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Abstract: Breast cancer (BC) is a heterogeneous disease with different molecular subtypes. The high
conductance calcium-activated potassium channels (BK, Maxi-K channels) play an important role in
the survival of some BC phenotypes, via membrane hyperpolarization and regulation of cell cycle. BK
channels have been implicated in BC cell proliferation and invasion. Penitrems are indole diterpene
alkaloids produced by various terrestrial and marine Penicillium species. Penitrem A (1) is a selective
BK channel antagonist with reported antiproliferative and anti-invasive activities against multiple
malignancies, including BC. This study reports the high expression of BK channel in different BC
subtypes. In silico BK channel binding affinity correlates with the antiproliferative activities of
selected penitrem analogs. 1 showed the best binding fitting at multiple BK channel crystal structures,
targeting the calcium-sensing aspartic acid moieties at the calcium bowel and calcium binding sites.
Further, 1 reduced the levels of BK channel expression and increased expression of TNF-α in different
BC cell types. Penitrem A (1) induced G1 cell cycle arrest of BC cells, and induced upregulation of the
arrest protein p27. Combination treatment of 1 with targeted anti-HER drugs resulted in synergistic
antiproliferative activity, which was associated with reduced EGFR and HER2 receptor activation, as
well as reduced active forms of AKT and STAT3. Collectively, the BK channel antagonists represented
by penitrem A can be novel sensitizing, chemotherapeutics synergizing, and therapeutic agents for
targeted BC therapy.
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1. Introduction

Breast cancer (BC) is the most commonly diagnosed malignancy among women, globally
contributing to high mortality rates [1]. BC is highly heterogeneous at both molecular and clinical
level, with various pathological and molecular subtypes [2]. Four major molecular subtypes of BC
were identified; these include luminal A, luminal B, human epidermal growth factor receptor 2
(HER2)-positive, and basal-like subtypes [3–5]. Both luminal A and luminal B tumors are hormone
receptor-positive, and have expression patterns reminiscent of the luminal epithelial component
of the breast [6]. HER2-enriched tumors are characterized by overexpression/amplification of
the ErbB2/HER2 gene, and are generally hormone receptor-negative [2,7]. Basal-like tumors are
predominantly triple-negative, lacking the expression of hormone receptors and HER2 [7]. The
subtypes are associated with distinct pathological features and clinical outcomes [2].
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The Maxi-K channels, also known as BK/BKCa/Slo1/KCa1.1 channels, are characterized by
ubiquitous tissue expression and large conductance to potassium ions [8]. The channel is sensitive
to voltage and Ca2+. BK channels are essential for smooth muscle contraction, neurotransmitter
release, hormone secretion, and gene expression [9]. In addition, BK channels have been shown to
associate with multiplicity of plasma membranes and intracellular proteins as linkers of membrane
potential, cell metabolism, and cell signaling [8]. The structure of BK channel is composed of four
Slo1 subunits. Each Slo1 subunit consists of four α-subunits and four β-subunits [10–12]. Each
α-subunit is composed of seven putative transmembrane-spanning α-helical segments (pore-gate
domain, PGD). It controls ions conductance, selectivity, and voltage change sensing [10–12]. The
cytoplasmic carboxy tail of the α-subunit possesses two intrinsic high-affinity Ca2+ binding and
phosphorylation sites, known to direct the gating mechanism (cytosolic tail domain, CTD). Each
β-subunit is formed of two transmembrane domains with a long extracellular linker, and both its
amino- and carboxy-terminals are cytoplasmic (voltage sensor domain, VSD) [10–12]. Dysregulation
or overexpression of BK channels have been associated with altered cell cycle progression [13], cell
proliferation [14–20], and migration. These features are fundamental for cancer development and
progression [21–24]. In this regard, earlier studies indicated variable levels of BK channel expression
in human BC cells [25]. In addition, electrophysiological studies on cervical and BC cells suggested
that BK channels are directly activated by estrogens, which could have an essential role in uterus,
breast, and prostate cancers [26,27]. Taken together, pharmacological blockade of BK channels would
be expected to suppress cancer cell proliferation [13].

