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can spread among people by direct contact  (a cough, 
sneeze or talk), inhalation of virus‑laden aerosols, 
and touch fomites (contaminated objects) that has the 
flu virus.[5,6] The most affected groups for developing 
flu‑related complications are children, pregnant women, 
elders  (adults older than 64‑year‑old), and persons 
with a specific disease  (chronic pulmonary disease, 
chronic heart disease, diabetes, etc.,).[7,8] The mortality 
and morbidity related to the annual influenza in the 
worldwide estimated approximately one million people, 
a considerable number.[9] For example, the number of 
deaths for “United States flu (2009)” reported 12,469 and 

INTRODUCTION

Pandemic influenza, a global outbreak, defines as 
spreading influenza virus between peoples  (with 
little or lack of immunity) over a wide geographic 
field.[1] In the 20th century, three pandemics of influenza 
happened which were “Spanish flu,” “Asian flu,” 
and “Hong Kong flu” in the years “1918–1919,” 
“1957–1958,” and “1968–1969,” respectively.[2] In early 
2009, H1N1 influenza at first occurred in Mexico and 
the United States and speared rapidly worldwide 
(>200 countries involved).[3,4] The influenza virus 
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for “Asian flu” was 1–4 million.[10,11] Therefore, controlling 
and preventing the epidemic of influenza is an important 
issue. The basic reproduction number (R0) is an important 
metric that used for measuring the vaccination coverage (to 
prevent epidemic), eradicating an infectious disease, 
controlling and immunizing the disease which is defined 
the mean number of secondary infections generated by a 
single infectious individual in a fully susceptible population 
without immunity and interventions.[12] In particular, the 
R0 determines whether an infection spreads through a 
population.[13] The basic reproduction number or threshold 
parameter applied for determining the critical immunity 
coverage can be a real number greater than, less than, or 
equal to one. The disease will fade out when R0 < 1 and 
an epidemic will occur (the infection will grow) if R0 ≥ 1, 
showing an endemic in the population.[13,14]

Since the R0 has a key role in measuring the transmission 
of diseases and is crucial in preventing epidemics, thus it is 
important to know which methods and formulas to apply 
to estimate R0 and have better performance. We estimate 
the R0 and its related vaccination coverage for Canadian 
influenza data during 2009 and 2017–2018.

MATERIALS AND METHODS

Objectives
In this study, we reviewed the investigated methods and 
formulas used for estimating the R0 of influenza in various 
published research papers from 1954 to 2017. After a 
scientific systematic review on R0, we found out that there 
are many basic reproduction formula which are applied 
for determining the vaccination coverage so it is necessary 
to characterize a formula which gives more accurate result 
to use in vaccination strategies which leads to optimize 
the costs. We extracted more commonly‑utilized formulas 
[Appendix Table 1]. We considered six common formulas 
and applied them to real data to determine which formula 
most closely approximates the real epidemic threshold 
parameter with high efficacy.

Then, R0s and related vaccination coverage of these methods 
was estimated for a secondary real data of Canadian 
influenza  (2009). The calculated R0 was compared with 
R0 of the Canadian paper[15] and also simulations were 
performed. Finally, the best method was chosen based on 
mean squared error (MSE), then R0 calculated by selected 
method for the H1N1 Canadian data in the 35th week in 
2017–34th week in 2018.

Data
In Canada, circulating of influenza A virus is very common. 
The data sets in this study were obtained from the Public 
Health Agency of Canada  (PHAC) website[16] and the 
last FluWatch weekly report of the 2017–2018 influenza 

surveillance season achieved from the Respiratory Virus 
Detections in Canada Report website.[17]

The total number of patients was 927 during the 2009 
influenza season which were based on month/day and the 
number of new cases was 1280 for Canada 2017–2018 H1N1 
data which report every Thursday in Canada. We fitted all 
the six models to Canadian 2009 pH 1N1 cumulative cases 
data.[16] Then, the best model was applied to the data of 
Canada (34th week in 2017 to 34th week in 2018).[17]

Statistical analysis
The models used in this article included the Richard 
model, attack rate  (AR), exponential growth rate  (EG), 
maximum likelihood (ML), time‑dependent reproduction 
numbers  (TD), gamma‑distributed generation time (GT), 
and R0 using the final size of the epidemic. The above 
mentioned methods were applied for estimating R0 using 
R software (R0 package and programming). R software 
was created by Ross Ihaka and Robert Gentleman at the 
University of Auckland, New Zealand, and is currently 
developed by the R Development Core Team (of which 
Chambers is a member).

