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Introduction

In radiotherapy, radiation doses are delivered 
to a target (cancer cells) while causing minimal 
damage to the surrounding healthy organs [1]. 
Patient-specific quality assurance (PSQA) ensures 
the accuracy and safety of the treatment process [2]. 
PSQA is divided into two categories: pretreatment 
verification and during-treatment verification. 

Current recommendations on PSQA focus on pre-
treatment verification in which the patient’s plan is 
delivered to either a phantom or air, and the abso-
lute dose is measured using ion chambers, films, or 
an electronic portal imaging device (EPID). 

Varian (Varian Medical Systems, Inc., Palo Alto, 
CA, United States) released Halcyon which has 
a two-layer multi-leaf collimator (MLC) system 
that ensures rapid beam modulation and substan-

ABSTRACT

Background: This study compared the effectiveness of five deep learning models in constructing non-transit dosimetry with 
an a-Si electronic portal imaging device (EPID) on Varian Halcyon. Deep learning model is increasingly used to support pre-
diction and decision-making in several fields including oncology and radiotherapy.

Materials and methods: Forty-seven unique plans of data obtained from breast cancer patients were calculated using Eclipse 
treatment planning system (TPS) and extracted from DICOM format as the ground truth. Varian Halcyon was then used to 
irradiate the a-Si 1200 EPID detector without an attenuator. The EPID and TPS images were augmented and divided randomly 
into two groups of equal sizes to distinguish the validation and training–test data. Five different deep learning models were 
then created and validated using a gamma index of 3%/3 mm.

Results: Four models successfully improved the similarity of the EPID images and the TPS-generated planned dose images. 
Meanwhile, the mismatch of the constituent components and number of parameters could cause the models to produce 
wrong results. The average gamma pass rates were 90.07 ± 4.96% for A-model, 77.42 ± 7.18% for B-model, 79.60 ± 6.56% for 
C-model, 80.21 ± 5.88% for D-model, and 80.47 ± 5.98% for E-model.

Conclusion: The deep learning model is proven to run fast and can increase the similarity of EPID images with TPS images to 
build non-transit dosimetry. However, more cases are needed to validate this model before being used in clinical activities.
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tially reduces leakage between the MLC leaves, 
thereby increasing workflow efficiency in radio-
therapy. Meanwhile, as the machine does not have 
collimator jaws, MLC is the only beam-forming 
component in the machine. Therefore, MLC loca-
tion and optimization are critical to ensuring accu-
rate dose delivery [2–4].

To ensure the consistency of the MLC and beam 
angle, an EPID detector is permanently attached 
inside the Halcyon. EPID images can be extracted 
to provide dose distribution information; as a do-
simetry method for verification before and during 
therapy [5–14]. One type of dosimetry by EPID is 
non-transit dosimetry, which can predict the dose 
inside the patient for pre-treatment verification 
by measuring doses at a certain height without 
an attenuator. While many algorithms have been 
developed using mathematical formulas [6], 
a novel method for non-transit dosimetry using 
deep learning model is presented in this paper. 
Five models were developed, and the results were 
compared and validated using the gamma index 
with the criteria of 3%/3 mm.

Deep learning works by combining large 
amounts of data with fast and iterative intelligent 
processing algorithms. This allows the system to 
learn automatically from patterns or features in 
the data [15]. Researchers have used deep learn-
ing as a correction tool in dosimetry to increase 
the similarity of dose distributions through EPID 
[16–21]. However, no previous study has used deep 
learning to reconstruct the dose distributions in-
side patients with EPID for non-transit dosimetry.

Materials and methods

The experiment was performed at Cipto Man-
gunkusumo General Hospital using Varian Hal-
cyon (Varian Medical Systems, Palo Alto, CA, 
United States) equipped with an a-Si 1200 EPID. 
After irradiation, a single image was extracted, 
and the pixel value was automatically convert-
ed into a calibrated unit. The source-to-detector 
distance (SDD) was fixed at 154 cm, as shown in 
Figure 1. The A-Si EPID 1200 has a maximum ir-
radiation area measuring 43 × 43 cm², accompa-
nied by a pixel dimension of 1,280 × 1,280. Con-
sequently, the pixel size ratio was 0.340 mm/pixel. 
The term “max irradiation area” indicates the larg-
est allowable irradiation field. 

Furthermore, the EPID images were compared 
to those of DICOM RT, which were generated from 
the Eclipse treatment planning system (TPS) us-
ing an anisotropic analytical algorithm (AAA). 
The flowchart of this study is shown in Figure 2 
and is explained below.

Breast cancer was considered in this study be-
cause it has the highest age-standardized mortality 
rate of around 15.3 per 100,000 population [22]. 

