ratio score

We score deletions with respect to their effect on regulatory func-
tion by considering deletion overlap in the context of both the
number of removed regulatory sites and the activity of each site
across biosamples. In contrast to SNVs, a noncoding deletion can
potentially remove regulatory function at a genomic locus along
two distinct “axes” (for a cartoon, see Fig. 1A). The horizontal
axis corresponds to the amount of regulatory space removed by
the deletion irrespective of its biosample activity. The vertical
axis corresponds to the combined amount of regulatory activity
across biosamples of each base pair (i.e., the cellular pleiotropy of
a regulatory coordinate). Thus, for any deletion overlapping regu-
latory sequences, there will be a simultaneous removal at that lo-
cus along both axes, which we quantify by a counting score for
each axis.

A single deletion, depending on its length, may remove
one or more adjacent regulatory elements. For the horizontal
axis, we calculate the amount of deleted regulatory space on a
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Figure 1. Pleiotropy ratio score (PlyRS). (A) Purifying selection against deletions can operate along two “axes” at a genomic locus. A deletion (here shad-
ed gray) can remove putative genomic function along a horizontal axis by overlapping one or more regulatory sites (here overlapping two DHSs [hotspot;
blue] but missing an enhancer [H3K4meT; red]). The regulatory sites overlapped can have annotated activity specific to a particular biosample (as the left-
most DHS) or cellularly pleiotropic activity (as the rightmost DHS), thus removing putative genomic function along a vertical axis. (B) Schematic of derivation
of PlyRS. By using biosamples sharing an annotation at a given base pair, we compute effective number (n_eff) of biosamples by equating the observed
sharing fraction to that under the expectation of independent annotations. PlyRS is given by n_eff values normalized across biosamples. (C) Comparison of
PIyRS to simple biosample counts. PlyRS can range from zero, representing no regulatory activity at a particular base pair in any biosample, to one, rep-
resenting regulatory activity in all biosamples analyzed. Because PlyRS accounts for the positive regulatory activity correlation between biosamples ana-
lyzed, PlyRS (y-axis) will always fall at, or below, the diagonal versus a simple count (x-axis). Each regulatory feature will display a different PlyRS
distribution (e.g., the enhancer feature [H3K4me1; right] has a PlyRS distribution that lies closer to the diagonal than for the DHS feature [left]), based
on the activity covariance of the biosamples that are analyzed of that regulatory feature. Boxplot midlines correspond to the median PlyRS value, with
the box delimiting the second and third quartile range and the whiskers extending from box edges out up to 1.5 times the box range or the furthest
PIyRS value if within that bound. (D) Comparison of PlyRS values for sites of activity specific to a particular biosample. When regulatory activity at a
base pair is annotated as specific to a particular biosample, each biosample will have a PlyRS value corresponding to it that may be below, at, or above
an otherwise simple count of 0.04 (i.e., one biosample divided by 25 total possible biosamples analyzed). This is owing to PlyRS up-weighting biosamples
that have relatively rare activity genome-wide and down-weighting biosamples with relatively common activity. Because of the highly correlated nature of
DHS biosamples (blue squares) to one another (or enhancer biosamples [red circles] to one another) among the biosamples that we analyzed, many bio-
samples fall below a count of 0.04 when regulatory activity at a base pair is specific to a particular biosample.

per-annotation basis. We examine annotations at the base pair
level rather than element level because there is a mismatch be-
tween the start and end coordinates of most pleiotropic regulatory
elements when compared across biosamples (Roadmap
Epigenomics Consortium et al. 2015). The base pair annotation
does not require fixing precise coordinate boundaries between
each biosample, enabling regulatory site annotations to be equally
compared across biosamples. We do not require the removal of an
entire regulatory element for the horizontal count because even a
partial deletion of a regulatory element might render it inoperable
(Ibn-Salem et al. 2014). For example, if 15 regulatory base pairs are
deleted, this might correspond to roughly 1/10 of the regulatory el-
ement being deleted (using an average regulatory element coordi-
nate length of 150 bp) (John et al. 2011), therefore serving as a
scaled proxy of real regulatory element removal. Consequently,
for a deletion overlapping regulatory space, the horizontal axis
count score can range from as low as one (only a single regulatory
base pair deleted in any biosample) to as high as the length of the
deletion (all base pairs along the deletion length overlap a regula-
tory annotation).