Penitrems are indole diterpene neurotoxic alkaloids produced by various terrestrial and marine
Penicillium species [28,29]. This study team reported penitrems 1, 2 (Scheme 1), and others from a
marine-derived Penicillium commune isolate GS20 isolated from sponge and sediment samples collected
in the Arabian Gulf [30,31]. Penitrems have potent tremorgenic activity in mammals, secondary to
the antagonism of BK channels [28,29]. Previous findings from our laboratory revealed the potential
anticancer effects of penitrems as inhibitors of proliferation, migration, and invasion of BC cells [30,31].
The mechanism for these reported anticancer effects was associated with the suppression of the
Wnt/β-catenin pathway in BC cells [30].
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Scheme 1. Chemical structures of tested penitrems 1–3.

In this study, penitrems were applied in terms of BK channel inhibitors, to assess their
antiproliferative effects in multiple BC cell lines, in vitro. The antiproliferative activity of the most
potent 1 was assessed individually, and in combination with targeted therapy. The study also compares
the in silico binding mode of 1 at multiple BK channel crystal structures with its related less active
analogs, 2 and 3 (Scheme 1).

2. Results

2.1. Antiproliferative Effects of Penitrems in Breast Cancer Cells In Vitro

The antiproliferative activity of penitrems was assessed using MTT cell viability assay. Multiple
human BC cell lines representing the different molecular subtypes were tested, including MDA-MB-231,
BT-474, and SK-BR-3 cells, along with the human neuronal Schwann cells CRL-2765 and the
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non-tumorigenic mammary epithelial MCF-12A cells. Penitrem A (1) resulted in a dose-dependent
inhibition among all three tested BC cell lines after 48 h culture duration (Figure 1). Among BC cell
lines exposed to 1, the triple-negative MDA-MB-231 cells were most sensitive to the antiproliferative
effects of 1, as indicated by lowest IC50 value (Table 1). Penitrem E (2) and 25-O-methylpenitrem
A (3) showed less inhibition of BC cell growth compared to 1. MDA-MB-231 cells were the most
sensitive to growth suppression by 2, while the HER2-positive SK-BR-3 cells were most inhibited by 3.
With respect to non-tumorigenic cells, 1 was the most toxic, with IC50 values of 33.7 µM in MCF-12A
(non-tumorigenic human mammary epithelial cells), and 22.6 µM in Schwann C RL-2765 (peripheral
neuronal cells), respectively (Figure 1, Table 1).

Table 1. The IC50 (µM) values of penitrems 1–3 in multiple breast cancer (BC) and non-cancer cell lines
in vitro.

Compound MCF-12A CRL-2765 MDA-MB-231 BT-474 SK-BR-3

1 33.7 22.6 9.8 10.3 15.1
2 44.0 67.8 20.3 31.8 36.7
3 78.8 48.2 37.8 22.4 27.1
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Figure 1. Antiproliferative effects of penitrems 1–3 against BC and non-tumorigenic cells. Viability of
(a) BT-474, (b) MDA-MB-231, (c) SK-BR-3, (d) CRL-2765, and (e) MCF-12A cells after incubation with
increasing concentrations of 1–3 for 48 h in cell cultures. All values are relative to vehicle control (100%
survival). Bars represent mean ± SEM for four replicates within each group.
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2.2. In Silico Binding of Penitrems with BK Channel

Both human BK channel PDB crystal structures, 3NAF and 3MT5, were used in this study for
molecular docking [32–34]. Penitrems 1–3 were virtually screened for their ability to bind the BK
channel crystal structures 3NAF and 3MT5, to correlate their binding modes and affinity with the
antiproliferative activity of the compounds. Binding of the intracellular Ca2+ at the CTD enhances
the BK channel opening. Each Slo1 subunit CTD has two Ca2+ high affinity binding sites; the RCK1,
which includes the side-chain carboxylates of Asp367 and Glu535, as well as the main chain carbonyl
of Arg514, in addition to the C-terminus of RCK2 domain, with a string of aspartic residues at the
calcium bowel [35]. In the calcium bowel, the side chain carboxylate groups of Asp895 and Asp897
provide direct coordinates to bind Ca2+ ion, consistent with previous mutagenesis and biochemistry
literature [36]. The side chain of Asp894 does not directly contact with Ca2+, but instead, it forms salt
bridges with Arg1018 and Lys1030. The N-terminus of the RCK1 domain identified two acidic residues,
GLUlu374 and Glu399, which are close to the voltage sensor activation site Asp99 and Asn172 at the
edge of VSD.