Generation time
The time‑gap between infection of a primary case and 
infection of a secondary case that is generated by the 
primary case.[18]

The attack rate
The R0 can be described by the AR with the following 
formula:

R

AR
S

AR S0
0

0

1

1
= −

−

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− −( )
log
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where AR defines the ratio of the people generating an 
infection disease and S0 show the initial susceptible ratio.[19]

The exponential growth rate
The following formula was applied for computing the R:

( ) −=
= ∑ 1

t
t t i ii

R N w � (2)

( )
1R

M r
=

−
� (3)

In this formula, M is the moment‑generating function of 
the GT.[20] The parameter r is determined by the Poisson 
regression. Furthermore, the parameter w is GT.

The maximum likelihood
Let N0, N1,...., NT identify incident cases over sequential time. 
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The log‑likelihood function is:
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where

 −=
= ∑ 1

t
t t i ii

R N w � (5)

and R is the maximum value of the log‑likelihood 
function.[21] Furthermore, the parameter w is estimated by 
maximizing log‑likelihood is GT.

Time‑dependent reproduction numbers
In this method, Rt is computed by averaging Rj, which is 
the mean of all transmission networks corresponding to 
the cases observed.[22]
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= ∑1

j
t jt t

t

R R
N

� (6)

where

R pj ii
=∑ � (7)

And

p
N w t t

N w t tij
i i j

i k i i k

=
−( )
−( )

≠∑ � (8)

Consider that person i and person j are in times t i 
and t j, respectively, then displays the probability of 
infection transmission from person j to person i so Rt compute 
by averaging all Rj which is the mean of all transmission 
networks correspondent with the cases that observed.

The gamma‑distributed generation time
The number of cases on the day “t,” denoted by nt in (t1, t2) 
grows exponentially where

nt = nt1 exp (r[t – t1])� (9)

( )
1 2 1 2, 

1 2

({log( )} ,[ , ])

, 
t t t tcov n t t

r
var t t

  =
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And

R r
b
a= +( )1 � (11)

The EG denotes by r. The mean and standard deviation 
of the GT are µ and σ, respectively, where a = µ2/σ2 and 
b = µ/σ2.[23]

R0 using the final size of the epidemic
The R0 can be estimated with the below formula:

R N
C ii N C

N
0 1

11 1= −
= − +

−∑ � (12)

where the total population at risk and total number of 
infections are denoted by N and C, respectively.[24]

Vaccination coverage
The vaccination coverage is computed by the basic 
reproduction number with formula:

v
R

= −1 1

0

� (13)

which shows the proportion of peoples who should be 
received the vaccine.[7]

Comparison of methods
For exploring the closeness of the estimation of the 
mentioned methods to the actual R0s and comparing them 
with each other, we applied 10000 times simulation for each 
formula based on the Canada data. The epidemics were 
simulated with the following properties. The distribution 
of the GT was considered gamma with the mean of 3.6 and 
standard deviation of 1.4. According to real data (the Canada 
data), the length of the epidemic was 80 days. Moreover, 
the peak value (the threshold value for the incidence before 
epidemics begin decreasing) for the Canada data occurred 
in the day 54. Therefore, we applied the value equal to 54 
for the peak value in the simulation command [For details, 
see the simulation command under Table 1 in the results 
section]. Simulation of the basic reproduction number 
was made with above characteristics and the MSE was 
calculated for evaluating the performance of models with 
below formula. The lowest MSE value corresponds to the 
method which fitted the data best.

Figure  1: The incidence case counts influenza data of Canada during 
18 April, 2009–6 July, 2009
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RESULTS

Canadian 2009 H1N1 influenza data
We fitted the six models to the daily dataset of Canada, 
throughout the 80‑day period of the studies. All dates of the 
Canada data were based on month/day form 18 April, 2009 
to 6 July, 2009. Moreover, the number of infected people 
was plotted as frequency [Figure 1].

