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Abstract

Porcine reproductive and respiratory syndrome virus (PRRSV) is an RNA virus replicating in the cytoplasm, but the nucleocapsid (N) protein

is specifically localized to the nucleus and nucleolus in virus-infected cells. A Fpat7_ motif of 41-PGKK(N/S)KK has previously been identified in

the N protein as the functional nuclear localization signal (NLS); however, the biological consequences of N protein nuclear localization are

unknown. In the present study, the role of N protein nuclear localization during infection was investigated in pigs using an NLS-null mutant virus.

When two lysines at 43 and 44 at the NLS locus were substituted to glycines, the modified NLS with 41-PGGGNKK restricted the N protein to the

cytoplasm. This NLS-null mutation was introduced into a full-length infectious cDNA clone of PRRSV. Upon transfection of cells, the NLS-null

full-length clone induced cytopathic effects and produced infectious progeny. The NLS-null virus grew to a titer 100-fold lower than that of wild-

type virus. To examine the response to NLS-null PRRSV in the natural host, three groups of pigs, consisting of seven animals per group, were

intranasally inoculated with wild-type, placebo, or NLS-null virus, and the animals were maintained for 4 weeks. The NLS-null-infected pigs had

a significantly shorter mean duration of viremia than wild-type-infected pigs but developed significantly higher titers of neutralizing antibodies.

Mutations occurred at the NLS locus in one pig during viremia, and four types of mutations were identified: 41-PGRGNKK, 41-PGGRNKK, and

41-PGRRNKK, and 41-PGKKSKK. Both wild-type and NLS-null viruses persisted in the tonsils for at least 4 weeks, and the NLS-null virus

persisting in the tonsils was found to be mutated to either 41-PGRGNKK or 41-PGGRNKK in all pigs. No other mutation was found in the N

gene. All types of reversions which occurred during viremia and persistence were able to translocate the mutated N proteins to the nucleus,

indicating a strong selection pressure for reversion at the NLS locus of the N protein in vivo. Reversions from NLS-null to functional NLS in the

tonsils suggest a possible correlation of viral persistence with N protein nuclear localization. These results show that N protein nuclear localization

is non-essential for PRRSV multiplication but may play an important role in viral attenuation and in pathogenesis in vivo.

D 2005 Elsevier Inc. All rights reserved.
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Introduction

Porcine reproductive and respiratory syndrome (PRRS) is an

emerged infectious disease of swine and causes significant

economic losses to the pig industry worldwide (Albina, 1997).

The disease was first recognized in North America in 1987

(Keffaber, 1989) and subsequently in Europe in 1990. Soon
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after, PRRS virus (PRRSV) was isolated as the causative agent

for the disease in the USA and in The Netherlands (Benfield et

al., 1992; Wensvoort et al., 1991). PRRSV has quickly become

endemic in nearly all pig-producing countries and is now

considered one of the most economically important pathogens

of swine worldwide. PRRSV grows preferentially in porcine

alveolar macrophages and establishes a persistent infection of

up to 5 months in infected pigs (Allende et al., 2000; Wills et

al., 1997). Although North American and European isolates of

PRRSV cause similar clinical signs and share the same

morphology and genome organization, they exhibit significant
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genetic and antigenic variations with only 63% nucleotide

sequence homology at the genome level. Consequently,

PRRSV is divided into two genotypes, the European genotype

and North American genotype (Meng et al., 1995; Nelsen et al.,

1999; Nelson et al., 1993; Wootton et al., 2000).

PRRSV is a small, enveloped virus possessing a single-

stranded positive-sense RNA genome of approximately 15 kb

in size (Meulenberg et al., 1993; Snijder and Meulenberg,

1998; Wootton et al., 2000). The genome is 5V-capped and 3V-
polyadenylated (Sagripanti et al., 1986; Wootton et al., 2000)

and belongs to the family Arteriviridae along with equine

arteritis virus (EAV), lactate dehydrogenase-elevating virus

(LDV) of mice, and simian hemorrhagic fever virus (SHFV).

The arteriviruses are now re-grouped into the newly created

order Nidovirales, together with the Coronaviridae family

(Cavanagh, 1997). The PRRSV genome consists of the 5V
untranslated region (UTR), nine open reading frames (ORF1a,

ORF1b, ORF2a, ORF2b, and ORFs 3 through 7), and the 3V
UTR followed by a polyadenylation tail (Meulenberg et al.,

1993; Snijder and Meulenberg, 1998; Wootton et al., 2000).

ORF1a and ORF1b are translated into the 1a and 1ab

polyproteins, respectively, which are then proteolytically

processed into 13 non-structural proteins believed to be

involved in genome replication and transcription (van Dinten

et al., 1999; Wootton et al., 2000; Bautista et al., 2002). ORFs

2a through 7 encode six membrane-associated proteins (GP2a,

2b or E, GP3, GP4, GP5, and M) and a nucleocapsid (N)

protein, and these proteins are translated from a nested set of

3V-coterminal subgenomic mRNAs (Meulenberg et al., 1995;

Snijder and Meulenberg, 1998; Wu et al., 2001).

The N protein of PRRSV is a small basic protein with an

isoelectric point of 10.4 and is comprised of 123 or 128 amino
Fig. 1. (A) The Fpat7_ nuclear localization signal (NLS, darkened area) of the wild-

positions. WT, wild-type N protein; KK/43.44/GG, lysine substitutions to glycine in

N gene. PCR-based site-directed mutagenesis was performed using the wild-type N

glycine. The N gene was sequenced from the NLS-null N gene. Amino acids are pre

FKKS_ to FGGN_. (C) Subcellular localization of N proteins in Cos-7 cells (upper

panel) or pCi-Neo-N-KK/43.44/GG (right panel). Gene-transfected cells were incuba

with Alexa green conjugated goat anti-mouse antibody. Nucleus (Nu) and nucleolus (

protein (KK/43.44/GG) shows the absence of N protein in the nuclei and nucleoli.
acids for the North American and European genotypes,

respectively (Snijder and Meulenberg, 1998; Wootton et al.,

2002). The N protein is the most abundant viral protein in

infected cells and constitutes about 40% of the protein content

in the virion (Snijder and Meulenberg, 1998). It is highly

immunogenic in pigs and believed to be multifunctional

(Rodriguez et al., 1997; Wootton et al., 1998). The N protein

is a serine-phosphoprotein with unknown functions (Wootton

et al., 2002). As the sole structural protein component of the

viral capsid, the PRRSV N protein associates with itself by

both covalent and non-covalent interactions, providing the

basis for viral capsid assembly. The covalently linked N–N

homodimerization is formed in the lumen of the endoplasmic

reticulum (ER) and the Golgi complex through disulfide

linkages via a cysteine residue at position 23 (Wootton and

Yoo, 2003). Cysteine 23 of the N protein has recently been

shown to be essential for virus replication and infectivity,

indicating an essential role of the disulfide-linked N–N

homodimerization during virion assembly (Lee et al., 2005).