In PDB 3MT5, the C-15 tertiary alcohol group of 1 contributed a hydrogen bonding donor
interaction with Asp367, which has high affinity for Ca2+ binding (Figure 2). Similarly, the C-25
secondary alcohol of 1 contributed hydrogen bonding donor interaction with Asp895, and accepted
hydrogen bonding interaction with Asp897 at the Ca2+ bowel site, which provides direct coordinate
to bind Ca2+ (Figure 3). In PDB structure 3NAF, the NH-1 of 1 contributed hydrogen bonding donor
interaction with Asp894 and the C-25 hydroxyl group contributed hydrogen bonding donor interaction
with Asp895 at the Ca2+ bowel site, justifying its antagonistic activity to BK channel (Figure 4).
Meanwhile, penitrem analog 3 showed only two possible interactions at the calcium bowel of PDB
3MT5 (Figure S1). Its C-15 tertiary hydroxyl group showed hydrogen bonding donor interaction with
Glu521, while its NH-1 showed hydrogen bonding donor interaction with Gln525.
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Figure 2. Binding mode of 1 at the Ca2+ binding site of BK channel crystal structure PDB 3MT5. (a) The
2D binding mode of 1 at the Ca2+ binding site. Its C-15 hydroxyl group contributed hydrogen bonding
donor interaction with Asp367, which has high affinity for the Ca2+ binding. (b) The overlay of 3D
structure of 1 at the Ca2+ binding site of the PDB 3MT5. (c) Shape fitting of 1 within the Ca2+ binding
site of BK PDB structure 3MT5.
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There were no interactions with the essential aspartates at the calcium bowel, which justify its
weak BK channel inhibitory activity. The only important interaction for 3 in the calcium bowel of PDB
3NAF was a hydrogen bonding donor interaction between its NH-1 with Asp892 (Figure 5). Penitrem 2
contributed only a hydrogen bonding donor interaction via its NH-1 with Phe890 at the calcium bowel
of PDB 3NAF, and showed no interactions with PDB 3MT5 (Figures S2 and S3).
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mode of 3 at the Ca2+ bowel showing its NH-1 hydrogen bonding donor interaction with the critical
Asp892. (b) The overlay of 3D structure of 3 at the calcium bowel of the PDB 3NAF crystal structure.

2.3. Expression of BK Channels in BC Cells and In Vitro Impact of Penitrems on Channel Expression

The basic functional unit of BK channels is the tetramer of the pore-forming α-subunits (KCa1.1
or Slo1) encoded by the gene KCNMA1 [37–39]. The expression levels of BK channel subunits α-1
(KCNMA1) in multiple BC cell lines was compared with the neuronal Schwann cells, CRL-2765, and
the non-tumorigenic mammary epithelial MCF-12A cells using Western blot analysis (Figure 6).