In order to demonstrate the difference in modeling with 
various formulas, the result of the Richard model (presented 
in Hsieh’s study)[15] as well as the results of the other six models 
are presented in Table 2. The reported R0 (95% confidence 
interval  [CI])  (vaccination coverage%) using the Richard 
model was 1.68 (1.45, 1.91) (40.47) that means every person 
infected 1.68 other people on average during the infection 
period. Note that, R0 (95%CI) (vaccination coverage%) for 
the estimation of TD (1.71 [1.12, 2.03] [41.52]) was clearly 
close to R0 for the Richard model. The second method with 
the closest R0 (95%CI) to that of the Richard model was the 
gamma‑distributed GT (1.49 [1.0, 1.97] [32.88]). On the other 
hand, the computed R0 (95%CI) using the EG was 1.46 (1.41, 
1.52) (31.51). The ML method revealed that the calculated 
R0 (95% CI) for this model was different from that for the 
Richard model  (1.42  [1.27, 1.57]  [29.58]). In addition, the 
estimated R0 (95% CI) (vaccination coverage%) by the AR 
with two approaches was 1.000388 (1.000383, 1.000392) (0.04) 
and 1.1164 (1.1163, 1.1165) (10.43). The minimum computed 
R0 (95% CI) was related to the estimation of the final size of 
the epidemic obtained as 1.0 (0.91, 1.09). The estimates of 
vaccination coverage for the six methods were vary. The 
lowest and highest vaccination coverage values in this setting 
were associated with AR and TD methods, respectively.

In order to compare the mentioned models to find the 
formula with better fit to the actual values, we conducted a 
simulation with R software and calculated R0 based on the 
six models reported in Table 2. We used gamma distribution 
for the GT with the mean of 3.6 and standard deviation of 
1.4. The peak value determined right over the original data 
were equal to 54. Then, using the above parameters, the 
simulation was implemented and R0 was computed for each 
method. The simulation results for comparing the quality 
of the six methods are represented in Table 1 and Figure 2. 
In order to carry out the simulation, the number of runs to 
achieve the R0 was 10000.

The results, given in Table 1, indicated that there were 
differences between the actual and simulated R0; however, 
the TD method had the closest value to the R0 calculated 
from the simulation compared to the other methods. 
Surprisingly, some variation was considered for the ML 
estimations when the actual values were equal to one, 
between one and two and greater than two. In the ML 
method, we found that the simulated R0 for small values was 
very close to that for the actual values when the actual values 
were between 1.42 and 1.71; while the simulated R0 for large 
values was very different from that for the actual values. 
For the gamma‑distributed GT approach, the simulated 
R0 grew out of the actual values for values close to one. In 
contrast, the results showed that the computed values for R0 
in the simulated system were slightly greater than the actual 
values when we applied R0 between 1.42 and 2. By following 
the same interpretation, we can infer that the EG method 
had a small variation for small R0 values (1.4 < R0 < 2). On the 
other hand, the R0 estimations using the EG diverged from 
the actual R0 but was not significant. Finally, the computed 
R0 by the AR and final size of the epidemic methods seemed 
likely to reflect stability for all R0s. In particular, for the latest 
assumed R0s, the estimated R0 was equal to one.

Table 1: The simulated R0s and their 95% confidence interval for each method
Actual 
R0