The entire life cycle of PRRSV occurs in the cytoplasm of

infected cells, and accordingly, the PRRSV N protein is

predominantly found in the cytoplasm and the perinuclear

region. Interestingly, the PRRSV N protein is also found in the

nucleus and nucleolus of infected cells (Rowland et al., 1999).

Nuclear localization of N proteins has been reported for EAV,

which is another arterivirus (Tijms et al., 2002), and for several

coronaviruses including avian infectious bronchitis virus,

transmissible gastroenteritis virus of swine, and murine

hepatitis virus (Hiscox et al., 2001; Wurm et al., 2001). A

functional nuclear localization signal (NLS) for the PRRSV N

protein has been identified in the stretch of basic amino acids

(PGKKNKK) at positions 41 to 47 and has been shown to
type N protein and the NLS-null mutant protein. Numbers indicate amino acid

the N protein. (B) Electrophoregram of the wild-type N gene and the NLS-null

gene pCi-Neo-N to change codons for lysine at positions 43 and 44 of N to

sented in a single letter code. Bold letters indicate substituted amino acids from

panel) and Marc-145 cells (lower panel) transfected with pCi-Neo-N-WT (left

ted for 2 days and reacted with N-specific MAb SDOW17 followed by staining

No) are indicated by arrows. Intracellular localization of the NLS-null mutant N

magnification �40.
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interact with the nuclear transporters, importin-a and -h
(Rowland et al., 2003). Therefore, it is believed that the N

protein localizes in the nucleus through the NLS-dependent

importin a/h-mediated nuclear transport pathway. It is note-

worthy that the N protein nuclear localization does not require

N–N disulfide-linked dimerization (Lee et al., 2005). Once in

the nucleus, the N protein colocalizes and specifically interacts

with the small nucleolar RNA-associated protein fibrillarin,

implicating an involvement of N in the ribosome biogenesis.

Indeed, the N protein has been shown to be able to bind both

28S and 18S ribosomal RNA as well as the viral genomic RNA

(Yoo et al., 2003). Since PRRSV assembly and maturation take

place in the ER and the Golgi regions, it seems that the PRRSV

N protein plays both a structural role in the cytoplasm and a

non-structural role in the nucleus and/or nucleolus. The

biological relevance of the N protein nuclear localization and

its function during infection is presently unknown.

In the present study, a reverse genetics system for PRRSV

(Lee et al., 2005) was used to investigate the biological

significance of N protein nuclear localization during infection.
Fig. 2. Infectivity of the P129-GG full-length genomic clone. CPE, cytopathic effects;

transfected with 2 Ag of P129-WT or P129-GG DNA and incubated for 3 days. CP

inverted microscope. For immunostaining, cells were reacted with SDOW17 at 2 da

conjugated with Alexa green. Nucleus (Nu) and nucleolus (No) are indicated by arrow

spots correspond to the wild-type N protein and the NLS-null mutant N protein. The w

NLS-null protein was excluded from the nucleus. Plaque morphology of P129-WT (K

agarose and further incubated for 5 days. Plaques were stained with 0.01% neutral re

comparison to wild-type plaques.
An NLS-null mutant virus was generated using an infectious

cDNA clone and used to demonstrate that N protein nuclear

localization is non-essential for virus replication. Pigs infected

with the NLS-null mutant virus exhibited a significantly shorter

duration of viremia accompanied by significantly higher titers

of neutralizing antibodies than in wild-type virus-infected pigs.

The data show strong selection pressure for reversion of the

NLS-null at the NLS locus of the N protein.

Results

Substitution of lysine to glycine in NLS and N protein nuclear

localization

The North American genotype PRRSV N protein contains

two putative NLS motifs at positions 10 to 13 (10-KRKK) and

41 to 47 (41-PGKKN/SKK), and these motifs resemble Fpat4_
and Fpat7_ NLS, respectively. Previous work using the PRRSV

SDSU-23983 isolate showed that the Fpat7_ NLS was

necessary and sufficient for nuclear localization of N (Rowland
SDOW-17, monoclonal antibody specific for the N protein. Marc-145 cells were

Es became visible at 3 days post-transfection and were photographed using an

ys post-transfection followed by incubation with the goat anti-mouse antibody

s. (D to F) Magnification 20�; (G to I) magnification 40�. The intensely stained

ild-type N protein was concentrated in the both cytoplasm and nucleus, while the

) and P129-GG (L). At 24 h of DNA transfection, cells were overlayed with 0.8%

d and photographed. Note that the size of plaques for P129-GG virus is small in



Fig. 3. Growth kinetics of the NLS-null P129-GG virus in Marc-145 cells. (A)

Titers of wild-type virus and NLS-null P129-GG virus during the first three

passages. The P129-WT and P129-GG viruses were passaged three times in

Marc-145 cells and titrated by plaque assay. The titers are expressed in log10
PFU/ml. The culture supernatants from DNA-transfected cells were designated

Fpassage-1_. Error bars represent standard errors of mean values from two

independent experiments. At each passage number mean titers with different

capital letters (A, B, or C) differ significantly ( P < 0.05). (B) One-step growth

curves for P129-WT and P129-GG virus. Cells were infected at an MOI of 1–5

with the passage-3 preparation of indicated virus in duplicate. Samples were

taken at the indicated times, and virus titers were determined by plaque assay.

The results are expressed as mean values from two independent experiments,

and error bars represent standard errors of mean values from two experiments.