The effect of penitrems on the levels of KCNMA1 and TNF-α, a marker for BK antagonism [40–45]
were assessed in BC cell lines (Figures 7–9). Consistent with its antiproliferative activity, 1 resulted in
the greatest reduction in the total levels of BK channel subunits α-1 (KCNMA1), an effect which was
also associated with increased total levels of TNF-α among BC cell lines (Figures 7–9). Similar effects
were observed with 25-O-methylpenitrem A (3), however, to a lesser extent than 1. Penitrem 2 treatment
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did not cause changes to the total levels of KCNMA1 in BC cells. Compound 2, however, increased
total levels of TNF-α in both BT-474 and SK-BR-3 cells compared to control groups (Figures 7–9).Mar. Drugs 2018, 16, x FOR PEER REVIEW  8 of 21 
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lines. (b) Bar graphs indicating densitometric quantitative analysis performed on all blots, in which 
optical density of each band was normalized with corresponding β-tubulin. 
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indicate significant differences (p ≤ 0.05). 
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Figure 8. In vitro effects of 10 µM treatments of penitrems 1–3 on the expression of BK channel 
(KCNMA1) and activation of TNF-α (D2D4) in BT-474 cells using Western blot analysis. (a) Western 
blot for cells treated with penitrems 1–3. (b) Western blot quantification of the in vitro effects of 
penitrems 1–3 treatment on the expression of KCNMA1. (c) Western blot quantification of the effects 
of penitrems 1–3 treatment on the activation of TNF-α. Vertical bars indicate the normalized protein 
value ± SEM. *: indicate significant differences (p ≤ 0.05). 
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Figure 6. Expression of BK channel subunits α-1 (KCNMA1) in BC and non-tumorigenic cell lines.
(a) Western blots representing total levels of the BK channel subunits α-1 (KCNMA1) in the different
cell lines. (b) Bar graphs indicating densitometric quantitative analysis performed on all blots, in which
optical density of each band was normalized with corresponding β-tubulin.
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Figure 8. In vitro effects of 10 µM treatments of penitrems 1–3 on the expression of BK channel 
(KCNMA1) and activation of TNF-α (D2D4) in BT-474 cells using Western blot analysis. (a) Western 
blot for cells treated with penitrems 1–3. (b) Western blot quantification of the in vitro effects of 
penitrems 1–3 treatment on the expression of KCNMA1. (c) Western blot quantification of the effects 
of penitrems 1–3 treatment on the activation of TNF-α. Vertical bars indicate the normalized protein 
value ± SEM. *: indicate significant differences (p ≤ 0.05). 
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Figure 7. In vitro effects of 10 µM treatments of penitrems 1–3 on the expression of BK channel
(KCNMA1) and TNF-α (D2D4) in MDA-MB-231 cells using Western blot analysis. (a) Western blots
for cells treated with penitrems 1–3. (b) Western blot quantification of the in vitro effects of penitrem
1–3 treatments on the expression of KCNMA1. (c) Western blotting quantification of the effects of 1–3
treatments on the activation of TNF-α. Vertical bars indicate the normalized protein value ± SEM.
*: indicate significant differences (p ≤ 0.05).
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Figure 8. In vitro effects of 10 µM treatments of penitrems 1–3 on the expression of BK channel 
(KCNMA1) and activation of TNF-α (D2D4) in BT-474 cells using Western blot analysis. (a) Western 
blot for cells treated with penitrems 1–3. (b) Western blot quantification of the in vitro effects of 
penitrems 1–3 treatment on the expression of KCNMA1. (c) Western blot quantification of the effects 
of penitrems 1–3 treatment on the activation of TNF-α. Vertical bars indicate the normalized protein 
value ± SEM. *: indicate significant differences (p ≤ 0.05). 
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Figure 8. In vitro effects of 10 µM treatments of penitrems 1–3 on the expression of BK channel
(KCNMA1) and activation of TNF-α (D2D4) in BT-474 cells using Western blot analysis. (a) Western
blot for cells treated with penitrems 1–3. (b) Western blot quantification of the in vitro effects of
penitrems 1–3 treatment on the expression of KCNMA1. (c) Western blot quantification of the effects
of penitrems 1–3 treatment on the activation of TNF-α. Vertical bars indicate the normalized protein
value ± SEM. *: indicate significant differences (p ≤ 0.05).
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In the same context, immunofluorescent staining of MDA-MB-231 (Figure 10a,b) and BT-474 
cells (Figure 10c,d) indicated strong cytoplasmic expression of KCNMA1 in vehicle-treated culture 
media (Figure 10a,c). Penitrem 1 treatment caused significant reduction in the total level of KCNMA1 
compared to cells in vehicle-treated control groups (Figure 10a,c). Penitrem 1 treatments caused 
remarkable reduction in the total levels of KCNMA1 in both cell lines compared to cells of vehicle-
treated controls (Figure 10b,d). 
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Figure 10. Immunocytochemical fluorescence staining of the total levels of BK channel subunits α-1 
(KCNMA1) in MDA-MB-231 and BT-474 BC cells treated with 1 at its IC50 concentration, 9.8 and 10.3 

Figure 9. In vitro effects of 10 µM treatments of penitrems 1–3 on the expression of BK channel
(KCNMA1) and activation of TNF-α (D2D4) in SK-BR-3 cells using Western blot analysis. (a) Western
blot for cells treated with penitrems 1–3. (b) Western blotting quantification of the in vitro effects of
penitrem 1–3 treatments on the expression of KCNMA1. (c) Western blot quantification of the effects of
1–3 treatments on the activation of TNF-α. Vertical bars indicate the normalized protein value ± SEM.
*: indicate significant differences (p ≤ 0.05).