The vertical axis measures the breadth of cellular activity de-
leted at a particular genomic locus. A simple numerical count of
the number of biosamples where regulatory space has activity is
not sufficient for properly specifying cellular pleiotropy; this count
can be heavily influenced by the cellular diversity of the particular
biosamples included in the analysis. This would be particularly true
in the case of a subset of highly correlated biosamples, such as
blood cells, dominating a data set. For example, a count of three
in an analysis performed with heart tissue, lung tissue, and 10
blood cell types would not have the same interpretation as a count
of three in an analysis performed with heart tissue, lung tissue, and
only one blood cell type. In the former, it could be that the count of
three comes from three highly correlated blood cell types, but in
the latter, the count of three would have to come from the more
developmentally diverse set of all three tissues. Therefore, in recog-
nition of these issues, we developed a statistical method, called
pleiotropy ratio score (PlyRS; pronounced “ply-ers” as in the pliers
hand tool), which calculates a correlation-adjusted count of cellu-
lar pleiotropy among the biosamples analyzed. This count is calcu-
lated per base pair for each regulatory annotation separately.
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To construct PlyRS, we adapted the PSIC method (Sunyaev
et al. 1999), which was originally developed to assess independent
observations when looking at a multiple sequence alignment of
amino acid substitutions. Figure 1B provides a helpful schematic
of the derivation of PlyRS. For a set of biosamples analyzed (three
in Fig. 1B), we find the biosamples that share a regulatory annota-
tion at a particular base pair (in Fig. 1B, position j has Tissue 1
and Tissue 2 sharing a regulatory annotation). We compare the ge-
nomic fraction of positions with shared annotation to that expect-
ed if biosamples were independent (presented as independent
Bernoulli experiments with the corresponding annotation fre-
quencies, q). We then calculate effective number of independent
biosamples (“n_eff share”) as the number of independent biosam-
ples that would have the same shared fraction of annotation as the
observed data. This gives us an adjusted count based on the under-
lying correlation between the biosamples analyzed. We similarly
compute effective number of biosamples that are not annotated
in this position (“n_eff not-share” in Fig. 1B; position j has
Tissue 3 not sharing a regulatory annotation). The effective num-
ber in either case will not be very informative by itself, because it
would scale differently at each base pair depending on the set of
biosamples sharing a regulatory annotation at that position, espe-
cially when the number of biosamples analyzed is large. Therefore,
from the two effective numbers (n_eff share and n_eff not-share),
we derive the PlyRS by taking the n_eff counts from sharing and
divide by the total n_eff counts from both sharing and not sharing.

At any base pair coordinate within a deletion, the PlyRS value
scale can range from zero to a maximum of one. A PlyRS value of
zero corresponds to base pair for which there is no annotated reg-
ulatory activity at that genomic position in any biosample ana-
lyzed in the total set of biosamples. Conversely, a PlyRS value of
one corresponds to base pair for which there is annotated regulato-
ry activity at that genomic position in all biosamples analyzed.
Between these extreme bounds, the counts of regulatory sites ac-
tive in biosamples with common activity will be down-weighted,
whereas the counts of sites active in biosamples with rare activity
will be up-weighted. Figure 1C illustrates how PlyRS corresponds to
the simple biosample counts. Similarly, for each base pair that has
activity specific to a particular biosample, the PlyRS value of that
base pair will be different depending on which particular biosam-
ple has activity and how its activity covaries across the genome
with the other biosamples being analyzed (see Fig. 1D). For our
purposes, we define a deletion at a regulatory locus as having
both horizontal and vertical axis components, even if that dele-
tion overlaps a regulatory annotation with activity only specific
to a particular biosample.

Construction of deletion and regulatory data sets

To examine selective constraints on deletions within regulatory re-
gions, we needed fine-resolution of genomic coordinates for both
deletions and regulatory regions as well as high-confidence dele-
tion AFs from population data. For this, we compiled deletion
data from two callsets and regulatory data from seven callsets,
and we applied additional filters relevant to our analysis. For addi-
tional criteria used to ensure high-quality data sets, see Methods.

We used deletions that we called and genotyped (see
Supplemental Note S1; Supplemental Figs. S2-S4; Supplemental
Tables S13, S14) across 752 individuals sequenced as part of the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Petersen
et al. 2010), using the CNV algorithm Genome STRiP (Handsaker
et al. 2011). We additionally used deletion data (Supplemental

Note S2) from The 1000 Genomes Project Consortium (1000GP)
phase 3 callset of breakpoint-resolved deletions that had been gen-
otyped in 2504 individuals from 26 modern human populations
(Sudmant et al. 2015a). We restricted our analysis to noncoding de-
letions. As expected, the bulk (>80%) of deletions in our data sets
remaining after filtering were rare (<1% AF).

To analyze genomic deletions within regulatory regions, we
used biochemical data associated with regulatory activity from
the NIH Roadmap Epigenomics Consortium (REC) (Roadmap Epi-
genomics Consortium et al. 2015). In particular, we used two call-
sets of chromatin accessibility data (DNase I hypersensitivity
[DHS]) and four callsets of histone modification data (H3K4mel
“enhancer,” H3K36me3 “transcribed,” H3K27me3 “Polycomb-re-
pressed,” and H3K9me3 “heterochromatin”). Two sets of DHS
annotation (“hotspot” and “MACS”) were used to check for consis-
tency in the analyses. DHS annotations are typically associated
with sites of open chromatin, allowing accessibility for regulator
binding, and histone annotations are typically associated with
sites of specific regulatory activity, as noted. Although histone an-
notations from REC callsets may be located widely throughout the
genome, activity marks such as H3K4mel (enhancer) are often lo-
cated within DHS sites, although not exclusively. Even though we
used high-probability regulatory annotations (Supplemental Note
S3) to define regulatory loci, the loci identified should be consid-
ered as containing candidate regulatory elements because of the
nature of the annotations. For example, histone modification
may spread beyond the regulatory element at which it initiates,
and we did not attempt to define the core regulatory element in or-
der to be conservative in our downstream analyses. We additional-
ly used data that demarcate chromatin loop anchors (Rao et al.
2014), which are associated as defining local genomic regions of
physically interacting DNA.