At each day post-infection, mean titers with different capital letters (A, B, or C)

differ significantly ( P < 0.05).
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et al., 2003). The presence of positively charged lysine residues

at 43 and 44 suggested that these two residues might constitute

a core sequence responsible for the N protein nuclear

localization. Lysines at 43 and 44 of 41-PGKKNKK were

substituted to glycine, and a Fpat7-modified_ mutant N gene

was constructed and designated KK/43.44/GG (Figs. 1A and

B). The KK/43.44/GG gene was transfected into COS-7 cells,

and at 48 h post-transfection, cells were stained with the N-

specific MAb SDOW-17. The wild-type N protein accumulated

both in the cytoplasm and the nucleus with a distinct nucleolar

staining (Fig. 1C), but expression of the KK/43.44/GG protein

was restricted to the cytoplasm and perinuclear regions with no

staining in the nucleus and nucleolus (Fig. 1C). Subcellular

distribution of KK/43.44/GG protein was also examined in

Marc-145 cells since this is the established cell line permissive

for PRRSV infection. As with COS-7 cells, Marc-145 cells also

showed cytoplasmic and perinuclear stainings but absence of

staining in the nucleus, indicating that the lysines at 43 and 44

were essential amino acids for the function of the NLS of the N

protein.

Generation of NLS-null P129-GG virus

A reverse genetics system was applied to generate NLS-null

mutant PRRSV. In this system (Lee et al., 2005), the full-length

genomic cDNA is under the control of the cytomegalovirus

immediate early promoter. Direct transfection of plasmid DNA

initiates a full cycle of virus replication and produces infectious

progeny virus. By site-directed mutagenesis, the motif of 41-

PGKKSKK in the N gene of the shuttle plasmid was altered to

41-PGGGNKK. Nucleotide sequencing of screened clones

verified the presence of the FGGN_ modification in the full-

length clone. The FGGN_ mutation in the full-length clone was

designated pCMV-S-P129-GG. No additional mutation was

found throughout the N gene other than the FGGN_ mutation.

Infectivity of P129-GG

Infectivity of the NLS-null pCMV-S-P129-GG genomic

DNA clone was determined first by transfection into Marc-145

cells followed by observation for cytopathic effect (CPE). The

wild-type and NLS-null mutant clones induced weak CPE by 3

days post-transfection, and thereafter, the CPE became

prominent (Figs. 2B, C). The specificity of CPE was confirmed

by immunofluorescence staining using the N-specific MAb

SDOW17. Clusters of cells showed bright fluorescence,

indicating virus infection and spread of infection to neighbor-

ing cells (Figs. 2E, F). In cells transfected with the wild-type

clone, the N protein was distributed throughout the cytoplasm

and nucleoplasm, showing the nuclear translocation of N of the

molecularly cloned virus (Fig. 2H). By contrast, the N protein

staining in cells transfected with the NLS-null clone was

observed in the cytoplasm and the perinuclear region, but not in

the nucleus or nucleolus (Fig. 2I).

To prepare the stock of NLS-null virus, culture supernatants

were harvested at 5 days post-transfection (designated FP129-
GG_). Virus titers were determined to be 1� 102, 4.0� 102, and
5� 103 PFU/ml for passages one (P1), two (P2), and three (P3),

respectively (Fig. 3A). The wild-type (designated P129-WT)

virus was generated in parallel from the pCMV-S-P129 clone

with virus titers of 1 � 103, 7.9 � 103, and 6.3 � 105 PFU/ml,

for P1, P2, and P3, respectively (Fig. 3A). Thus, by P3, the

NLS-null mutant P129-GG virus had a titer 100-fold lower than

that observed for P129-WT. Viral plaques formed by P129-GG

were drastically reduced in size, and most plaques were of

pinpoint size (Fig. 2L), suggesting a negative effect of the NLS

mutation on the rate of cell-to-cell spread during infection.

To confirm whether the NLS mutation was still retained in

the P129-GG virus during passages in Marc-145 cells, RT-PCR

and sequencing were performed for the N gene using the P3



C. Lee et al. / Virology 346 (2006) 238–250242
virus. To avoid possible carry-over DNA contamination from

transfections during P1 virus production, RNA preparations

were treated with RNase-free DNase I. Four hundred-base pair

PCR fragments were obtained from both P129-WT and P129-

GG, and sequencing results showed stable incorporation of the

FGGN_ mutation in the viral genome for at least three passages

in cell culture.

The one-step growth kinetics of P129-GG was determined

using P3 virus. Cells were infected with P3 virus at an MOI of

1 to 5 (Fig. 3B). The wild-type virus reached a titer of 1 � 105

PFU/ml by 3 days post-infection, and the titer increased to a

maximum of 6.3 � 105 PFU/ml by 5 days post-infection (Fig.

3B). In contrast, P129-GG showed retarded growth with titers

of 7.9 � 102 to 3.2 � 103 PFU/ml during 5 days of infection

(Fig. 3B). These data demonstrate that nuclear localization of

the PRRSV N protein is non-essential for virus multiplication,

but the FGGN_ mutation at the NLS locus reduces the growth

rate of PRRSV.

Experimental infection of pigs with NLS-null P129 GG virus

To examine in vivo effects of the NLS-null virus in the

natural host, a pig infection study was conducted. Following

challenge, pigs in the P129-GG and P129-WT groups

developed signs of a mild PRRS virus infection, but the

severity of clinical signs was similar in the two infected groups.

Fever, defined as a rectal temperature higher than 40 -C,
developed in four and six pigs in the P129-GG and P129-WT
Table 1

Viremia in individual pigs inoculated with placebo, wild-type virus P129-WT, or N

Pig ID Inoculum Viremia (log10 PFU/ml) at day post-inoculat

0 4 7

27 Placebo –a – –

29 – – –

31 – – –

32 – – –

39 – – –

41 – – –

42 – – –

Meanc – –A –A

26 P129-WT – 1 1.3

28 – 1.3 1

30 – 1 2

35 – 1 1.5

37 – 0.7 1

40 – 2.8 3

43 – 1.5 1.7

Mean 0 1.3 B 1.7 B

33 P129-GG – 0.7 –

34 – 1.3 2.2

36 – 1.4 –

38 – 0.7 –

44 – 1.3 1.6

45 – 1.3 2.7

46 – 1.3 –

Mean 0 1.1B 0.9AB

a – , no viremia.
b NA, not applicable due to early euthanasia.
c In each column, means with different superscripts (A, B, or, C) differ significant
groups, respectively. Between 3 and 6 days post-infection, pigs

infected with P129-WT tended to have slightly higher

temperatures than P129-GG pigs (data not shown). Weight

gains were numerically higher in pigs infected with P129-GG

virus than in pigs infected with P129-WT but did not differ

significantly (data not shown).