In the same context, immunofluorescent staining of MDA-MB-231 (Figure 10a,b) and BT-474
cells (Figure 10c,d) indicated strong cytoplasmic expression of KCNMA1 in vehicle-treated culture
media (Figure 10a,c). Penitrem 1 treatment caused significant reduction in the total level of
KCNMA1 compared to cells in vehicle-treated control groups (Figure 10a,c). Penitrem 1 treatments
caused remarkable reduction in the total levels of KCNMA1 in both cell lines compared to cells of
vehicle-treated controls (Figure 10b,d).
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media (Figure 10a,c). Penitrem 1 treatment caused significant reduction in the total level of KCNMA1 
compared to cells in vehicle-treated control groups (Figure 10a,c). Penitrem 1 treatments caused 
remarkable reduction in the total levels of KCNMA1 in both cell lines compared to cells of vehicle-
treated controls (Figure 10b,d). 

  
(a) (b) 

  
(c) (d) 

Figure 10. Immunocytochemical fluorescence staining of the total levels of BK channel subunits α-1 
(KCNMA1) in MDA-MB-231 and BT-474 BC cells treated with 1 at its IC50 concentration, 9.8 and 10.3 Figure 10. Immunocytochemical fluorescence staining of the total levels of BK channel subunits α-1

(KCNMA1) in MDA-MB-231 and BT-474 BC cells treated with 1 at its IC50 concentration, 9.8 and
10.3 µM, respectively, for 24 h. (a) MDA-MB-231 cells treated with vehicle control. (b) MDA-MB-231
cells treated with 1 at 9.8 µM. (c) BT-474 cells treated with vehicle control. (d) BT-474 cells treated with 1
at 10.3 µM. Red staining indicates positive immunofluorescence signal for KCNMA1 and blue staining
indicates cell nuclei counter-stained with DAPI. Magnification of each photomicrograph is 20×. (a) or
treatment media containing 1 treatment for 24 h (b). Cells were then fixed in pre-cooled acetone and
subjected to immunofluorescence analysis for detection of total KCNMA1 level.



Mar. Drugs 2018, 16, 157 10 of 21

2.4. Effect of Penitrem A Treatment on Cell Cycle Progression in BC Cells

The effect of 1 on cell cycle progression of BT-474 cells was evaluated using flow cytometry by
applying propidium iodide (PI) staining (Figure 11) [13,45–48]. BT-474 cells were treated with various
doses of 1 for 48 h, prior to fixation and staining. BT-474 cells exposed to various concentrations of 1
resulted in a dose-dependent increase (53% to 70%) in the proportion of cells in G1 phase compared to
cells in vehicle-treated control group, with the maximal effect observed at 30 µM.
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Figure 11. Flow cytometry analysis for cell cycle progression in BT-474 cells treated with 1 (PA). Cells
in the various treatment groups were synchronized in G1 phase. Histograms were generated using
Cell Quest software (PI staining). Column graph shows percentage of BT-474 cells in each phase of the
cell cycle. Vertical bars show the average percentage of three independent experiments.

2.5. Effects of Combined Treatment of Targeted Agents and Penitrem A on the Growth of BC Cells

Penitrem 1 is known to be a potent BK channels antagonist at very low molar
concentration [49,50]. Therefore, subeffective dose combinations of 1 with either lapatinib (LP) or
gefitinib (GF) were hypothesized to have a superior antiproliferative activity, compared to individual
treatments in BC cells.

LP treatment inhibited the growth of BT-474 cells in a dose-dependent manner, with an IC50

value of 123.0 nM (data not shown). Penitrem 1 has been shown to inhibit growth of BT-474 cells at
an IC50 value of 10.3 µM (Table 1). Figure 12 shows the effect of a combined range of subeffective
concentrations of LP (10–80 nM) with a range of 1 concentrations (0.5, 1.0, 2.5, and 5.0 µM). Combined
treatment of LP and 1 resulted in dose-dependent inhibition of BT-474 cell proliferation after 48 h in
culture (Figure 12A). The combination of LP with 1 effectively reduced the IC50 concentration of LP
within each treatment combination, compared to individual monotherapy treatments (Table 2).

Table 2. Summary of combinations of 1 with lapatinib (LP) or gefitinib (GF) against BT-474 BC cells.