Depletion of variation at DHS or enhancer sites

We first tested whether there was evidence of the depletion of non-
coding deletion variation overlapping chromatin accessibility or
histone modification. The depletion should be measured with re-
spect to a background distribution of deletions along the genome
in the absence of selection. We constructed this background distri-
bution using simulations (Supplemental Note S4). For each real
deletion in both the 1000GP and ADNI data sets, we randomly
placed 1000 deletions of the same length to occur on the same
chromosome and same noncoding genomic compartment space
(intronic or intergenic). We confined to uniquely mappable se-
quence coordinates for both real deletions and simulated dele-
tions. This procedure corrects for the confounding effects of
mappability, deletion length, and AF. We summed the PIyRS val-
ues calculated per base pair along the length of every deletion.
This sum, denoted PlyRSg,m (Supplemental Note S5), corresponds
to the total cellular pleiotropy (for a specific regulatory feature) of
the deletion, encompassing both the horizontal and vertical axes
along which purifying selection may be operating on the deletion.
To evaluate depletion, we first compared the PlyRSg,m of each real
deletion to its own simulated counterparts by computing an em-
pirical P-value. We then summed logarithms of the empirical P-
values of all the individual comparisons and estimated the overall
depletion across the deletion set by comparing this sum to the
background expectation using Cohen'’s d-statistic. For more detail
on our procedure of generating length-matched simulations and
the calculation of depletion, see Supplemental Notes $4.2 and
S6, respectively.
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the noncoding background for the nonrepetitive coordinates
that we allow (see Supplemental Note S4.1). A negative Cohen'’s
d suggests that a regulatory feature may be enriched for overlap-
ping deletions compared with expectation; however, given the re-
stricted set of noncoding coordinates we allow, our analysis
methodology is not designed to provide indications of enrich-
ment, as a different set of allowable coordinates may be more ap-
propriate in those situations. Supplemental Table S1 lists the
effect sizes found in the depletion simulations.

Figure 2A shows PlyRS,, effect sizes from comparing real
data to simulations and indicates significant depletion of deletions
(Cohen’s d>2, corresponding to 2 SD) overlapping noncoding
DHS or enhancer regions. The depletion of deletions overlapping
DHS or enhancer sites was significant not only in the full deletion
sets but also in both the intronic and intergenic genomic compart-
ments. Additionally, we found concordance between effect sizes in
the 1000GP and ADNI data sets for DHS or enhancer deletion de-
pletions, suggesting reliable capture of biological information
from deletion callsets with differing characteristics. These results
suggest that purifying selection may be operating broadly on dele-
tions to preserve DHS and enhancer epigenomic features. We did
not detect a significant depletion for deletions overlapping non-
coding transcribed, Polycomb-repressed, or heterochromatin epi-
genomic features. For this analysis, Cohen'’s d corresponding to
zero indicates a level of depletion that is consistent with that of

Shift in AFS at DHS or enhancer sites

We next tested whether there was a shift in the AFS of noncoding
deletions overlapping the chromatin accessibility or histone
modification epigenomic features. The analysis of AF distribution
is important because the overall amount of variation can be
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Figure 2. Depletion of deletions and shift of deletion allele frequency (AF) spectrum (AFS) overlapping regulatory sites. (A) We calculated PlyRS;,, for
every deletion to quantify overlap with sites of chromatin accessibility or histone modification. We plot the degree of reduction in the PlyRSy,, for real de-
letions relative to simulation. This reduction is measured using Cohen'’s d, which is the effect size of a t-test on PlyRS,,, values in units of SD (plotted with
95% confidence intervals [Cls] showing the uncertainty owing to the finite number of simulations). Two units of effect size (Cohen’s d=2) approximately
correspond to the 95% Cl of significance in depletion. Higher values of Cohen’s d indicate larger depletion within those sets compared with simulation. In
presence of the true effect, there is a sample-size dependence on the underlying t-test, and the expected value of Cohen’s d would be higher for larger data
sets. (B) For each deletion, we determined the magnitude of PlyRS,,,, depletion, calculated as a ratio between its PlyRS,,, and the average PlyRS,m of its
length-matched simulated counterparts, for sites of chromatin accessibility or histone modification. We tested whether PlyRS;,,,, depletion magnitude de-
pends on AF (deletions categorized as rare [AF < 1%] or common), using multivariate logistic regression in the presence of genomic covariates. We plot the
regression odds ratio with 95% profile likelihood-based Cls. Results above one indicate a positive correlation of the magnitude of PlyRS,,, depletion with
AF. This corresponds to an excess of rare alleles overlapping the regulatory feature in the real data set compared with simulation, which is the expected result
for features being preserved by the action of purifying selection against overlapping deletions.
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confounded by mutation rate (unlike SNVs, we do not have good
models for mutation rate along the genome for deletions)
(Kloosterman et al. 2015). The AF distribution, when examined us-
ing proportions rather than mutation counts, does not depend on
mutation rate for relatively small populations (within the limits of
the infinite sites approximation), but owing to the recent explo-
sive growth of the human population, this assumption may break
down for extremely large sample sizes, at which point recent recur-
rent mutations become relevant. However, for the sample sizes an-
alyzed here, the AF distribution can be assumed to be independent
of mutation rate (Li 1997) because the chance of recurrent muta-
tions is extremely small for deletions, which would require the
start and end coordinates to be identical. Therefore, a shift in the
AFS of real deletions in our data sets compared with simulated de-
letions would likely reflect the action of purifying selection at an
extent greater than that of the rest of the noncoding genome
that we analyze.