While animals in the control group remained PRRSV

negative throughout the study, pigs inoculated with either

P129-WT or P129-GG developed viremia by 4 days post-

infection (Table 1). In pigs inoculated with P129-WT, mean

duration of viremia was significantly longer than in P129-GG

inoculated pigs (8.7 days and 5.7 days, respectively). The peak

mean virus titer in serum was higher for P129-WT inoculated

pigs than for pigs receiving P129-GG (5 � 101 PFU/ml and

1.3 � 101 PFU/ml, respectively), but the difference was not

statistically significant. These data suggest that an NLS-null

mutant virus induces a lower viral load and shorter duration of

viremia compared to those in wild-type virus-infected pigs.

All pigs infected with P129-GG or P129-WT seroconverted

by 10 days post-infection, as evaluated by ELISA (IDEXX

Laboratories, Westbrook, Maine) (Fig. 4). Placebo pigs

remained seronegative. The mean S/P ratio of antibody for

P129-GG pigs was higher than that of P129-WT pigs (2.3 and

1.8, respectively), but the difference was not statistically

significant.

In pigs infected with P129-WT, serum neutralizing (SN)

antibodies were detected by 14 days post-infection and reached

a geometric mean titer (GMT) of 4.3 by 28 days post-infection.
LS-null mutant virus P129-GG

ion Duration of

viremia in days
10 14 21 28

– – – – 0

– – – – 0

– – NAb NA 0

– – NA NA 0

– – – – 0

– – – – 0

– – – – 0

–A – – – 0A

1 – NA NA 10

– – – – 7

1 – – – 10

– – – – 7

– – NA NA 7

1 – – – 10

1 – – – 10

0.6 B 0 0 0 8.7 B

– – – – 4

– – NA NA 7

– – – – 4

– – – – 4

– – NA NA 7

1.9 – – – 10

– – – – 4

0.3AB 0 0 0 5.7C

ly ( P < 0.05).



Fig. 5. Virus-neutralizing antibodies in the sera of pigs inoculated with wild-

type virus or NLS-null mutant P129-GG virus. Neutralizing antibody titers are

expressed on a log2 scale. Error bars represent standard errors for each group of

pigs at the indicated time. At each time point, means with different capital

letters (A, B, or C) differ significantly ( P < 0.05).

Fig. 4. Serum antibody response for PRRSV in pigs infected with wild-type

virus or NLS-null mutant P129-GG virus. PRRSV-specific serum anti-

bodies were determined using the HerdCheckR PRRS ELISA 2XR kit. S/P

ratios of greater than 0.400 are considered positive. Error bars represent

standard errors of the mean. At each time point, means with different

capital letters (A, B, or C) differ significantly (Kruskal–Wallis non-

parametric test, P < 0.05).
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In contrast, neutralizing antibody responses developed faster

and higher in pigs infected with P129-GG. SN titers in this

group reached a GMT of 9 by 21 days post-infection and

increased to a GMT of 18 by 28 days post-infection (Fig. 5).

These data suggest that pigs infected with P129-GG virus

generate significantly higher neutralizing antibody titers than

pigs infected with wild-type virus.

At 14 days post-infection, gross lung lesions were

determined in two pigs from each group, and limited areas

of atelectasis of lung tissue and varying degrees of

lymphadenopathy were noted. Lung lesions did not appear

significantly different between pigs from different virus

treatment groups. Overall, lung lesion scores in pigs were

similar and minimal, regardless of the treatment group (data

not shown).

Reversions of NLS-null virus in pig 45

In comparison to values for other pigs within the same

P129-GG group, pig 45 showed a higher viral load during

viremia (5.0 � 102 PFU/ml vs. maximum mean titer of

1.3 � 101 PFU/ml), lower ELISA S/P ratios (1.002 vs. a

mean of 2.757 in other P129-GG pigs at 28 days post-

infection), and lower SN titers (5.7 for pig 45 vs. a GMT SN

titer of 24.7 for the rest of the group at day 28). Similar

values were observed in pigs infected with wild-type virus,

suggesting reversion of the FGGN_ mutation at the NLS

locus. To examine this hypothesis, plaque assays were carried

out using Day 7 post-infection serum samples from pig 45.

Ten well-isolated individual plaques were picked and sub-

jected to direct extraction of RNA followed by RT-PCR for

the N gene and sequencing. Fig. 6A shows the nucleotide

and deduced amino acid sequences for the NLS region of N

from each plaque. The sequence data revealed that nine
plaques out of 10 were mutated; six plaques mutated to 41-

PGRRNKK, 41-PGRGNKK, or 41-PGGRNKK, and three

plaques mutated to 43-PGKKSKK (Fig. 6A). Only one

plaque out of 10 retained the original NLS-null sequence of

41-PGGGNKK. No other mutation was found elsewhere in

the N gene in the ten plaques from pig 45. The mutated

amino acids represented an arginine mutation at position 43

or/and 44. Since arginine may substitute for lysine without

disruption of the NLS function (Horton and Nakai, 1997),

the mutated plaques likely reflect functional NLS reversions

(Fig. 7). Reversions could not be found in other pigs in the

same group. Similarly, no mutation was found in the N gene

of the virus isolated from pigs infected with wild-type virus.

The original NLS-null mutant virus was cultivated in Marc-

145 cells for 20 passages, and the N gene was sequenced

from the passage 20 virus. No additional mutation was found

in the N gene. These data suggest strong selection pressure at

the NLS locus of N for reversion during replication of

PRRSV in pigs.

Virus persistence in tonsils

One of the hallmarks of PRRSV infection is viral

persistence in pig tonsils for a prolonged period of time.