R0 (95% CI)
ML EG TD AR Gamma-distributed 

generation time
R0 using the final 

size of the epidemic
1 1.23  (1.03, 1.47) 1.26  (1.19, 1.34) 1.17  (0.93, 1.42) 1.000003  (1.000003, 1.000004) 1.25  (0.98, 1.52) 0.91  (0.23, 1.58)
1.116 1.27  (1.08, 1.49) 1.33  (1.26, 1.40) 1.24  (1.0, 1.47) 1.000004  (1.000004, 1.000005) 1.30  (1.03, 1.57) 0.93  (0.39, 1.46)
1.42 1.43  (1.28, 1.61) 1.54  (1.48, 1.61) 1.47  (1.29, 1.65) 1.000009  (1.000008, 1.000009) 1.48  (1.21, 1.75) 0.97  (0.71, 1.23)
1.46 1.47  (1.32, 1.63) 1.59  (1.53, 1.66) 1.51  (1.34, 1.69) 1.000007  (1.000007, 1.000009) 1.52  (1.26, 1.79) 0.98  (0.75, 1.20)
1.49 1.48  (1.33, 1.64) 1.59  (1.53, 1.65) 1.51  (1.33, 1.69) 1.000008  (1.000008, 1.000009) 1.54  (1.27, 1.81) 0.98  (0.75, 1.21)
1.68 1.60  (1.47, 1.73) 1.75  (1.69, 1.81) 1.64  (1.44, 1.84) 1.000006  (1.000006, 1.000007) 1.64  (1.37, 1.91) 0.99  (0.80, 1.73)
1.71 1.60  (1.48, 1.73) 1.76  (1.71, 1.83) 1.66  (1.44, 1.88) 1.000006  (1.000005, 1.000006) 1.64  (1.38, 1.91) 0.99  (0.81, 1.17)
2 1.56  (1.47, 1.66) 1.80  (1.76, 1.85) 1.83  (1.53, 2.13) 1.000005  (1.000005, 1.000006) 1.67  (1.41, 1.94) 0.99  (0.83, 1.16)
2.5 1.36  (1.29, 1.42) 1.6  (1.57, 1.63) 2.16  (1.71, 2.60) 1.000004  (1.000003, 1.000004) 1.62  (1.35, 1.89) 1  (0.82, 1.17)
3 1.26 (1.21, 1.33) 1.46 (1.43, 1.48) 2.47 (1.87, 3.06) 1.000003 (1.000003, 1.000004) 1.56 (1.29, 1.82) 1 (0.81, 1.18)
Sim.epid (epid.n b=10000, GT=Generation.time (“gamma”, c [3, 1.4]), R0 =r0, epid.length=80, family=“poisson”, peak.value=54). AR=Attack rate; R0 =Reproduction number; 
CI=Confidence interval; EG=Exponential growth rate; TD=Time dependent reproduction numbers; ML=Maximum likelihood; This is simulation command in R0 package of R 
software
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We also plotted  [Figure  2] the actual R0 and simulated 
R0 based on six methods with the parameters described 
in Table1. For evaluating the performance of models, 
we computed MSE for all methods  [Table  3]. The TD 
method had the lowest MSE value in comparison to other 
methods. The MSE of AR and final size of the epidemic 
methods was very varied. In addition, MSE of ML, EG, and 
gamma‑distributed GT methods were also calculated. For 
ML, EG, and gamma‑distributed GT, the mean of MSE of 
all points were 4.85, 3.81, and 3.31, respectively. As noted 
above, the TD introduced the approach with the nearest 
estimation to the actual R0 based on MSE criterion.

We also performed a sensitivity analysis with the 
incidence data of Canada on the GT with the gamma 
distribution [Figure 3]. The sensitivity analysis demonstrated 
that R0 (95% CI) for the mean GT (days) of 3.6 and 4.9 was 
estimated as 1.47 (1.41, 1.53) and 1.67 (1.58, 1.76). Thus, the 
computed R0 was approximately near that of the Richard 
and TD methods when the mean GT was equal to 4.9.

Canadian 2017–2018 H1N1 influenza data
The incidence data are reported based on week/year from 
the 35th week in 2017 to the 34th week in 2018. Peak value for 

this data has occurred in the 12th week in 2018 after starting 
the epidemics. The number of infected cases is plotted in 
Figure 4.

For the given data, R0 (95% CI) and vaccination coverage 
based on TD method was computed. Indeed, we found 
that the estimated R0 by TD method was (1.52 95% CI: 1.11, 
1.94). In addition, the estimates of vaccination coverage were 
34.2% for 2017–2018.

DISCUSSION

We implemented six methods  (the ML, EG, TD, AR, 
gamma‑distributed and final size of the epidemic), which 
permitted the estimation of the R0 as key parameters of 
the epidemic based on the A/H1N1 Influenza cumulative 
case counts data in Canada (2009). The R0 for the ML, EG, 
TD, AR, gamma‑distributed and final size of the epidemic 
methods were estimated 1.42, 1.46, 1.71, 1.116, 1.49, and 
1.0, respectively. In most cases, the R0 was greater than 
unity; hence, the epidemic outbreak was observed. In 
addition, the computed R0 for Canadian data (2018) by TD 
method was greater than one indicating that an epidemic 
occurred in Canada  (R0 > 1). Thus, it seems necessary to 
consider appropriate solutions in order to control, decrease 
and prevent the epidemic or pandemic of influenza. One 
of the most effective methods to protect people against 

Table 2: The Reproduction number estimation by the 
different methods for the Canada data (2009)
Method R0 (95% CI for R0) Vaccination 

coverage (%)
Richard model 1.68  (1.45, 1.91) 40.47
AR 1.000388  (1.000383, 1.000392)a 0.04

