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Abstract: Molecular alterations of the Ataxia-telangiectasia (AT) gene are frequently detected in
breast cancer (BC), with an incidence ranging up to 40%. The mutated form, the Ataxia-telangiectasia
mutated (ATM) gene, is involved in cell cycle control, apoptosis, oxidative stress, and telomere
maintenance, and its role as a risk factor for cancer development is well established. Recent studies
have confirmed that some variants of ATM are associated with an increased risk of BC development
and a worse prognosis. Thus, many patients harboring ATM mutations develop intermediate- and
high-grade disease, and there is a higher rate of lymph node metastatic involvement. The evidence
concerning a correlation of ATM gene mutations and the efficacy of therapeutic strategies in BC
management are controversial. In fact, ATM mutations may sensitize cancer cells to platinum-derived
drugs, as BRCA1/2 mutations do, whereas their implications in objective responses to hormonal
therapy or target-based agents are not well defined. Herein, we conducted a review of the role of
ATM gene mutations in BC development, prognosis, and different treatment strategies.
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1. Introduction

The Ataxia-telangiectasia mutated (ATM) gene is an oncosuppressor, located on chro-
mosome 11q23, that encodes a 350-KDa protein consisting of 3056 amino acids [1]. It
belongs to the superfamily of phosphatidylinositol 3-kinase-related protein kinases (PIKKs).
The PIKK superfamily includes six serine/threonine kinases showing a sequence similar-
ity to phosphatidylinositol 3-kinases (PI3Ks), including ATR (ATM- and RAD3-related),
DNA-PKcs (DNA-dependent protein kinase catalytic subunit), and mTOR (mammalian
target of rapamycin). The ATM protein is involved in DNA repair and activates DNA
damage response pathways [2]; indeed, upon DNA damage, it is recruited to double-strand
breaks where it holds the two ends together. ATM mutations cause Ataxia-telangiectasia
(AT), an autosomal recessive neurodegenerative disorder characterized by a progressive
neuromotor dysfunction resulting from several neuropathological processes dominated
by gradual cerebellar cortical atrophy, telangiectasia in the eyes and sometimes on the
facial skin, thymic degeneration, immune deficiency, recurrent sinopulmonary infections
(at least in some patients), retarded somatic growth, premature aging, gonadal dysge-
nesis, predisposition to lymphoreticular malignancies, and acute sensitivity to ionizing
radiation [3–5].

In general, the ATM gene is involved in cell cycle control, apoptosis, gene regulation,
oxidative stress, and telomere maintenance and is deregulated in many malignancies
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such as breast cancer (BC) [6]. Many ATM mutations have been described and associated
with a moderate risk of BC development [7]. Furthermore, epidemiological studies based
on relatives affected by both AT and BC suggested that heterozygous carriers of ATM
mutations have a two- to thirteen-fold increased risk of BC development, with a higher
relative risk under 50 years old [8–11].

Previous studies emphasized the evidence of a strong association between ATM
variants and the risk of BC development. The V2424G variant confers the highest risk
of BC development, while the D1853V, L546, and S707P isoforms are associated with the
lowest risk [12]. Moreover, next generation sequencing (NGS) analysis revealed that ATM
is among the most aberrant gene in sporadic cancer (as shown by the COSMIC database),
and that loss of heterozygosity in the region of the ATM has been detected in approximately
40% of human sporadic BC [13–15].

In wider large-scale studies including solid cancers, 5% of patients showed ATM
aberrations (either mutation or loss). As described, 8% of lung cancer patients showed
ATM mutations that were largely mutually exclusive with those of TP53. More recently,
ATM alterations have been found in colorectal cancer (CRC) both in patients bearing both
microsatellite stable and unstable tumors. In prostate cancer, targeted next-generation
sequencing has revealed an 8% incidence of ATM mutations. In a range from 1% to 5%,
ATM mutations were reported in endometrial, kidney, liver, esophageal, ovarian, salivary
gland, gastric, thyroid, and urinary tract cancers [12].

Clinical and pathologic characteristics of ATM-associated BC have not been well
defined, but it is known that ATM-mutated BCs are mostly endocrine-positive, dedifferen-
tiated, and more aggressive, and thus have poor prognosis [11].