The maximum field size that can be captured by 
the detector is calculated using a similar triangle 
theorem by utilizing the source axis distance (SAD) 
100 cm divided by source-to-detector distance 
(SDD) 154 cm and multiplied by the max irradi-
ated area 43 × 43 cm2. So, the maximum field was 
27.92 × 27.92 cm2. 

There are 47 unique fields of breast cancer cases 
that have a field size below the maximum allowed. 
All fields were recalculated again for gantry an-
gles at 0 degree, so the total data reached 94 fields. 
The planned dose distributions were exported from 
the TPS in DICOM format and used as ground 
truth.

Augmentation
The original dataset was divided randomly into 

two equal parts, training–test dataset and valida-
tion dataset. This step is to prevent mixing between 
the training–test and validation datasets. 

Deep neural networks require a lot of training 
data to obtain good results and prevent overfitting. 
The augmentation was done by rotating and flip-
ping the dataset. This technique is a common image 
augmentation technique in deep neural network 
research [22, 24]. This augmentation technique 
adds more than 1,000 image pairs which is divided 
into 70% training data and 30% testing data.

Deep learning models
Five deep learning models were developed us-

ing the Python programming language and run 
on a Nvidia K80 GPU with 12 GB RAM memo-
ry. The inputs for the deep learning models were 
the EPID images, whereas the ground truths or 
targets were the planned dose images. Each model 
was optimized using the Adam optimization algo-
rithm. Although the epoch was set to 300, training 
could be stopped earlier if there was no improve-
ment in the results. The learning rate was 0.000001, 
and the loss value was calculated using mean 
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squared error (MSE). MSE calculates the average 
of the squared differences between the predicted 
and actual values, this value is shown to be an accu-
rate measure of the similarity between two images. 
The details of each model are explained below.

A-Model
This model is a convolutional neural network 

(CNN) with five layers, and the architecture is pre-
sented in Supplementary File — Table S1. There 
were 64 hidden neurons in each layer, and the num-

Figure 1. Arrangement non transit dosimetry by electronic portal imaging device (EPID). SAD — source axis distance; 
SDD — source-to-detector distance; MLC — multileaf collimator
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ber of parameters was 113,155, which were opti-
mized during the training sessions.

B-Model
This model is a CNN with six layers, and the ar-

chitecture is presented in Supplementary File — Ta-
ble S2. The number of hidden neurons for each 
additional layer doubled, i.e., 16, 32, 64, 128, 256, 
and the last layer (sixth layer) was the output layer. 
Since this model had more layers, the total number 
of parameters increased to 1,097,285.

C-Model
This model is a convolutional autoencoder, 

and the architecture is presented in Supplementa-
ry File — Table S3. It has been proven to eliminate 
noise in images by retaining spatial and temporal 
information [25]. This model comprised two ma-
jor parts: the encoder and decoder sections. In 
the encoder section, when a new layer was added, 
the hidden neurons increased, whereas the image 
dimensions decreased. However, in the decoder 
section, when a new layer was added, the hidden 
neurons decreased, whereas the image dimensions 
increased. The input had the same number of di-
mensions as the output, and the total number of 
parameters was 1,018,817.

D-Model
This model is also a convolutional autoencoder, 

and the architecture is presented in Supplementa-
ry File — Table S4. The difference between the D- 
and C-models is that the number of hidden neurons 
in the encoder section of the D-model was reduced 
from 256 to 128. Reducing the number of hidden 
neurons decreases the number of parameters for 
training. Based on these two models, the effects of 
the total number of parameters can be analyzed. 
The total number of parameters for this model 
was 427,713, which was 58.02% less than that for 
the C-model.

E-Model
This model is a U-Net, and the architecture 

is presented in Supplementary File — Table S5. 
U-Net was originally invented and first used for 
biomedical image segmentation. Its architecture 
can be broadly considered as an encoder network 
followed by a decoder network (i.e., an autoencod-
er). Previous studies have shown that this model 

can be used to correct the reconstruction results 
of the absolute dose distributions of EPID dosim-
etry [16]. In this study, we adopted this model for 
non-transit EPID dosimetry. It had four depths, 
and each down-sampling block comprised two 
blocks containing a convolution layer, followed by 
batch normalization and a fixed rectified linear unit 
activation function. Additionally, it had the highest 
number of parameters (i.e., 7,759,521), which were 
used for training.

Validation
Validation was performed using the gamma in-

dex (γ) method, which is frequently used to verify 
complex modulated radiotherapy [26–29]. Sev-
eral researchers have used it to measure the sim-
ilarity between two images in 2D and 3D [30]. In 
this study, all validation images from EPID were 
compared with the planned dose, known as the or-
igin, and subsequently, those EPID images were 
enhanced with the deep learning model and com-
pared again to the planned dose. All comparisons 
used a gamma index of 3%/3 mm.