1.1164  (1.1163, 1.1165)b 10.43
EG 1.46  (1.41, 1.52) 31.51
ML 1.42  (1.27, 1.57) 29.58
TD 1.71  (1.12, 2.03) 41.52
Gamma-distributed 
generation time

1.49  (1.0, 1.97) 32.88

R0 using the final 
size of the epidemic

1.0 (0.91, 1.09) 0

aAR based on incidence (n=33,630,000), bAR based on reported AR=0.201. R0: 
Reproduction number; TD=Time‑dependent reproduction numbers; ML=Maximum 
likelihood; EG=Exponential growth rate; AR=Attack rate, CI=Confidence interval

Table 3: Mean squared error of reproduction number estimation for each method
R0 Method

ML EG TD AR Gamma-distributed generation time The final size of the epidemic
1 0.061 0.090 0.042 1.036e‑11 0.080 0.015
1.116 0.038 0.072 0.030 0.014 0.055 0.043
1.42 0.027 0.064 0.025 0.178 0.043 0.207
1.46 0.027 0.065 0.022 0.212 0.041 0.236
1.49 0.027 0.059 0.022 0.240 0.040 0.266
1.68 0.035 0.050 0.014 0.046 0.026 0.482
1.71 0.042 0.050 0.016 0.505 0.028 0.524
2.0 0.242 0.089 0.043 1.001 0.118 1.014
2.5 1.345 0.862 0.141 2.252 0.784 2.267
3.0 3.011 2.405 0.321 4.004 2.097 4.022
Total mean 4.855 3.806 0.676 8.452 3.312 9.076
R0=Reproduction number; TD=Time‑dependent reproduction numbers; ML=Maximum likelihood; EG=Exponential growth rate; AR=Attack rate

Figure 2: The plots of the actual and simulated R0 compared for each method
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influenza is vaccination that can be determined by using 
R0  (vaccination coverage =  1 − 1/R0). On the other hand, 
annual influenza vaccination in the high‑risk groups such 
as elderly people, ill person, pregnant woman, and children 
can reduce mortality rate. In addition, vaccination can also 
reduce the incidence of disease, cost, exacerbations of the 
disease, and hospitalizations. The vaccination coverage 
for Canada (2009) ranged between 10.43 and 41.52 using 
various methods and this value was 34.2% for 2017–2018 
influenza Canada data.

Moreover, we performed a simulation using R software for 
several R0 and obtained their estimates based on the epidemic 
data of Canada (2009) for the six methods. The computed R0 
in the TD method was nearly the same as the actual R0 based 
on MSE criterion. Comparing the simulation results from 
the ML, gamma‑distributed GT and EG methods showed 
variation for different values of the actual R0; however, some 
of the calculated R0s applying the simulation were close to 
the actual values. For the most actual R0, the simulated R0 
by the AR and final size of the epidemic methods was equal 
to one. Whereas these type of modeling approaches are not 
able to differentiate between various R0. We believe that this 
may correspond to the small number of the infected cases 
compared to the susceptible cases.

Note that, our basic reproduction number estimated using 
the TD method was consistent with that derived from the 
Richard model in the Canadian papers.[15] Not only the 
simulated R0 for the value 1.68 almost agreed with that of 
the TD approach but also the other simulated R0 by the TD 
method was nearly consistent with the actual R0. In other 
words, the lowest MSE values were obtained for TD method.

From the methods reviewed in Appendix Table 2, which can 
be applied to estimate the R0, the approaches presented in 
Table 1 fitted to the cumulative cases data. All the methods 
reviewed in this paper, as any modeling techniques, had 

advantageous and disadvantageous. One of the strengths of 
this study is to review all studies done related to influenza 
and then selected some of the frequently used model and 
determine their strengths and weaknesses; seven of them 
used for the R0 estimation in the Canada data, as shown in 
Table 1, are explained in details in Table 4.

Regarding Table 4, it seemed that the TD, ML and EG methods 
had superiority compared to the other methods. These models 
were used by researchers to estimate R0 of influenza.