To test whether the magnitude of PlyRS,, depletion depends
on AF, we used logistic regression. Binarized AF is the outcome var-
iable (deletions categorized as rare [AF<1%] or common) and
PlyRSsum as predictor (Supplemental Note S7). To measure the
magnitude of PlyRSg,, depletion for each deletion, we calculated
a ratio between its PlyRSy,;, and the average PlyRSs,, of its
length-matched simulated deletions. If purifying selection is, in
fact, acting against deletions overlapping regulatory features, we
would expect the largest PlyRS,, depletions to be found in com-
mon deletions. Still, the AF distribution can be affected by a num-
ber of variables unrelated to selective pressure. We accounted for
relevant genomic covariates by including them into the multivar-
iate logistic regression model. To take into account the potential ef-
fect of background selection, we controlled for regional (50 kb +
deletion coordinates) SNV nucleotide diversity and recombination
rate, as well as the distance to the nearest transcription start site.
We additionally controlled for regional GC content. Because of
technical confounders, AF is expected to be influenced by deletion
length, so we also controlled for length explicitly.

Figure 2B shows that for deletions overlapping DHS sites, the
odds ratio (OR) significantly (confidence interval [CI] 95%) ex-
ceeded one in both data sets. This indicates the action of purifying
selection by PlyRS;,,,, depletion magnitude showing positive cor-
relation with AF. Additionally, for deletions overlapping enhancer
sites, the OR significantly exceeded one in the 1000GP data set,
whereas the lower CI boundary of the OR was nearly significant,
at 0.995, in the ADNI data set. All intronic and intergenic genomic
compartment sets for DHS or enhancer features had mean OR>1
(except ADNI intronic enhancers at 0.96). Supplemental Table S2
lists the ORs found in the logistic regressions. These results suggest
that purifying selection may be preserving noncoding DHS and
enhancer epigenomic features by reducing AFs of overlapping de-
letions. On the other hand, there is a lack of consistent AF shift for
genomic compartment sets for transcribed, Polycomb-repressed,
and heterochromatin features in both deletion data sets, with
the mean OR sometimes falling below one and the OR CI often ex-
tending below one. This indicates that any negative selection
against deletions overlapping these features would be of a strength
comparable to, or less than, that of the noncoding background. In
light of the insufficient evidence across the data sets for an excess
of rare alleles for these features, combined with the lack of reduc-
tion in variation described above, we focused the analysis below
on noncoding DHS or enhancer epigenomic features that showed
statistical significance of both key signatures of broad selection
against overlapping deletions.

Differential selection on preserving cellular activity

The results described above have indicated that purifying selection
is acting against the total cellular pleiotropic burden (PlyRSsum) of
noncoding deletions, preserving both DHS and enhancer regulato-
1y sites. However, these analyses do not clarify if purifying selec-
tion preserves DHS or enhancer sites of both activity specific to a
particular biosample and cellularly pleiotropic activity. One possi-
bility is that deletions removing regulatory sites active in multiple
biosamples incur a greater fitness cost. Another possibility is that
because sites with activity specific to a particular biosample are vi-
tal to organismal development, deletions removing them are sub-
ject to a stronger selective effect. It could also be the case that
purifying selective pressure on deletions is acting to preserve
both types of regulatory sites simultaneously. To distinguish be-
tween these scenarios, we calculated two additional PlyRS mea-
sures, PIlyRSsum-mono and PlyRSsum.preio (Supplemental Note S5).
PlyRSsum-mono included the sum of PlyRS values of deleted base
pairs for those only associated with regulatory activity specific to
a particular biosample. PlyRS,um.pieio included the sum of PlyRS
values of deleted base pairs for those associated with cellularly
pleiotropic regulatory activity. The sum of these two components
across the length of a deletion’s coordinates is the original measure
of total cellular pleiotropic burden, PlyRSy,,. With these addition-
al PIyRS measures, we performed the same analyses as above to ex-
amine both a potential reduction in variation and a shift in AF,
now applied separately to each component of PlyRSg,n,. This al-
lowed us to determine, within the same sets of real deletions,
which scenario of regulatory activity preservation was contribut-
ing to the signal of depletion in variation and shift in the AFS as
found above.

Figure 3A shows a significant depletion of variation for DHS
or enhancer sites corresponding to both sites of activity specific
to a particular biosample and cellularly pleiotropic activity in
both the 1000GP and ADNI data sets. The effect size of this reduc-
tion in variation for PlyRSsum-mono OF PIyRSsum.pieio Was greater for
PIyRSsum-pieio for both noncoding regulatory features, except for
enhancer sites in ADNI deletions, where the effect size was compa-
rable (error bars overlapping). Supplemental Tables S3 and S4 list
the effect sizes found in the depletion simulations, including those
for intronic and intergenic compartments where depletion values
did not consistently favor greater reduction of PlyRSs,m_pieio- Figure
3B shows that the magnitude of deletion depletion overlapping
DHS or enhancer sites leads to a significantly shifted AFS at both
sites of activity specific to a particular biosample and cellularly
pleiotropic activity. For DHS or enhancer sites in all genomic
compartments, the mean ORs of the magnitude of depletion for
PlyRSsum-mono OF PlyRSgum.pieio in association to AF were greater
than one in both deletion data sets (except ADNI intronic enhanc-
ers) and were comparable between PlyRSs;m-mono and PIyRSgum.pieio-
Supplemental Tables S5 and S6 list the ORs found in the logistic
regressions. These results collectively indicate that purifying selec-
tion is acting to preserve DHS or enhancer sites of activity specific
to a particular biosample as well as cellularly pleiotropic activity.