Numerous reports show that infectious virus may persist for

up to 150 days following infection (Allende et al., 2000;

Wills et al., 1997). In the present study, tonsils from all pigs

infected with P129-GG or P129-WT were positive for the N

gene by RT-PCR (Fig. 6B), indicating that all infected pigs

harbored the virus in the tonsils for at least 4 weeks post-

infection. No mutation was found in the N gene from the

P129-WT pigs, and their sequences retained the wild-type

NLS motif of 43-PGKKNKK. Pigs infected with P129-GG,

however, all showed mutation of at least one nucleotide at the



Fig. 6. The nucleotide (left) and deduced amino acid (right) sequences at the NLS motif from viral plaques obtained from pig45 infected with P129-GG virus (A).

Plaque assays were carried out in Marc-145 cells using serum samples collected at 7 days post-infection from pig45. Ten plaques were randomly chosen, and total

RNA was extracted from each plaque. The N gene was PCR-amplified and sequenced. (B) Persistence of PRRSV in the tonsils of infected pigs. The tonsils were

taken from pigs at 28 days post-infection, and total RNAwas extracted from the tonsil homogenates. The N gene was amplified by RT-PCR and visualized on a 1%

agarose gel. 400-bp fragments are visible in the tonsils from infected pigs. Nucleotide and deduced amino acid sequences at the NLS locus of N gene products were

determined and presented. Boldfaces indicate changed nucleotides and the corresponding amino acids. P129-WT denotes wild-type virus; P129-GG denotes the

NLS-null mutant.
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NLS locus, which led to an amino acid change from glycine

to arginine at either position 43 or 44 (Fig. 6B). It is

noteworthy that such a mutation to 43-PGRGNKK or 43-

PGGRNKK represents a potentially functional Fpat7_ NLS

motif, implicating possible association of PRRSV persistence

with the nuclear localization of N in the tonsils of these

pigs.
Fig. 7. Nuclear localization of N proteins from the NLS reversions arising during vire

NLS of 41-PGKKNKK, was mutated by site-directed mutagenesis to 41-PGGGNK

gene construct was transfected to Marc-145 cells for 2 days, and the cells were im

nuclear localization. Nucleus (Nu) and nucleolus (No) are indicated by arrows.
N protein nuclear localization of revertants

Since mutations at the NLS locus were found from various

plaques isolated in pig 45 (Fig. 6A) as well as from the tonsils

of pigs infected with P129-GG (Fig. 6B), it was of particular

interest to assess nuclear localization of reverted N proteins. A

total of four different mutation patterns were identified during
mia and persistence. The wild-type N gene in pCi-Neo, containing the wild-type

K, 41-PGKKSKK, 41-PGRGNKK, 41-PGGRNKK, or 41-PGRRNKK. Each N

munostained using the N-specific MAb SDOW17 to determine the N protein
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viremia and persistence from NLS-null virus-infected pigs:

41-PGRGNKK, 41-PGGRNKK, 41-PGRRNKK, and 41-

PGKKSKK. These mutations were subsequently introduced

to the wild-type N gene by site-directed mutagenesis. Four

different reversion types of N were individually transfected

into Marc-145 cells for 2 days, and the cells were stained with

N-specific MAb SDOW17. All four types of reversions were

able to translocate the N proteins to the nucleus and nucleolus

(Fig. 7), demonstrating that all reversions regained a functional

NLS. The function of 41-PGRGNKK was somewhat unex-

pected, as it does not conform to the previously defined ‘‘pat7’’

NLS motif (Rowland et al., 1999, 2003).

Discussion

The primary replication site for most RNA viruses is the

cytoplasm of infected cells. During the past decade, however,

some RNA virus proteins have been shown to localize to the

nucleus and nucleolus (reviewed in Hiscox, 2003). It is

postulated that these viruses have evolved to utilize nuclear

functions of the cell to favor productive infections, to inhibit

the synthesis of competing cellular macromolecules, or to

modulate antigen presentation or innate immunity. A number

of RNA virus proteins that are translocated to the nucleus and

nucleolus have effects on the host cell nuclear functions

through inhibition of host cell transcription, disruption of

nucleocytoplasmic transport pathways, and induction of

nuclear herniations in order to facilitate their replication and

to inhibit host antiviral responses (Aminev et al., 2003a, 2003b,

2004; Chen et al., 2002; Hoyt et al., 2004; Petersen et al., 2000;

Sharma et al., 2004). It has been difficult, however, to study

such functions in vivo using replicating virus because of the

need for reverse genetics systems to generate appropriate

mutants. In one study using a mutant Semliki Forest virus (a

member of the alphaviruses), in mice, a single amino acid

change in the NLS locus of the nsP2 protein disrupted nsP2

nuclear transport and modified the neurovirulence of the virus

(Fazakerley et al., 2002; Rikkonen, 1996).

As with many other RNA viruses, PRRSV replicates in the

cytoplasm, and the PRRSV proteins are largely distributed in

the cytoplasm. The viral N protein, however, has been shown

to localize both in the cytoplasmic and nucleolar compartments

in porcine alveolar macrophages and Marc-145 cells (Rowland

et al., 1999). The functional NLS has been identified in the N

protein, and its nuclear interaction with fibrillarin has been

characterized (Rowland et al., 2003; Yoo et al., 2003). In the

present study, we investigated the biological importance of N

protein nuclear localization during infection in cultured cells

and in pigs. It was once speculated that the induction of CPE

by PRRSV infection could be related to the nuclear localization

of N protein (Rowland and Yoo, 2003). However, Marc-145

cells infected with the NLS-null mutant virus produced

cytopathology indistinguishable from that of wild-type virus,

but with lower viral titers and smaller size plaques. Our data

demonstrate that nuclear localization of N is not related to

PRRSV cytopathology and is not essential for production of

infectious progeny.
Acute infection by PRRS virus causes viremia that is

detectable commonly at 2 to 11 days post-infection, but up to

23 days in some pigs (Allende et al., 2000). In this experiment,

the onset of viremia was detected as early as 4 days post-

infection in infected pigs, but none of the pigs continued to

harbor the virus in their sera by 14 days. The sensitivity of

virus isolation from serum specimens may be limited to 2

weeks post-infection. Other methods of virus detection with

greater sensitivity such as real-time RT-PCR may have been

able to detect virus after 14 days but would not distinguish

infectious virus from residual viral RNA. The shorter duration

of viremia in P129-GG pigs probably reflects growth attenu-

ation of the NLS-null virus.