Some studies estimated the R0 from influenza data using 
different models and compared the results. Obadia et al. 
obtained estimates of R0 from the “Germany 1918” epidemic 
data based on five approaches which including the AR, 
ML, sequential Bayesian and TD methods. In addition, 
comparing results from different methods showed that 
the biased ML and TD methods were least.[30] Another 
study applied four different methods  (the EG, simple 
susceptible‑exposed‑infectious‑recovered  [SEIR], more 
complex SEIR‑type model, and ML model) in order to 
compare these estimation approaches. The EG had large 
uncertainty while ML had a consistent estimate with the 
estimate of the autumn wave.[20] In general, the TD had a 
good fit on the data as confirmed with the Richard model 
and MSE criterion.

A weakness of this study is that the 2009 Canada data have 
been used for comparing methods, which looks old. The 
reason for this, is comparing R0 with pervious article[15] and 
comparing the methods with the actual values which are 
exist on this data in the mentioned paper. Finally, a more 
comprehensive study for influenza as an annual national 
disaster using new method such as Bayesian is needed that 
we are going to do in the future research.

CONCLUSION

Awareness of the basic reproduction number of influenza 
is useful for calculating vaccination coverage and then 
applying vaccine strategy. Therefore, it is necessary to know 
the method which has better performance for influenza 
data that our results showed the TD method is preferred. 

Figure 3: Sensitivity of R0 to mean generation time to select the generation time

Figure 4: The incidence case counts influenza data of Canada from the 35th week 
in 2017 to the 34th week in 2018
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One advantage of the TD method in compared to the other 
methods was that it was useful for computing the R0 regarding 
the real cumulative case count data. Another advantage of the 
mentioned modeling was that it did not require extensive, 
detailed data as well as more parameters to calculate the basic 
reproduction number. Therefore, we recommend using this 
method in order to estimate the basic reproduction number.
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APPENDIX

SEARCH STRATEGY

In order to review the literature on basic reproduction number of influenza, we searched in the electronic databases such 
as the web of knowledge, PubMed, EMBASE, and Google Scholar to find published papers between 1954 and 2017. The 
medical subject heading was applied to find a wide range of keywords that had a maximum sensitivity. The following 
keywords were searched: influenza, human, and reproduction number. In detail searched keywords were (“influenza, 
human”[MeSH Terms] OR (“influenza”[All Fields] AND “human”[All Fields]) OR “human influenza”[All Fields] OR 
“influenza”[All Fields]) AND ((“reproduction”[MeSH Terms] OR “reproduction”[All Fields]) AND number [All Fields]).

STUDY SELECTION

Two reviewers independently extracted relevant studies from the keywords search. All types of original articles were 
investigated. The studies which included “influenza reproduction number” in their titles or abstracts were included. The 
irrelevant articles, based on the title and abstract evaluation, were excluded. Moreover, we eliminated the duplicated 
articles to determine unique studies. Animal studies and human studies that included special populations such as pregnant 
women and schizophrenia were excluded. We then extracted data and formulas from the full text of the included studies.

Figure 1 shows the search strategy, through which 1213 papers were obtained in the initial round. The number of the 
retained papers was 910, which estimated R0 for epidemic or pandemic influenza with A/H1N1, A/H1N5, H1N2, H1N3, 
H5N1, pH 1N1, A/H3N2, influenza B, A (H7N9), Spanish flu, H2N2, H3N2, AH1, AH3, A (H5N1), and Asian flu. The 
number of papers identified through other sources was 5. Overall, 89 papers presented the basic reproduction number 
estimation and its formula, as summarized in Table 1.

In addition, detailed information of the study characteristics provided in the systematic review is given in Table 2, of which 
10 studies were taken into consideration. In some of the studies, p‑H1N1, A (H1N1), A (H3N2), type B, and A (H7N9) were 
reported as types of influenza. The models used for estimating R0 in these 8 studies were the multi‑control measure, growth 
rate of exponential, and multi‑phase Richards. In several of the studies, laboratory‑confirmed cases were investigated for 
determining the reproduction number of influenza. Maximum, minimum and median of the reproduction number were 
10.03 (in Mainland China), 0.08 (in China) and 1.39, respectively. The reproduction number of the influenza type A (H1N1) 
in Taiwan (2013) and Mexico was reported 1.54 (95% confidence interval  [CI]: 0.22–8.88) and 1.69 (95% CI: 1.65–1.73), 
respectively. For A (H7N9), the reproduction number and its 95% CI in China for the first wave was estimated 0.27 (0.14, 0.44).
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Appendix Table 1: The formula which applied for calculating reproduction number in different studies
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Figure 1: The PRISMA flowchart of the article selection for the reproduction 
number and influenza literature review