Purifying selection on CTCF sites within chromatin
loop anchors

We also investigated whether there was evidence of depletion of
variation and a shift in the AFS of deletions overlapping chroma-
tin loop anchors. Chromatin loops are large regions of self-inter-
acting DNA that facilitate cis-regulatory effects at a wider scale
than that of individual regulators (Lupiafiez et al. 2015;
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Figure 3. Depletion of deletions and shift of AFS overlapping DHS or enhancer sites of variable cellular activity. (A) We calculated PlyRSum.mono (Mono-
tropic) and PlyRSsum-pieio (Pleiotropic) for every deletion to quantify overlap with DHS or enhancer sites. We plot the degree of reduction in PlyRSs,m-mono (OF
PlyRSsum-pleio) fOr real deletions relative to simulation measured using Cohen’s d (with 95% Cls showing the uncertainty owing to the finite number of sim-
ulations). (B) For each deletion, we determined the magnitude of PlyRS,um-mono (Monotropic) and PlyRSum.pieio (Pleiotropic) depletion, calculated as a ratio
between its PlyRSsum-mono (OF PlyRSsum-picio) and the average PlyRSsum-mono (OF PlyRSsum-pieio) OF its length-matched simulated counterparts, for DHS or en-
hancer sites. We tested whether PlyRSs,m-mono (O PIlyRSsum-pleio) depletion magnitude depends on AF (deletions categorized as rare [AF < 1%] or common),
using multivariate logistic regression in the presence of genomic covariates. We plot the regression odds ratio with 95% profile likelihood-based Cls.

Schoenfelder and Fraser 2019), and so, deletions removing a loop
anchor (i.e., side endpoint of the chromatin loop) may be under
strong purifying natural selection to preserve the loop integrity.
The distance between loop anchors is greater than the longest de-
letions in our data sets, so deletions can only overlap, at most, one
loop anchor. Additionally, the loop data are less precise than chro-
matin accessibility or histone modification annotations, so the
number of base pairs of a deletion overlapping a loop anchor
may not reflect actual deleteriousness of the mutation but rather
correspond to imprecise annotations on the edges. These charac-
teristics of loop annotation mean that using PlyRSg,,, to define
the total cellular pleiotropy of overlapping deletions can propa-
gate a potential bias in the measure. To avoid this and still test
whether purifying selection may be operating on deletions over-
lapping loop anchors, we measured overlap both as a binary vari-
able and by calculating the maximal PlyRS value (PlyRSy.x)
(Supplemental Note S5) along the length of an overlapping dele-

tion. We performed the same analyses as for the chromatin acces-
sibility or histone modification annotations.

Rao and Huntley et al. (2014) identified that a large majority
(~86%) of chromatin loop anchor loci had binding from the insu-
lator protein CTCF, which ensures integrity of DNA looping and,
consequently, chromatin loop fidelity (Guo et al. 2015; Nora
et al. 2017). Given this critical function of CTCF and its presence
within most loop anchors as specific binding points, we suspected
that deletions that overlap loop anchors might be under stronger
purifying selection if a deletion also simultaneously overlaps a
CTCEF site within the loop anchor, thereby removing a vital bind-
ing point. To elucidate this, in addition to identifying the full set of
deletions overlapping chromatin loop anchors (loops), we further
refined deletions into two subsets: deletions overlapping the loop
anchor but not simultaneously overlapping a CTCF binding site
(loopsnocrcr) and deletions overlapping a loop anchor while
simultaneously overlapping a CTCF binding site (loopscrcr)-
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Only ~1% of all deletions in our data sets overlapped loopscrcg, SO
we ignored intronic and intergenic designations in the analysis
(but maintained them in simulations).

Figure 4A shows the effect sizes of binary overlap or PlyRS,,x
overlap from comparing real deletions to simulations and indi-
cates that, with respect to the full set of loop anchors being over-
lapped (irrespective of whether CTCF sites are simultaneously
overlapped), there was minimal depletion of deletion variation,
if any. However, as also seen in Figure 4A, separation into the
loopsnoctcr and loopscrcr subsets revealed that a signal of deple-
tion was evident only for deletions overlapping loopscrcy. Dele-
tions in the ADNI data set showed the same characteristic
pattern of greater reduction in variation in loopscrce versus
loopsnoctcr as was seen in the 1000GP data set; however, the re-

duction seen in ADNI deletions overlapping loopscrcy was not
statistically significant. We did not find any difference between
the effect size of depletion for binary overlap compared with the
PlyRShax Overlap measure, suggesting that there may not be stron-
ger selection against deletions overlapping the most cellularly
pleiotropicloopscrcr. Supplemental Tables S7 and S8 list the effect
sizes found in the chromatin loop anchor depletion simulations.

We also examined whether the depletion magnitude of bina-
ry overlap or PlyRS,ax overlap at loop anchor loci showed depen-
dence on AF using the same logistic regression framework as above
for chromatin accessibility or histone modification annotations.
Figure 4B shows evidence of a shift in the deletion AFS based on
the magnitude of depletion at loopscrcr, for which the mean OR
estimate for binary overlap in 1000GP was 2.70 (minimum [min]