PRRSV-infected pigs produce detectable IgG at 7 to 14 days

post-infection with an increase to 4 weeks post-infection

followed by decline and persistence for 1 year (Labarque et

al., 2000; Rossow et al., 1994; Yoon et al., 1995). In our study,

seroconversion was detectable by 10 days post-infection in all

virus-infected pigs, but virus neutralizing antibody titers were

significantly higher in P129-GG infected pigs by 3 weeks post-

infection. A typical immune response to PRRSV in pigs is

characterized by early production of non-neutralizing antibo-

dies followed by the delayed appearance of neutralizing

antibodies between 2 and 4 weeks post-infection, which then

persist at low levels. Moreover, typical titers of serum

neutralizing antibodies are between 2 and 12, titers which are

considered unusually low in comparison with those induced by

viruses of other families (Labarque et al., 2000; Loemba et al.,

1996). The role of antibodies in protection is also uncertain

since PRRSV can replicate and spread in pigs even in the

presence of circulating antibodies (Loemba et al., 1996;

Rossow et al., 1995). In contrast, the protective effects of

passively transferred PRRSV-specific neutralizing antibodies

have been demonstrated, suggesting that serum neutralizing

antibodies may be the key component for protection from

PRRSV infection (Lopez and Osorio, 2004; Osorio et al.,

2002). PRRSV-specific antibody-dependent enhancement of

infection has also been reported (Yoon et al., 1996). In the

present study, pigs infected with P129-GG had detectable SN

titers by 3 weeks post-infection; titers increased to 18 by 4

weeks. It is of interest to examine whether the increased SN

titers in P129-GG infected pigs contribute to better protection

against PRRSV infection. In the present study, the appearance

of SN antibodies coincided with disappearance of viremia after

14 days of infection. Immune responses in the P129-GG

infected pigs may have led to lower viral replication and faster

clearance of virus from the serum.

Pig 45 exhibited responses distinct from those of other

animals in the P129-GG group. Direct sequencing of viral

plaques demonstrated that mutation of the P129-GG virus had

indeed occurred in this pig. Mutant viruses contained at least

one amino acid change within the NLS locus at positions 43

through 45 of N. Mutated N proteins were able to translocate to

the nucleus and nucleolus, suggesting alterations of both

genotype and phenotype of the null mutant during infection.

Although these changes were extremely minor at the genomic

sequence level (1 or 2 nucleotide changes out of the total
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genome of 15,395 nucleotides), there were functional con-

sequences during infection of the pig. Considering that the N

gene is the most stable gene in PRRSV in pigs (Le Gall et al.,

1998), the appearance of such reversions during the relatively

short period of infection is surprising. The data suggest the

presence of strong selection pressure at the NLS locus of N for

functional NLS in the host.

PRRSV infection generally leads to virus persistence

characterized by limited virus replication in the lymphoid

tissues. Shedding of virus from persistently infected animals is

a main factor which makes the control of PRRS difficult in the

field (Allende et al., 2000; Wills et al., 1997). The mechanism

of PRRS virus persistence is unknown. During persistence,

structural genes are generally variable, with the exception of

the N gene which is considered genetically stable (Allende et

al., 2000). The genetic stability of the N gene has also been

observed for EAV during persistence in stallions (Hedges et al.,

1999). It is interesting to note that the EAV N protein also

specifically localizes to the nucleus upon infection (Tijms et al.,

2002). In the present study, both wild-type and P129-GG

viruses persisted at least for 1 month in the tonsils of pigs.

Surprisingly, all P129-GG viruses isolated from the tonsils of

infected pigs harbored mutations at the NLS locus. In all cases,

one or two nucleotide changes occurred, and these changes led

to amino acid alterations from glycine to arginine at position 43

or 44 of N. The preferential mutation to arginine is explained

by the fact that a single nucleotide change from FG_ to FA_will
code for arginine, whereas two nucleotide changes are required

to code for lysine. No silent mutations were found in more than

18 plaques examined. The arginine mutation at position 43 or

44 reverted the NLS-null virus to a functional phenotype.

Indeed, the N proteins containing an arginine mutation at 43 or

44 were all found to localize in the nucleus and nucleolus. The

observation that 41-PGRGNKK was positive for NLS function

was unexpected, since it deviates from the ‘‘pat7’’ motif

definition of a proline followed within three residues by a

segment containing three basic residues (K or R) out of four

(Rowland et al., 1999, 2003). In order to accommodate all

functional sequences, the NLS motif of North American

genotype PRRSV N proteins is herein expanded and redefined

as a ‘‘pat8’’ motif: a proline followed within three residues by a

segment containing at least three basic residues (K or R) out of

five. The corresponding sequences in isolates VR-2332 and

P129 are 41-PGKKNKKK and 41-PGKKSKKK, respectively.

The most common functional NLS revertant found in tonsils

during the present study, 41-PGRGNKKK, conforms to the

pat8 (but not the pat7) pattern. A review of sequences in

Genbank reveals that nearly all North American PRRSV

isolates conform to the pat7 motif, but there are three ex-

ceptions. Genbank accession numbers AF043951, AY209228,

AY262352 describe field isolates with NLS sequences of 41-

PGKNNKKK, 41-PGKKNMKR, and 41-PGKKNNKR, re-

spectively. The pat8 motif encompasses these and all other

known North American PRRSV N protein sequences (over 70

at the time of this analysis). Collectively, our data suggest a

potential correlation of the N protein nuclear localization and

viral persistence or virus fitness. N protein nuclear localization
may play an important role in evasion of host immune

mechanisms by PRRSV.