Results

The dataset used for validation is 47 and set 
each of shape 1,280 × 1,280 × 1 pixels. Every mod-
el was trained, tested, and validated with the same 
data. Table 1 reveals that deep learning can be 
used to build non-transit dosimetry on Halcy-
on. Moreover, the EPID images that improved by 
the A-, C-, D-, and E-models had higher average 
gamma pass rates than the origin. Surprisingly, 
the B-model had a lower average gamma pass 
rate compared to the origin, meaning this mod-
el is not suitable or needs improvement to build 
non-transit dosimetry. Furthermore, although 
the A-model had the least number of parame-
ters, it had the highest average gamma pass rate. 
Therefore, in addition to the number of param-
eters, the accuracy of a model is determined 
by the constituent components of the model. If 
the model is not suitable for the problem, the out-
put will be inaccurate, even if it has a high num-
ber of parameters.

Table 2 shows a comparison of processing time 
and average gamma pass rate improvement from 
the origin for each model. From the table, the pro-
cessing time did not have a linear relationship with 
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the number of parameters; thus, more parame-
ters do not always lead to longer processing times. 
The A-model had the shortest processing time be-
cause it had the least number of parameters, where-
as the B-model had the longest processing time but 

not the highest number of parameters. The aver-
age processing time was less than 2 s, proving that 
deep learning can be used for clinical activities. 
The fastest model in descending order is A, D, C, 
E, and B. Moreover, the average gamma passing 
rate improvement from the origin revealed that 
the A-model had the greatest improvement com-
pared to the other models, with the average reach 
14.10 ± 8.79% from the origin.

The distribution of gamma pass rates obtained 
from the validation of various deep learning mod-
els and original data is presented in Figure 3. This 
categorization was performed with the objective of 
identifying successful image patterns in each mod-
el. It was observed that the A-model exhibited 
the most favorable results, with 30 out of 47 im-
ages belonging to the gamma pass rate group of 

Table 1. Gamma index 3%/3 mm results of the comparison between origin electronic portal imaging device (EPID) image 
without and with artificial intelligence (AI) model to planned dose image by treatment planning system (TPS) on 47 
validation cases

Origin A Model B Model C Model D Model E Model

Average γ-pass 
rate % 79.29 ± 6.27 90.07 ± 4.96 77.42 ± 7.18 79.60 ± 6.56 80.21 ± 5.88 80.47 ± 5.98

Max γ-pass 
rate % 87.74 94.70 88.22 89.66 89.68 89.69

Min γ-pass rate % 61.96 75.51 51.77 62.00 62.05 62.07

Table 2. Average processing time and gamma pass rate 
improvement from origin on each model

Average processing 
time [s]

Average of gamma 
pass rate improvement 

from origin (%)

Model A 0.414 ± 0.113 14.10 ± 8.79

Model B 1.512 ± 0.199 –0.38 ± 9.99

Model C 0.788 ± 0.022 0.68 ± 8.22

Model D 0.651 ± 0.052 1.42 ± 6.94

Model E 1.187 ± 0.017 1.72 ± 6.88

Figure 3. The distribution of the number of cases from each artificial intelligence (AI) model with respect to the gamma pass 
rate interval
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91–95%. Conversely, none of the other models 
achieved this group. 

Figure 4 explains the comparison gamma pass 
rate maps for cases from the 91–95% and 76–80% 
groups for Model A. Referring to other research 
on developing deep learning models for dosim-
etry using EPID images, it has been highlighted 
that the penumbra area is of particular concern 
for accurate correction [16]. The penumbra area in 
an EPID image refers to the region that experienc-
es the shadowing or attenuation effect of radiation 
due to the boundary of the irradiated object. This 
occurs because of the physical properties of radi-
ation, where radiation can scatter and create shad-
ows on the surface of the EPID detector. However, 
in this case, the pattern of the penumbra area has 
not been identified to have an impact on determin-
ing similarity to the target image. This is shown 
at Figure 4B, the brighter color is absent only at 
the boundary of the irradiated object. 

Discussion

The development of various deep learning mod-
els significantly depends on the problem to be 
solved. The absence of a golden standard for de-
termining the layout of each hidden layer, number 
of parameters, and minimum amount of data re-
quired for accurate model results have become ma-
jor topics in deep learning research [31–33].

In this study, it was proven that the number of pa-
rameters was not directly proportional to the output 

image. Table 2 reveals that the A-model, which had 
the least number of parameters, had the highest 
gamma index value compared to the other models. 
We assumed that the addition of more parameters 
to a model required more training data. The re-
sults of this study also strengthen other studies that 
try to compare performance for various hidden 
layers or parameters, the results show that when 
data is added to training and validation, the model 
with higher hidden layers will have better accuracy 
than the model with fewer hidden layers [34], but 
further research should be conducted to validate 
this assumption.