As regards therapeutic implications, ATM aberrations may sensitize cancer cells to
platinum-derived drugs, similarly to the effect of BRCA1 mutations, but have a worse effect
in case of radiotherapy (RT). In fact, ATM mutations increase the risk for development of a
second tumor after RT [16–19].

2. The ATM Gene and Its Role in Cancer

Since the ATM protein plays an important role in DNA repair through the activation
of enzymes that fix the broken strands, its biology is of interest in cancer research [20].
The physiological structure of the ATM protein is characterized by an N-terminal half that
is largely unique and a C-terminal half showing homology with other PI3K-like kinases
such as ATR, mTOR, and DNA-PKcs. ATM contains at least five autophosphorylation sites.
The N-terminal portion interacts with substrates and cofactors such as NBS1, p53, BRCA1,
LKB1, and BLM [12]. Once activated, ATM phosphorylates many downstream effectors, as
illustrated in Figure 1.

Pathogenic variants in ATM are common. In particular, around 0.35% of people carry
an ATM mutation, and there is a strong association between mutations in ATM and cancers.
Some researchers found a four-fold increased risk for pancreatic cancer, a three-fold increase
for stomach cancer, and a two- to three-fold increase for prostate cancer and confirmed
the previously known two-fold invasive ductal BC in patients with an ATM mutation.
They also found a low to moderate increase in risk for male breast cancer, ovarian cancer,
colorectal cancer, and melanoma. ATM is a large gene with many thousands of locations
where a mutation can occur. One common mutation, known as c.7271T>G, is associated
with a significantly higher risk of BC (about four-fold) than other ATM mutations [21].
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Figure 1. Structure of human ATM and function in DNA damage repair. (A) ATM is characterized
by an N-terminal and a C-terminal half that shows homology to other phosphoinositide-3 kinase
(PI3K)-like kinases and a portion that contains a FAT domain (named after the FRAP, ATR, and
TRRAP proteins). The N-terminal portion interacts with substrates and cofactors such as NBS1, p53,
and BRCA1. In addition, the N-terminal portion is characterized by a proposed chromatin- interaction
domain, a nuclear localisation sequence (NLS), two caspase-3 cleavage sites, and a putative leucine
zipper region. (B) Following DNA damage, ATM is recruited and is catalytically activated by
autophosphorylation. Once activated, ATM serves as a transducer, phosphorylates, and activates
other protein kinases such as checkpoint kinase 2 (CHK2), which in turn modulates its own substrates,
resulting in cell cycle arrest, or ATM can also activate p53. ATM can activate mechanisms involved in
DSB repair, such as BRCA proteins.

In BC, the physiological function of ATM is downregulated by malignant cells. In fact,
ATM phosphorylates DBC1 (deleted in BC) and promotes apoptosis by the activation of p53
and caspase-2 [22–25]. Moreover, ATM signaling can also be upregulated in cancer cells
that have already evaded cell apoptosis through other mechanisms, as seen in melanoma
through upregulation of melanoma-associated antigen-encoding (MAGE) genes as well
as in prostate cancer by activation of the Androgen receptor (AR) [1,2]. Regarding the
role of ATM mutations on the efficacy of therapeutic strategies, it is well known that
activation of the ATM-dependent pathway in tumor cells can promote chemoresistance and
radiotherapy resistance through the activation of p38 MAPK and enzyme transglutaminase
2 [3,26], as well as by inducing enzymes involved in DNA double-strand break (DSB)
repair [27]. Although ATM is considered as an oncosuppressor gene owing to its role in
enhancing chemo-radioresistance of tumor cells, this aberrant protein could potentially
be explored as a target for cancer treatment. Moreover, ATM signaling induces tumor
progression via the NF-kb-dependent pathway that promotes the release of pro-tumorigenic
cytokines, as well as the epithelial–mesenchymal transition [28]. Furthermore, in some
tumors, ATM signaling upregulates the alphavbeta3 integrin pathway [29], leading to
tumor progression and downregulation of immune-mediated cell responses [30]. The
tumor-specific alphavbeta3 integrin expression targeted dendritic cells, facilitating their
ability to phagocytose viable therapy-resistant tumor cells, and thereby impaired their
ability to cross-prime antigen-specific T lymphocyte, and it has been clearly demonstrated
that the integrin plays a critical role in triggering invasive and metastatic activities of
tumor cells.