A ‘
j o
% binary 1 —
1
+ PlyRSmax . ! loops
< noncoding o
intronic v
a . .
intergenic —— !
g k 2 |
i
§ - ! loops _noCTCF
- i
* :
i
1 — e
i loops_CTCF
—— |
—— 1
- i loops
E ——
< ——
- loops _noCTCF
i
—o— loops_CTCF
T T T t T T
-1 0 1 3 4
Cohen’s d
B 1000GP ADNI
4 ) 1277 % 108 % % 8492
o 7| ¢ binary
® ]| & PlyRSmax *
< 1| ¢ noncoding
el intronic
] intergenic
o ] >
™ |
©
o «~
E -
= { A
(%) ]
=] ]
T © ]
o 4
< ]
- ]
o ]
=
~ 3
<« +
b ®
-1 & o 4. s T ____ PSR S Sy S e ¢ i | __ P S S SR S SN A & L o T & 1 i L _______
v L1 o v u '
g e g g e g
s} b4 o o 3 o
- < m‘ - c v\l
] Q 1 Q
%3 o 1% o
Q k-] Q o
o o
Lo 2

Figure 4. Depletion of deletions and shift of AFS overlapping chromatin loop anchor sites. (A) We calculated a binary variable and PlyRS,.« for every
deletion to quantify overlap with loop sites. We plot the degree of reduction in the binary variable (or PlyRS,,x) for real deletions relative to simulation
measured using Cohen'’s d (with 95% Cls showing the uncertainty owing to the finite number of simulations). (B) For each deletion, we determined
the magnitude of binary variable (or PlyRS.«) depletion, calculated as the difference between the binary variable (or PlyRS,«) and the average binary
variable (or PlyRSax) of its length-matched simulated counterparts, for loop sites. We tested whether binary variable (or PlyRS,,,,x) depletion magnitude
depends on AF (deletions categorized as rare [AF < 1%] or common), using multivariate logistic regression in the presence of genomic covariates. We plot
the regression odds ratio with 95% profile likelihood-based Cls. Asterisks denote odds ratio Cls that extend above the plotted y-axis, with values as

indicated.
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95% CI: 1.35) and in ADNI was 7.67 (min CI: 1.76). The mean OR
estimate for PlyRSp,x overlap of loopscrcr in 1000GP was 36.80
(min CI: 3.49) and in ADNI was 30.11 (min CI: 1.27). The excess
of rare alleles overlapping loopscrcr exceeded the shift for
loopsnocrcr, Which displayed only a modest effect in the ADNI
data set (min CI: 1.02) and was not significant in the 1000GP
data set. These results collectively suggest that purifying selection
may be acting to preserve chromatin loop integrity by specifically
preserving CTCF binding motifs within loop anchors. Supplemen-
tal Tables S9 and S10 list the ORs found in the chromatin loop an-
chor logistic regressions.

Discussion

By using the clarity of genomic deletions to identify loss of non-
coding regulatory function, we used a novel data set of genomic
deletions and a consortium-released deletion data set to determine
whether purifying selection is operating to preserve noncoding
regulatory loci. We examined sites of chromatin accessibility
(DHS), histone modification (enhancer, transcribed, Polycomb-re-
pressed, and heterochromatin), and chromatin loop anchors.
Analysis of selection in the noncoding genome is motivated by pri-
or findings in human genetics from genome-wide association
studies that conclude most of heritability is owing to relatively
common noncoding alleles within regulatory annotations (Maur-
ano et al. 2012; Trynka et al. 2013; Gusev et al. 2014; Finucane
et al. 2015). Initially, these findings appeared inconsistent with
the expectation that disease-associated alleles are under pressure
from purifying selection. However, recent studies showed that
complex trait effect sizes are negatively correlated with AF, hinting
at the action of purifying selection (Gazal et al. 2018; Zeng et al.
2018; Schoech et al. 2019). These observations put the question
of the effect of noncoding regulatory alleles on function and fit-
ness at the forefront of genomic studies ranging from basic evolu-
tionary genetics to the allelic architecture of common human
traits.

Broadly, our results are consistent with prior studies of SNV
variation that indicated that certain putative regulatory sites are se-
lectively constrained (Vernot et al. 2012; Ward and Kellis 2012;
Huang et al. 2017). Recent analyses of structural variation (Abel
et al. 2020; Xu et al. 2020) similarly underscored the importance
of regulatory sequence for specifying critical cellular regulation.
Our work characterizes purifying selection against complete re-
moval of putative regulatory sites in the context of cellular activity,
bringing together different aspects of previous work on regulatory
selection accounting for dependency among biosamples while
correcting for genomic confounders. Because the majority of dele-
tion alleles in our data sets are rare, we make inferences regarding
purifying selection on heterozygous mutations as we are under-
powered to detect recessive selection.

Because a principal characteristic of human regulatory ele-
ment function is their nonuniform activity across biosamples, in-
terpreting fitness consequences from genetic variants in
noncoding regions is inherently linked to corresponding regulato-
ry site cellular activity, and proper quantification of this activity is
critical for reliable interpretation of results. To incorporate this de-
fining feature into the study of noncoding purifying selection, we
developed a statistical method, PlyRS, which quantifies the extent
of abundance of cellularly pleiotropic activity for individual base
pairs. By use of the PlyRS method, our results indicate that purify-
ing selection acts on both DHS and enhancer sites, as evident by

both the depletion of deletions overlapping these annotations
and a shift in the AFS of overlapping deletions toward rare alleles.