IC50/Combination Index (CI) Values

LP LP + 1 (0.5 µM) LP + 1 (1.0 µM) LP + 1 (2.5 µM) LP + 1 (5.0 µM)
123.0 nM 65.68 nM/0.58 73.56 nM/0.70 69.80 nM/0.81 66.17 nM/1.03

GF GF + 1 (0.5 µM) GF + 1 (1.0 µM) GF + 1 (2.5 µM) GF + 1 (5.0 µM)
302.4 nM 124.77 nM/0.46 176.78 nM/0.68 130.84 nM/0.68 114.42 nM/0.87
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Figure 12. (A) Effects of combined treatment of penitrem 1 and LP on BT-474 cell viability after 48 h
culture period. Bars represent mean ± SEM for four replicates within each group. (B) Isobologram of
penitrem A (1, µM) and LP (nM) antiproliferative effect in BT-474 cells. IC50 concentrations for 1 and
LP were plotted on the X- and Y-axis, respectively. The solid line connecting these points represents the
concentration of each compound required to induce the same relative growth inhibition when used in
combination, if the interaction between the compounds is additive. Each data point on the isobologram
represents the actual concentrations of 1 and LP which induced 50% inhibition of cell growth when
used in combination.

To further evaluate the nature of interaction between both compounds, combination index (CI)
and isobologram analysis were conducted. CI is a quantitative representation of pharmacological
interaction between two drugs, in which values <1, 1, and >1 indicate synergistic, additive, and
antagonistic effects, respectively [51,52]. CI values are calculated as follows: CI = [Xc/X + Tc/T],
where X and T stand for the concentrations of individual combination ingredients that induce 50%
cell growth inhibition (IC50); Xc and Tc are the concentrations of combination ingredients that induce
50% cell growth inhibition when used in combination as determined by non-linear regression curve
fit analysis [51,52]. Isobologram analysis is a graphical method used to evaluate the effect of equally
effective dose pairs for a single effect level [53]. Calculated CI of 1-LP combined treatments indicated
synergism with values of 0.58, 0.70, and 0.81, respectively, for the first three treatments (Figure 12A,B
and Table 2). The use of combined 5.0 µM of 1 with LP afforded an IC50 of 66.17 nM and CI of 1.03,
a very weakly antagonistic combination (Figure 12A,B and Table 2). In addition, isobologram showed
synergistic interaction between both compounds as indicated by three combinations of data points
located below the line of additive activity (Figure 12B).
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Gefitinib (GF), an EGFR small molecule inhibitor, suppressed the growth of BT-474 cells in a
dose-dependent fashion, with IC50 value of 302.4 nM (data not shown). Figure 13A shows the effects
of combined subeffective concentrations of GF (50–200 nM) with range of 1 concentrations (0.5, 1.0,
2.5, and 5.0 µM). The combination of both GF and 1 suppressed the growth of BT-474 cells in a
dose-dependent manner (Figure 13A). The combination of GF with 1 effectively reduced the GF IC50

concentrations for each tested treatment combination, compared to single GF treatment (Table 2).
Calculated CI of 1-GF combined treatments indicated synergism, with values of 0.46, 0.68, 0.68, and
0.87, respectively (Figure 13A,B and Table 2). Isobologram analysis showed synergistic interaction
between both compounds, as indicated by four data points located below line of additive activity
(Figure 13B).
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Figure 13. (A) Effects of combined subeffective doses of 1 and GF in BT-474 cells after 48 h culture
period. Bars represent mean ± SEM for four replicates within each group. (B) Isobologram of 1
(µM) and GF (nM) antiproliferative effect in BT-474 cells. IC50 concentrations for 1 and GF were
plotted on the X- and Y-axis, respectively. The solid line connecting these points represents the
concentration of each compound required to induce the same relative growth inhibition when used in
combination, if the interaction between the compounds is additive. Each data point on the isobologram
represents the actual concentrations of 1 and GF which induced 50% inhibition of cell growth when
used in combination.



Mar. Drugs 2018, 16, 157 13 of 21

2.6. Effects of Combined Treatment of Targeted Agents and Penitrem A on Receptor Tyrosine Kinases (RTKs)
and Their Downstream Effectors

Earlier studies showed that BK channels regulate Ca2+ signaling, which in turn mediates EGFR
transactivation [54]. In this part, the effect of 1 and combined targeted therapy on total and active levels
of RTKs, along with their downstream transducers, was evaluated using Western blot analysis. The
concentrations of 0.5 µM of 1 and 60 nM LP, which resulted in synergistic antiproliferative activity in
viability studies in vitro, were further applied to assess combination effects on downstream pathways.
This combined LP and 1 treatment reduced the phosphorylated (active) levels of EGFR, HER2, and
AKT, compared to individual treatments and vehicle-treated controls (Figure 14). However, total levels
of EGFR and HER2 receptors did not remarkably change in response to treatment. In addition, there
was an increase in the levels of the arrest protein p27 with combined treatment. Combination of 1-LP
mediated the inhibition of AKT signaling, leading to p27 stabilization and accumulation, which is
a known inhibitor of CDK2. This resulted in G1 arrest and subsequent growth inhibition in BT-474
cells [51,55].