It is well known that ATM germline mutations have different effects on tumor cells [31].
Particularly, the increased incidence of BC in families harboring AT has been clearly demon-
strated [13], but roles for specific mutations of ATM are now emerging. Heterozygous ATM
mutations are associated with a five-fold higher risk of BC in subjects under 50 years of
age [32] and are well classified in the COSMIC (Catalogue of Somatic Mutations in Cancer)
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database [33]. In addition to conventional BC subtypes, ATM heterozygous mutations were
recently associated to the predisposition of familial ductal pancreatic adenocarcinoma [34].
ATM-silencing mutations or deletions have also been found in other types of tumors, such
as lung adenocarcinoma and colon cancer [35,36]. Moreover, ATM inactivating mutations
are more frequently described in solid tumors with areas of hypoxia, such as gliomas, thus
contributing to radiotherapy resistance [37].

3. Role of ATM Gene Mutations in BC Susceptibility and Prognosis

ATM mutations increase the BC risk, as demonstrated in a recent systematic review
and meta-analysis [17]. It is well known that BRCA1/2 mutations have been associated
to a hereditary BC in 5% of patients, but also the incidence of BC in AT families was
found to be increased two- to five-fold [12,13,38–42]. The data collected by Moslemi et al.
confirmed that ATM missense variants increase the risk of BC. The risk of BC is enhanced
to a degree ranging from 2.8 to 3.04 [43,44]. Among the different variants explored, the
V2424G (c. 7271 T>G) missense variant had the highest association with BC incidence in
all subgroups [10,43–47]. While the ATM V2424G variant was one of the forms associated
with an increased risk of cancer, the ATM D1853V missense variant has the least association
with BC risk [48]. Moreover, a high association of ATM variants with BC is more frequently
described in Asian than Caucasian patients, mostly due to racial differences, environmental
conditions, or lifestyle. Recently, the Breast Cancer Association Consortium designed a
panel of 34 putative susceptibility genes which were checked in 60,466 specimens from
BC patients and 53,461 controls. It was demonstrated that protein-truncating variants in
five genes (ATM, BRCA1, BRCA2, CHEK2, and PALB2) were associated with a risk of BC
overall (p < 0.0001). For protein-truncating variants in ATM and CHEK2, the odds ratio was
higher for estrogen receptor (ER)-positive than ER-negative disease. Rare missense variants
in ATM, CHEK2, and TP53 were associated with an overall risk of BC (p < 0.001). The
results of this study defined those genes that could most usefully be included in screening
panels predictive of BC. Furthermore, ATM proved to be potentially useful for genetic
counseling [49]. As previously mentioned, ATM mutations also occur in sporadic BC
leading to ATM gene inactivation, but the mechanisms are still unclear. Different mutations
have been described, such as allelic loss [50] and ATM epigenetic silencing mediated by
CpG island methylation [51]. Post-transcriptional ATM regulation mediated by microRNAs
has been reported in gliomas and BC [52–54]. The miR-18 was reported as a putative ATM
regulatory miRNA in BC [23], but other studies showed no correlation with ATM transcript
and miR-18a. A recent study integrated genomic, transcriptomic, and proteomic analyses
in a large series of BC and identified tumor subtypes with different subsets of genetic and
epigenetic abnormalities [55]. For example, ATM loss and MDM2 amplification proved
to be more common in aggressive luminal B subtype BC. The clinical impact of ATM
downregulation in defining the prognosis of BC patients is limited and not yet validated.
Lower levels of ATM gene products have been discovered in high-grade BC [56–58],
suggesting association of the ATM mutation with more aggressive disease. Analysis of a
large cohort of patients with long-term follow-up showed a strong correlation between the
absence of ATM protein expression and distant metastasis, resulting in a worse outcome of
BC patients [11]. Survival analysis revealed that BC patients harboring inactivation of the
ATM gene had a shorter disease-free survival (DFS) and overall survival (OS). Moreover, a
multivariate analysis by Bueno et al. demonstrated that ATM is an independent prognostic
factor, in association with clinical–pathological factors such as tumor size and lymph node
involvement. Other reports described a strong correlation between ATM downregulation
and poor survival in patients with p53 wild-type tumors [59,60]. Another study explored
patients who underwent multigene panel testing (MGPT) between 2013–2019, identifying
those harboring ATM mutations. Heterozygous germline ATM mutation carriers had an
increased risk of developing cancer of the breast, pancreas, and other organs [61]. Thus,
a decreased ATM expression is associated with a worse prognosis in BC, suggesting it
may be a potential marker of disease outcome. The majority of patients had intermediate-
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to high-grade, hormone receptor-positive disease and a possibly higher rate of HER2
positivity and lymph node involvement. It was also reported that ATM expression promotes
HER2-dependent tumorigenicity in vitro and in vivo. Stagni V et al. [62] demonstrated a
correlation between ATM activation and a reduced time to recurrence in patients diagnosed
with invasive HER2-positive BC. Moreover, ATM was identified as a novel modulator of
HER2 protein integrity through a complex of HER2 with the chaperone HSP90, therefore
preventing HER2 ubiquitination and degradation. Thus, since downstream activation of
HER2 by ATM may modulate the response to therapeutic approaches, it is conceivable
that assessing the ATM activity status may be useful in the treatment and prognosis of
HER2-positive tumors [62].