By using simulated deletions in a length-matched framework
and covariate-aware analyses, we found statistically significant ev-
idence at noncoding DHS or enhancer regions that both sites of ac-
tivity specific to particular biosample activity and cellularly
pleiotropic activity are preserved by selection. This finding estab-
lishes not only that some individual DHS or enhancer single-activ-
ity regulatory sites are selectively preserved but also that these
single-activity biosamples are preserved as a class, indicating that
selective preservation for these is likely the general rule rather
than the exception. We found some indication that cellularly
pleiotropic variants may be subject to a stronger reduction in var-
iation than variants specific to a particular biosample, although
the difference in AFS shifts is not significant. Because ADNI dele-
tions are rarer, on average, than 1000GP deletions and because
the AFS test we used collapses all rare deletions into a single class,
it may be expected that real associations might appear statistically
weaker in the ADNI data set for this test format. Additional analysis
on larger data sets would be needed to accurately quantify the rel-
ative contributions of selection on sites of variable regulatory ac-
tivity. For all analyses involving DHS or histone modification
regulatory features, we excluded deletions (and genomic space)
overlapping chromatin loop anchor base pairs, as deletions dis-
rupting chromatin loop integrity may already be under purifying
selection owing to the potentially resulting cis-regulatory effects.
In this way, we ensure reliable interpretation of selective effects
on deletions disrupting chromatin accessibility or histone modifi-
cation, without introducing potential confounding from selective
pressure from chromatin loop anchor disruption, which we ana-
lyzed separately.

In contrast to the findings above, we did not find evidence of
purifying selection acting on other epigenomic annotations such
as noncoding transcribed, Polycomb-repressed, or heterochroma-
tin sites, consistent with previously reported findings (Sudmant
etal. 2015a; Abel et al. 2020). In the absence of statistical confirma-
tion, we can conclude that, notwithstanding any specific regulato-
ry locus potentially being under selective constraint, these classes
of epigenomic annotations as a whole are not selectively preserved
at a greater extent than that of the noncoding background. Most
methods to detect natural selection from DNA polymorphism
data compare characteristics of genetic variation to expectation
under neutrality. We compare degree of diversity and AFs of dele-
tions overlapping genomic annotations to simulated deletions
randomly placed in the uniquely mappable human genome.
Although studies have assumed that most of the noncoding hu-
man genome evolves neutrally and that random unannotated se-
quence represents a “neutral standard,” estimates of the size of
the “functional” genome vary widely (Ponting and Hardison
2011; The ENCODE Project Consortium 2012; Rands et al.
2014). It is difficult to judge the validity of the assumption that
randomly placed deletions are truly neutral. Previous work exam-
ining selection on indels has used ancestral repeats as a proxy for
neutral mutations (Barton and Zeng 2019); however, the deletions
in our data sets are much longer, and we do not assume a neutral
set of deletions in uniquely mappable regions. Therefore, we inter-
pret our results as indication that DHS and enhancer sequences are
under stronger purifying selection than the noncoding genome on
average. For transcribed, Polycomb-repressed, and heterochroma-
tin regions, we conclude that we do not find evidence of purifying
selection being greater than that of the uniquely-mappable non-
coding sequence background we analyze. Cohen’s d is negative

Genome Research 943
www.genome.org


http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275263.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275263.121/-/DC1

Radke et al.

for heterochromatic regions, and it is difficult to unequivocally in-
terpret this finding. One possibility is that these regions are less de-
pleted in deletions than the noncoding genome as a whole.
However, neither of these annotations shows a corresponding AF
shift toward common alleles. Alternatively, the mutation rate of
deletions may be elevated in heterochromatic regions because
dense chromatin interferes with double-strand break repair
(Watts 2016). It is also possible that this is a technical artifact of re-
moval of repetitive sequence in our analysis.

Our results give indication to support the hypothesis that
long deletions are under stronger selection (Girirajan et al. 2011;
Sudmant et al. 2015a). Supplemental Figure S1 shows that there
appears to be a qualitative trend of greater depletion of deletions
longer than the median length in our data sets, which is likely
because longer deletions overlap multiple DHS or enhancer sites.
This trend is especially pronounced for those deletions that over-
lap cellularly pleiotropic sites.

Driven by human genetics examples (Lupidfiez et al. 2015;
Akdemir et al. 2020), there is a considerable interest in the effect
of deletions on TAD-loops, many of which are demarcated by chro-
matin loop anchors (Rao et al. 2014). We did not find statistical ev-
idence that selection is acting against deletions overlapping loop
anchors without simultaneous removal of CTCF sites. However,
purifying selection is indeed operating to preserve chromatin
loop integrity by preserving colocalized CTCF binding sites within
chromatin loop anchors. These findings are in agreement with
other studies (Fudenberg and Pollard 2019; Kentepozidou et al.
2020). In both 1000GP and ADNI, deletions of CTCF binding sites
within loop anchors show a significant excess of rare alleles. These
deletions are also significantly depleted in 1000GP, with the ADNI
data set showing a similar qualitative but not significant effect. The
difference in significance for the depletion signal between the two
data sets may simply be owing to the difference in power to see this
effect, as there are approximately four times the number of dele-
tions in 1000GP in comparison to ADNI.

We did not find statistically significant evidence in either
data set that the loop CTCF binding sites of highest cellular pleiot-
ropy show additional signal for purifying selection beyond that for
sites with activity specific to a particular biosample. We cannot ex-
clude that this equivalence is owing to lack of power: either five
biosamples in chromatin loop anchor analysis are not numerous
enough to see a difference (compared with the 25 biosamples
used in the analysis of chromatin accessibility or histone modifica-
tion features) or deletions overlapping cellularly pleiotropic loop
anchors are already so few in number that power is limited (only
~4% [1000GP] or ~8% [ADNI] of all deletions in our data sets).
An additional limitation on power comes from sparsity of loop an-
chor annotations overlapping ~10% of deletions. Constrained by
this sparsity, we analyzed chromatin loop anchor depletion using
the otherwise full genomic coordinates allowed without excluding
colocalizing regulatory sequences.