Similarly, the synergistic combination of 1 at 0.5 µM with GF 125 nM caused a reduction in the
levels of p-EGFR, p-HER2, p-AKT, and p-STAT3 (Figure 15). In addition, this combination upregulated
the expression of the arrest protein p27.
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Figure 14. Effects of combined treatments of 1 and LP on RTKs and downstream effectors in BT-474
cells. (a) Western blots for BT-474 cells treated with vehicle control, 1 (0.5 µM), LP (60 nM), and 1-LP
combination. (b–i) Quantification analysis for Western blots for the effect of treatment on levels of
EGFR, p-EGFR, HER2, p-HER2, p-STAT3, AKT, p-AKT, and p27, respectively. Vertical bars in the
graphs indicate tubulin normalized protein value ± SEM. *: indicate significant differences (p ≤ 0.05).
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Figure 15. Effects of combined treatments of 1 and GF on RTK and downstream effectors in BT-474
cells. (a) Western blots for BT-474 cells treated with vehicle control, 1 (0.5 µM), GF (123 nM), and
1-GF combination. (b–i) Quantification analysis for Western blots for the effect of treatment on levels
of EGFR, p-EGFR, HER2, p-HER2, p-STAT3, AKT, p-AKT, and p27, respectively. Vertical bars in the
graphs indicate tubulin normalized protein value ± SEM. *: indicate significant differences (p ≤ 0.05).
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3. Discussion

Three penitrem alkaloids, including 1 and 2, previously isolated from the marine derived
P. commune isolate GS20 [30,31], along with the semisynthetic 3, were selected for testing their
antiproliferative effects in BC cell lines in vitro [30,32]. This selection represents our previously
reported pharmacophoric map of penitrems for anticancer activity [30,31]. Penitrem 1 represents
the original natural parent of penitrems, while 2 is missing the important C-6 chloro substitution.
The 25-O-methylated analog 3 is a semisynthetic product in which the free C-25 secondary alcohol
pharmacophore was blocked by methylation.

Various K+ channels are involved in the control of Ca2+ homeostasis, and hence, deregulation
of their expression and/or activity will significantly affect cell proliferation [33]. Clearly, 1 is the
most potent BK channel antagonist, and is associated with most remarkable antiproliferative effects
among different BC cell lines, compared to other tested penitrems 2 and 3. While growth inhibition
of MDA-MB-231 and BT-474 with 1 was comparable, higher concentration of 1 was reported for
the inhibition of SK-BR-3 cell growth. Although potentially toxic to non-tumorigenic cells, the IC50

concentrations of 1 needed to suppress growth of both MCF-12A mammary epithelium and neuronal
cells were multiple-fold higher than those required to inhibit BC cell growth (Table 1).

Penitrem 1 showed good fitting within the Ca2+ binding and Ca2+ bowel sites (Figures 2–4) in
crystal structures 3MT5 and 3NAF, respectively, unlike 2 and 3.

Among BC cell lines, highest expression levels were observed in the luminal B BT-474 cells.
MDA-MB-231 and SK-BR-3 cells showed comparable levels KCNMA1. The lowest expression level of
KCNMA1 was observed however in non-tumorigenic MCF-12A mammary epithelial cells (Figure 6).

TNF-α is a prototype cytokine which imparts a multitude of actions on many cell types, including
neurons [40]. TNF-α was originally discovered as a serum factor causing necrosis of tumor cells [41].
TNF-α production in human macrophages is dependent on Ca2+/calmodulin/calmodulin kinase II
pathway [42]. Antagonism of BK channels has been shown to induce TNF-α production [40,43]. Taking
into consideration that TNF-α is a major cytokine known to induce cancer cell death through sustained
JNK-activation, it can be concluded that the antiproliferative activity of penitrems is associated, in part,
with the upregulation of TNF-α and subsequent activation of apoptotic cell death [44,45].