4. Therapeutic Implications of ATM Gene Mutations in BC

Nowadays, it is well known that tumors with mutations in genes encoding proteins
involved in DNA repair may be more sensitive to treatments that induce cytotoxicity by
inducing DNA damage or inhibiting DNA repair mechanisms. As BRCA1-mutated tumors
may be more sensitive to treatments with platinum derivatives and benefit from treatment
with inhibitors of PARP, similar strategies could also be hypothesized for BC patients
harboring ATM gene mutations [63]. Moreover, it is recognized that radiosensitivity is
a hallmark of AT syndrome. As a consequence, heterozygous ATM mutations increase
radiotherapy toxicity [64,65], probably due to defective DNA repair and genomic instability
in normal tissues. In view of this evidence, adverse events occurring in BC patients during
chemotherapy may be increased in those bearing germline ATM mutations. Indeed, some
reports showed a high risk of myeloid suppression in ATM mutated patients compared
to wild-type [65]. ATM mutations are predicted to result in an increased sensitivity to
platinum-based chemotherapy used for BC treatment [66,67]. Similarly, PARP-inhibitors
could also be more effective in ATM-deficient BC tumors, but they have not been specif-
ically evaluated in ATM-mutated BC. PARP-inhibitors have shown promising results in
tumor cells defective in DNA damage repair, in particular DSBs, as ATM-mutated tumor
cells. Some studies have considered the efficacy of Olaparib in ATM-deficient leukemic
cells from patients with leukemia [68] or in patients with gastric cancer [69], but no studies
in BC tumor cells have yet been performed. The ATM-dependent pathway is also involved
in resistance to treatment with CDK4/6 inhibitors, recently introduced in clinical practice for
the treatment of advanced estrogen receptor-positive BC [70]. In this regard, a recent study
showed that defects in single-strand break repair in luminal BC can drive endocrine therapy
resistance and are closely associated with the ATM-CHK2-CDC25A pathway. ATM, as a
DNA damage sensor, activates CHK2, which in turn phosphorylates CDC25A that could
inhibit the phosphorylation of CDK4/6. Therefore, the cross talk between the CDK4/6-Rb
and the ATM-CHK2-CDC25A axes is very important [71]. More recently, Haricharan et al.
demonstrated that both ATM and CHK2 gene alterations are required to boost the efficacy
of endocrine agents in luminal tumors. In fact, the inactivation of either of these negative
cell cycle regulators prevents cell cycle arrest upon ER inhibition [72]. To date, ATM alone
has not been associated with a high incidence of contralateral BC [73], but genetic variants
in ATM have been demonstrated to play a clinically significant role in radiation-induced
contralateral breast cancer. The Women’s Environmental, Cancer, and Radiation Epidemi-
ology Study, an international population-based case–control study, collected patients with
contralateral relapse and a cohort of survivors of unilateral BC. Among women who car-
ried ATM missense mutations, those who were exposed to radiation had a statistically
significantly higher risk of contralateral BC as compared to those with wild-type or subjects
who did not undergo radiotherapy carrying the same predicted deleterious missense vari-
ant. Thus, the authors concluded that women who carry rare deleterious ATM missense
variants and have been treated with radiation may have a more elevated risk of developing
contralateral BC. This effect proved to be dose-dependent, and the risk of contralateral
BC was greater in cases with ATM missense variants. The potential mechanism could be
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associated to the presence of rare missense variants effectively reducing the level of ATM
activity, increasing the susceptibility to radiation-induced tumorigenesis [19].