Methods

We used deletions from two data sets, a callset we generated from
the genomes of participants in ADNI (Petersen et al. 2010) and a
callset filtered from 1000GP (Sudmant et al. 2015a), to examine
selective constraint within regulatory regions. The two deletion
data sets have different callset properties, enabling robustness of
the analysis. ADNI consists of deletions derived from high-cover-
age WGS data that are on average longer and rarer, using genotypes
from the subset of individuals that we determined were of

European ancestry as identified by principal components analysis.
An extended description of the ADNI data set construction process
is given in Supplemental Note S1. 1000GP consists of deletions de-
rived from low-coverage whole-genome sequencing (WGS) that
span a wider length range and are genotyped from individuals of
diverse demographic histories (see Supplemental Note S2.1). For
both deletion data sets, we restricted our analyses to noncoding de-
letions by removing any deletion that overlapped any exon or UTR
by >1 bp, as exonic deletions have been previously shown to be
under strong purifying selection because of their protein-altering
effects (Conrad et al. 2010). We also examined only deletions oc-
curring on autosomes because sex-chromosome functional ele-
ments may involve complex sex-biased regulation (Khramtsova
et al. 2019), which might be subject to unique selective properties.
To mitigate nonuniform (i.e., biased) deletion callability in the
noncoding genome (Supplemental Fig. S5), which might distort
the AFS of the remaining set of deletions, we additionally excluded
deletions overlapping any regions of low mappability, segmental
duplications, centromeres, and reference assembly gaps.
Additional details on the deletion filtering criteria are given in
Supplemental Note S2.2. Specific characteristics of the filtered
deletion data sets are shown in Supplemental Table S11.

We used regulatory data from the NIH REC for definition
of regulatory breakpoints as well as uniform processing across
multiple biosamples (Roadmap Epigenomics Consortium et al.
2015). We used annotation data for sites of chromatin accessibility
(DHS) and histone modification (H3K4mel “enhancer,”
H3K36me3 “transcribed,” H3K27me3 “polycomb-repressed,” and
H3K9me3 “heterochromatin”). Two sets of DHS annotation (hot-
spot and MACS) were used to check for consistency. Because regu-
latory element boundaries are not perfectly aligned between
biosamples, it could be the case that a partial deletion of an element
observed in one particular biosample may correspond to a com-
plete deletion of the element observed in another distinct biosam-
ple. Therefore, we assume we cannot confidently determine which
coordinates are the exact peak signal for a cellularly pleiotropic reg-
ulatory element. Because of this, we use the specific base pair anno-
tation from narrow regions of enrichment (P<0.01) for histone
modification data and DHS data (MACS peak caller, NarrowPeak)
(Zhang et al. 2008) and additionally the specific base pair annota-
tion from general-sized regions of DNA accessibility (P <0.01) for
DHS data (hotspot algorithm, BroadPeak) (John et al. 2011). We
used all 25 primary biosamples for which data were available across
all six callsets for each biosample. We additionally used chromatin
loop anchor data consisting of a callset of five human noncancer-
ous biosamples (Rao et al. 2014). Additional details on the regulato-
ry data sets are given in Supplemental Note S3. Identity of the
biosamples analyzed from REC is shown in Supplemental Table
S12.

To determine if the action of purifying selection is occurring
against deletions overlapping regulatory sites, we required the
identification of two key signatures: reduction of genetic variation
overlapping the sites and a shift in the AFS toward rare variants of
the remaining alleles overlapping the sites. These signatures were
assessed in light of results from deletion simulations (see
Supplemental Note S4). Identification of both signatures would in-
dicate selective pressure to preserve the corresponding regulatory
feature(s). A description of the significance calculation of reduc-
tion in variation is given in Supplemental Note S6 (see also
Supplemental Fig. S6). Descriptions of the procedure involving
multivariate regression on deletion genomic covariates and signif-
icance calculation of shift in AFS are given in Supplemental Note
S7. To examine potential purifying selection against deletions to
preserve regulatory features, we examined deletion overlap in the
context of regulatory biosample activity. To properly “count”
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Selection on deletions of regulatory loci

biosample activity removed by deletions overlapping regulatory
features, we developed a statistical method called pleiotropy ratio
score (PlyRS), which calculates a correlation-adjusted count of cel-
lular pleiotropy for each base pair in the noncoding genome. A de-
scription of the derived PlyRS measures calculated for deletions is
given in Supplemental Note S5. The PlyRS method is flexible and
easily allows for the addition of new and larger regulatory data sets
as they become available for medical or evolutionary applications.

Data access

In accordance with the ADNI Consortium data policy, ADNI-relat-
ed data files that we have made available (see Supplemental Note
$1.6) may be obtained from the Laboratory of Neuro Imaging
(LONI) Image and Data Archive (IDA) hosted at the University of
Southern California, Los Angeles, California. All files obtained
from the LONI IDA require that investigators download, review,
sign, and submit the ADNI WGS data use agreement and be a reg-
istered user of ADNI data. More information on obtaining ADNI
data access can be found at http:/adni.loni.usc.edu/data-
samples/access-data/. Once registered and logged in at the site
above, data files for this project may be located by browsing for
author name in the data portal section. Source code of PlyRS calcu-
lation is made available at the repository on GitHub (https://
github.com/davidwradke/PlyRS) and main scripts are included in
Supplemental Note S8.
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