Materials and methods

Cells, viruses, and antibodies

Marc-145 cells (a subclone of MA104 cells; Kim et al.,

1993) and COS-7 cells were grown in Dulbecco’s modified

Eagle medium (DMEM) supplemented with 8% fetal bovine

serum (FBS; Gibco BRL), penicillin (100 U/ml), and strepto-

mycin (50 Ag/ml). Cells were maintained at 37 -C with 5%

CO2. Stocks of reconstituted viruses derived from infectious

cDNA clones were prepared after three passages in Marc-145

cells. Titers of the viruses were determined by standard plaque

assays. Plaque assays were carried out in duplicate in Marc-145

cells using 6-well plates of 35 mm in diameter per well. Virus-

infected cell monolayers were overlayed with 0.8% agarose in

DMEM and incubated at 37 -C. At 5 days post-infection,

plaques were stained with 0.01% neutral red, and plaque

numbers were determined. Monoclonal antibodies (MAbs)

specific for N are described elsewhere (Nelson et al., 1993;

Wootton et al., 1998). E. coli strains XL1-Blue (Stratagene)

and DH5a were used as hosts for site-directed mutagenesis and

general cloning, respectively.

Generation of NLS-deficient full-length PRRSV cDNA clones

To modify the NLS (41-PGKKSKK for P129 strain; 41-

PGKKNKK for PA8 strain) at positions 41 to 47 of the N protein,

PCR-based site-directedmutagenesiswasconducted to substitute

codons for lysine residues at positions 43 and 44 (genomic

nucleotidepositions14,999 to15,004) tocodons forglycineusing

pCi-Neo-N and the shuttle plasmid with the following primer

pairs: for KK43/44GG mutation, KK43/44GG-Fwd (5V-
GGCAAGGGACCGGGAGGGGGAAATAAGAAGAAA-

AAC-3V: nucleotide positions 14,984 to 15,019) and KK43/

44GG-Rev (5V-GTTTTTCTTCTTATTTCCCCCTCCCGGT-
CCCTTGCC-3V: nucleotide positions 14,984 to 15,019), where

underlines indicate codon changes for amino acid substitutions

from FKKS_ to FGGN_. PCR-basedmutagenesis and screening of

mutants were performed as described previously (Wootton et al.,

2001). The cDNA cloning of the N gene from the PRRSV strain

PA-8 into pCi-Neo (Promega) to produce pCi-Neo-N is described

elsewhere (Wootton et al., 2002).

The shuttle plasmid pTB-shuttle-N-GG carrying the NLS

mutation was digested with BsrG I and Spe I, and a 2772-bp

fragment was purified. The wild-type full-length genomic

cDNA clone was digested with BsrG I and Spe I, and the 2772-

bp BsrG I-Spe I fragment was replaced with the corresponding

fragment obtained from the shuttle plasmid. The ligated full-

length plasmid DNA was screened by Xma I digestion, and

based on the Xma I digestion pattern, positive clones were

selected. DNA manipulation and cloning were performed

according to standard procedures (Sambrook and Russell,

2001). The selected clones were sequenced to confirm the

presence of FGGN_ modification in the full-length genomic
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cDNA clone. The resulting plasmid was designated pCMV-S-

P129-GG.

Immunofluorescence staining

Marc-145 cells or COS-7 cells were seeded on microscope

coverslips placed in 35-mm-diameter dishes and grown

overnight to 70% confluence. The cells were transfected with

2 Ag of plasmid DNA using Lipofectin according to the

manufacturer’s instruction (Invitrogen). At 48 h post-transfec-

tion, cell monolayers were washed twice in PBS and fixed

immediately with cold methanol for 10 min at �20 -C. Cells
were blocked using 1% bovine serum albumin in PBS for 30

min at room temperature and then incubated with N-specific

MAb SDOW17 for 2 h. After washing five times in PBS, the

cells were incubated for 1 h at room temperature with goat anti-

mouse secondary antibody conjugated with Alexa green dye

(Molecular Probes). The coverslips were washed five times in

PBS and mounted on microscope glass slides in mounting

buffer (60% glycerol and 0.1% sodium azide in PBS). Cell

staining was visualized using a fluorescent microscope (model

AX70, Olympus).

Production of virus from full-length cDNA clones

Marc-145 cells were seeded in 35-mm-diameter dishes and

grown to 70% confluency. Cells were transfected for 24 h with

2 Ag of the full-length cDNA plasmid using Lipofectin.

Transfected cells were incubated for 5 days at 37 -C in

DMEM supplemented with 8% FBS. The culture supernatants

were harvested at 5 days post-transfection and designated

Fpassage-1_. The passage-1 virus was used to inoculate fresh

Marc-145 cells, and the 5-day harvest was designated Fpassage-
2_. The Fpassage-3_ virus was prepared in the same way as for

passage-2. Each passage virus was aliquoted and stored at �80

-C until use.

RT-PCR and sequencing of N gene

Viral RNAwas extracted from either supernatants or lysates

of infected cells using the QiaAmp viral RNA mini-kit

(Qiagen). To remove any possible contamination of DNA in

the RNA preparations, samples were treated with 1 unit of RQ

DNase I (Promega) per microgram at 37 -C for 30 min in 50

mM Tris–HCl [pH 7.5] and 1 mM MgCl2. First-strand cDNA

synthesis was performed by Moloney Murine Leukemia Virus

(M-MLV) reverse transcriptase (Invitrogen) using the reverse

primer ORF7-Rev (5V-AGAATGCCAGCCCATCA-3V). The N

gene was amplified by Taq DNA polymerase (Invitrogen)

using ORF7-Fwd (5V-CCTTGTCAAATATGCCAA-3V) and

ORF7-Rev under the following conditions: initial denaturation

at 95 -C for 5 min, 35 cycles of: denaturation at 95 -C for 30 s,

annealing at 56 -C for 30 s, and extension at 72 -C for 1 min,

followed by a final extension at 72 -C for 7 min. PCR products

were analyzed by 1% agarose gel electrophoresis. Amplified

products were purified using the PCR purification kit (Qiagen)

and sequenced.
Preparation of virus inocula

Due to the low titer of P129-GG virus, the Fpassage-3_ virus
was concentrated for pig experiments. Cells were plated in 50

dishes of 100-mm-diameter and grown overnight to 70%

confluency. The cells were infected with the Fpassage-2_ P129-
GG virus at a multiplicity of infection (MOI) of 0.1 for 1 h at

37 -C. Following infection, 5 ml of fresh medium containing

8% FBS was added, and incubation continued for 4 days.