5. Discussion: How Could the ATM Gene Mutation Influence BC Management?

Traditionally, gene testing or inherited BC genes has focused on women at high risk
who have a family history of BC or who were diagnosed at an early age. In a recent
study [49], mutations or variants in eight genes as BRCA1/2, PALB2, BARD1, RAD51C,
ATM, and CHECK2 were found to be significantly associated with BC. To date, clinical
practice also relies on the use of gene panel testing of unaffected women with a moderate
risk of BC in the family history, in particular, counseling women with ATM gene mutations.
The management of women with these mutations will consist of screening alone and
magnetic resonance imaging (MRI) at the age of 40 years. Nowadays, clinicians are not
ready to expand the gene panel test to the general population, and the ATM mutation is
mostly diagnosed after the diagnosis of BC. Thus, the role of the ATM gene in predisposing
to BC development seems to be limited. However, the present review aims to guide the
clinician to use ATM in clinical practice during management of BC (Figure 2).
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Figure 2. Flow-chart of clinical management of ATM-mutated BC patients from diagnosis, treatment
to follow-up. BC, breast cancer; ER, estrogen-receptor; DFS, disease-free survival; CSS, cancer-specific
survival; PARPi, Poly (ADP-Ribose) Polymerase inhibitors.

Firstly, we have learned that ATM gene mutations are correlated with specific clinical
characteristics of BC such as high risk of ER-positive BC, grade two or three tumors, lymph
node involvement, and HER2-positivity as well as the development of a contralateral
breast tumor in patients resistant to radiotherapy. Thus, ATM mutations in BC patients are
associated with a worse prognosis. These data could support clinicians in personalizing
both treatments, as well as follow-up, in these patients. Moreover, since mutations in ATM
encoding protein are involved in DNA repair mechanisms, ATM-aberrations may also
sensitize BC cells to platinum drugs or PARP inhibitors in triple-negative BC, similarly to
the effect of BRCA1 mutations. Some evidence suggests that ATM mutations could also be
involved in resistance to CDK4/6 inhibitors in luminal positive BC. Relative to the triple-
negative BC subtype, in the era of immunotherapy for early and advanced disease, the role
of ATM mutations in predicting treatment efficacy and good or poor response to immune
checkpoint inhibitors, such as PD1/PDL1 inhibitors, could be interesting. As in colon
cancer, immunotherapy proved to be effective in patients with alterations of mismatch
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repair gene alterations; we could hypothesize that ATM mutations could enhance the
genomic instability of DNA and enhance the immunotherapy response in triple-negative
BC patients. ATM missense mutations among women diagnosed with BC before the age of
45 years could enhance the risk of contralateral breast cancer in radio-treated patients after
a long latency period. In addition, although ATM is considered a tumor suppressor, ATM
mutations can enhance chemo-radioresistance to tumor cells, and this could be useful to
explore as a potential target for cancer treatment. In order to overcome the drug resistance
in ATM-deficient tumors, some studies tested the ATR-checkpoint kinase 1 (Chk1) cascade as
a potential target [74–78], showing an improved response to therapy of these tumors. Based
on these findings, additional studies are needed to elucidate the unique characteristics of
ATM-associated BC, which may have implications on personalized management, from
diagnosis to treatment and follow-up of BC patients.
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