The best gamma index results from Models B, 
C, D, and E only reach below 90%. Unexpectedly, 
some of the gamma index results on model B show 
lower compared to the original image without ar-
tificial intelligence (AI). The larger parameter size 
of model B may necessitate a meticulous param-
eter tuning process and the utilization of a more 
extensive training dataset. Furthermore, these 
findings strongly suggest that model inaccuracies 
can have a detrimental impact on the results, po-
tentially resulting in performance that is inferior 
to the original image without the incorporation 
of AI. Therefore, many deep learning studies in-
corporate a confusion matrix to analyze the like-
lihood of dangerous false positives and false neg-
atives, as they could have significant implications 
in the healthcare domain. False positives refer to 
instances where the AI system incorrectly identifies 
a condition or event that is not present. On the oth-

Figure 4. The difference of gamma index maps on model-A between (A) pass rate at 94.70% and (B) pass rate at 75.51%. 
The level of image similarity is indicated by a darker color
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er hand, false negatives occur when the system fails 
to detect a genuine condition or event that it is ac-
tually present.

In Figure 4, an extensive analysis was under-
taken with the aim of identifying discernible pat-
terns within the gamma maps generated by mod-
el A under varying levels of accuracy. Specifically, 
we examined the gamma maps corresponding to 
the model’s highest accuracy (Fig. 4A) and those 
associated with the lowest accuracy (Fig. 4B). Our 
analysis was focused on two key aspects: field size 
and the intensity of coloration within the penum-
bra region.

Despite meticulous examination and a compre-
hensive comparative approach, it is noteworthy 
that our findings did not reveal any prominent or 
readily identifiable patterns in either of these as-
pects. This outcome suggests that, within the scope 
of our study, there were no stark differences in field 
size or significant alterations in the brightness lev-
els within the penumbra region that could be un-
equivocally attributed to variations in model accu-
racy. This lack of discernible patterns underscores 
the complexity of the relationship between model 
accuracy and the resulting gamma maps. 

The study involves the construction of models A, 
B, C, D, and E, which are derived from three ba-
sic models, namely CNN, Autoencoder, and U-Net. 
By maintaining an equal amount of training 
data, CNN demonstrated superiority based on 
the gamma pass rate data. However, it is essential 
to recognize that deep learning encompasses more 
than just datasets; improper preprocessing tech-
niques and misconfiguration of hyperparameters 
can lead to ineffective performance and reduced 
accuracy. Further research is necessary to ensure 
that each model is appropriately tuned to achieve 
optimal results.

In clinical implementation, the use of deep learn-
ing will greatly accelerate the pre-treatment verifi-
cation of patient-specific quality assurance, the im-
age obtained from the EPID is directly converted 
into a dose and projected on the patient’s target 
organ by the deep learning model so that the image 
can be directly compared with the dose calculated 
results from the TPS. This study succeeded in five 
deep learning models that can run below 2 seconds. 
Furthermore, it also adds to the evidence of the suc-
cess of deep learning in building accurate dosime-
try based on EPID images [16, 19, 34]. Moreover, 

the results should be validated by considering more 
cases and improved by replacing the loss value 
from MSE to the gamma index directly; however, 
faster computer processors and higher RAMs are 
required when training the model. 

To create a deep learning (DL) model, compre-
hensive data in big number is needed, for example, 
to make DL capable of auto-contouring organ at 
risk at CT images, large number of CT image data 
is needed before and after contouring which will be 
used as targets, but this data is very hard to find as 
an open-source dataset. The lack of open datasets 
in radiotherapy means that the deep learning mod-
els that are created cannot be compared direct-
ly to other research. An open collection of EPID 
and TPS data in many cases and centers is really 
needed to help researchers only focus on develop-
ing their deep learning models and tuning their hy-
per parameter without worrying about data needs. 
In future research, there is potential for the inte-
gration of multiple distinct models with the goal of 
enhancing the precision of AI dosimetry.

Conclusion

In this study, a deep learning-based method 
for building non-transit dosimetry was proposed 
to improve the similarity between EPID images 
and planned dose images from TPS at the isocen-
ter plane. Five different deep learning models were 
compared, and we found that the A-model had 
the best performance, with a gamma pass rate high-
er by 14.10 ± 8.79% compared to that of the EPID 
images not subjected to the deep learning models, 
followed by the E-, C-, D-, and B-models. In addi-
tion, the A-model had the fastest processing time 
of 0.414 ± 0.113 second, followed by the D-, C-, E-, 
and B-models.
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