When extensive CPE had developed, culture supernatants were

harvested and pooled, and cell debris was removed by a low-

speed centrifugation for 10 min at 1350 � g. The supernatant

was then pelleted by a high-speed centrifugation for 90 min in

a JA-14 rotor (Beckman) at 30,000 � g and 4 -C. The pellet

was resuspended overnight in one tenth of the original volume

at 4 -C. Recovery of infectivity of the concentrated virus was

determined by plaque assay on Marc-145 cells, and the virus

stock was stored at �80 -C until use.

Experimental infection of pigs

Twenty-one York–Landrace piglets were obtained from a

PRRSV-free swine herd at 5 weeks of age. Piglets were pre-

screened serologically for evidence of exposure to PRRSV and

Mycoplasma hyopneumoniae and were acclimatized for 7

days in an isolation facility prior to infection. Animals were

randomly allotted to three groups, seven piglets per group, and

animals within the same group were housed in the same room.

Throughout the study, pigs were fed an age-appropriate non-

medicated diet and provided with water ad libitum. On the

day of challenge, the PRRSV stocks were diluted to make

2.5 � 104 PFU/ml, and each animal was infected with a total

of 5 � 104 PFU by instillation of 1 ml in each nostril. After

infection, an aliquot of each inoculum was back-titrated by

plaque assay to confirm the dose of infection. Clinical signs

for general condition, depression, loss of appetite, coughing,

sneezing, and respiratory distress were monitored and rectal

temperatures were measured daily in all pigs for the first

week. All pigs were weighed upon arrival at the site and at

necropsy. Blood samples were taken on days 0, 4, 7, 10, 14,

21, and 28 post-infection for virus isolation and serology.

Serum samples were aliquoted and stored immediately at

�80 -C until use. Two pigs from each treatment group were

euthanized at 14 days post-infection to assess lung lesions,

and the remaining pigs were euthanized at 28 days post-

infection. At necropsy, the percent consolidation of each lung

lobe was estimated to calculate total lung lesion severity, and

a lung sample from a representative lesion was taken and

immersed in formalin for histopathological examination. At

Day 28 post-infection necropsy, tonsil samples were collected

from remaining pigs for evaluation of viral RNA via RT-PCR.

The infection study and necropsies were performed in the

animal isolation facilities of the Ontario Ministry of Agricul-

ture and Food, located at the Ontario Veterinary College,

University of Guelph (Guelph, Ontario, Canada). The study

protocol was approved by the University of Guelph Animal

Care Committee.
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Viremia, ELISA, and serum neutralization assays

Viremia was measured by plaque assay in Marc-145 cells in

duplicate. Cells were infected with 0.1 ml of 10-fold serial

dilutions of sera collected at indicated days. The number of

plaques was counted for each dilution, and virus titers were

expressed as PFU per milliliter. Antibody titers were deter-

mined at the Animal Health Laboratory of the Laboratory

Services Division, University of Guelph, using the commer-

cially available PRRSV antibody detection kit (HerdCheck

PRRS; IDEXX, Westbrook, Maine), accordingly to the

manufacturer’s instruction. ELISA results were expressed as

a ratio of the optical density for the sample compared to the

optical density for the positive control (S/P ratio). According to

the assay, an S/P ratio greater than 0.4 is considered positive for

the presence of PRRSV antibodies.

Serum neutralization tests were performed in Marc-145 cells

in a 96-well microtiter plate format using the wild-type PRRSV

P129-WT virus. The Fpassage-3_ P129-WT virus stock was

diluted in DMEM to make 200 PFU in a 50 Al volume. The

diluted virus was mixed with 50 Al of 2-fold dilutions of

individual sera obtained from 0, 1, 2, 3, and 4 weeks post-

infection. The mixtures were then incubated for 1 h at 37 -C,
and approximately 2 � 105 Marc-145 cells in 100 Al were
added to each well. After 5 days of incubation, individual wells

were scored by CPE. Serum neutralization tests were con-

ducted four times, each time in duplicate.

Isolation of revertants

To identify mutant virus arising during infection, plaque

assays were performed using serum samples taken at 7 days

post-infection. When plaques developed, individual plaques

were picked using pipettes, and the agarose plugs were

resuspended in 1 ml of DMEM. Total RNA was extracted

from the plaque suspension using TRIzol reagent (Invitrogen).

The plaque suspensions were also used to infect Marc-145

cells for virus isolation. To identify mutants during persis-

tence, tonsils taken at necropsy were homogenized in PBS,

and total RNA was extracted using TRIzol. RT-PCR was then

conducted to amplify the N gene followed by nucleotide

sequencing.

Testing NLS function of revertants

To examine whether N proteins of revertants were capable

of nuclear localization, mutations identical to the reverted

sequences were introduced into plasmid pCi-Neo-N-KK/43.44/

GG using the following primer pairs: for 41-PGRGNKK,

G43R-Fwd (5V-GGGACCGGGAAGGGGAAATAAG-3V: nu-

cleotide positions 14,989 to 15,010) and G43R-Rev (5V-CT-
TATTTCCCCTTCCCGGTCCC-3V: nucleotide positions

14,989 to 15,010); for 41-PGGRNKK, G44R-Fwd (5V-GGA-
CCGGGAGGGAGAAATAAGAAG-3V: nucleotide positions

14,990 to 15,013) and G44R-Rev (5V-CTTCTTATTTCTC-
CCTCCCGGTCC-3V: nucleotide positions 14,990 to 15,013);

and for 41-PGRRNKK, G43/44R-Fwd (5V-GGCAAGG-
GACCGGGAAGGAGAAATAAGAAGAAAAAC-3V: nucleo-
tide positions 14,989 to 15,019) and G43/44R-Rev (5V-
GTTTTTCTTCTTATTTCTCCTTCCCGGTCCCTTGCC-3V:
nucleotide positions 14,989 to 15,019), where underlines

indicate codon changes for amino acid substitutions from GG

to RG, GR, or RR.

Statistical analysis

Statistical calculations were carried out using SAS version

9.1 (SAS Institute Inc., Cary, North Carolina). Comparisons of

virus titers and virus neutralization antibody titers were carried

out using logarithmically transformed data by analysis of

variance (ANOVA) with Duncan’s multiple comparison test

used when the ANOVA test indicated significant differences.

Comparisons of S/P ratios generated by the IDEXX PRRSV

ELISA were made using the Kruskal–Wallis non-parametric

test.
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