Numerous reports showed the dependence of the cell cycle progression on the translocation
of ions across the plasma membrane [13]. The antiproliferative activity of 1 was also shown to be
mediated by the induction of G1 cell cycle arrest in BT-474 cells (Figure 11). The epidermal growth
factor receptor (EGFR) and the epidermal growth factor receptor 2 (HER2) are ErbB family of receptor
tyrosine kinases usually dysregulated in many BC subtypes [46]. Receptor tyrosine kinases (RTKs) are
key regulators of cellular growth and proliferation, and dysregulation of RTKs promotes aggressive
tumorigenesis pattern [47]. The EGFR/HER2 exert their biological effects through activating multiple
downstream signaling cascades, including the PI3K/AKT, ERK1/2, and the transcription protein
STAT [48]. Activated K+ channel has been shown to increase proliferation rates in several BC cell
lines [49,50]. The Ca2+-activated K+ currents have been observed in multiple BC cell lines, but their
role was not clearly understood [34,39].

Small molecule tyrosine kinase inhibitors are increasingly recognized and utilized as treatments
targeting specific signaling pathways associated with tumor development and progression. The small
molecules lapatinib (LP) is a dual EGFR/HER2 inhibitor, while gefitinib (GF) is a selective EGFR
inhibitor approved by FDA for oral control of HER-dependent malignancies, including BC. Despite
the success of LP and GF as HER-targeting therapy, limitations to their clinical use involve significant
hepatotoxicity and emergence of both primary and acquired resistance [3–5]. Many RTKs downstream
effects are mediated by calcium signaling, which is regulated by BK channels [51].

Calculated CI of combined 1 with either LP or GF treatments indicated synergistic effects,
with CI values less than 1. In addition, isobolograms showed synergistic interactions between
1 and both drugs as indicated by most data points located far below the line of additivity
(Figures 12B and 13B). Combination synergy was also associated with reduced levels of p-EGFR,
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p-HER2, p-AKT, and p-STAT3, which are critical for cell survival and growth. Combinations also
enhanced the level of the arrest protein p27. Reduced expression of p27 has also been shown to correlate
with the ability of HER2-positive BC cells to escape HER2-targeting therapies, like trastuzumab [55].
The synergistic effect of these combinations is interesting, as it provides the opportunity to reduce the
therapeutic doses of the HER family-targeted therapies LP and GF, which would ultimately reduce
their potential toxicities and minimize the ability of HER2-dependent BC to develop resistance to
targeted therapies.

Collectively, combined treatment of 1 and the anti-HER targeted therapies lapatinib and gefitinib
showed remarkable synergistic antiproliferative activity associated with reduced target receptor
activation, along with downstream effectors. This clearly highlights the role of BK channel as an
appealing molecular target in BC.

4. Materials and Methods

4.1. Chemicals

All chemicals were purchased from Sigma-Aldrich (St. Louis, MO, USA), unless otherwise stated.
Organic solvents were purchased from VWR (Suwanee, GA, USA), dried by standard procedures,
packaged under nitrogen in Sure/Seal bottles, and stored over 4 Å molecular sieves. Unless otherwise
indicated, cell culture reagents were obtained from Life Sciences (Carlsbad, CA, USA). Penitrems 1
and 2 were isolated from the marine-derived Penicillium commune isolate GS20, while penitrem 3 was
semisynthetically prepared from 1 by direct methylation, as described earlier [30,31,49].

4.2. Docking Study

In silico binding studies were performed using Schrödinger molecular modeling software
(v9, Schrodinger, New York, NY, USA), as previously described [56]. The calcium site domain of
each of the BK channel crystal structure PDB codes 3NAF and 3MT5, resolution ≥3 Å, was prepared
using the protein preparation wizard, applying PROPKA (Jensen Research Group, Denmark) to add
hydrogens, assign bond orders, and optimize hydrogen bonding networks. The optimizing potentials
for liquid stimulation (OPLS) force field (OPLS-2005, Schrodinger, New York, NY, USA) were used to
ensure proper energy minimization (RMSD = 0.2 Å). The grid generation wizard was then applied
on the resulting prepared BK channels structures to create the receptor energy grids as a cubic box
centered on the co-crystallized ligand of each crystal structure, and extended for 10 Å in all directions.
Penitrem analogs 1–3 were drawn using ChemDraw Professional 16 and imported as molfiles to the
Maestro 9.3 panel interface (Maestro version 9.3, 2012, Schrodinger, New York, NY, USA). The LigPrep
wizard using OPLS force field was chosen to prepare the 3D-dimensional structure of each analog,
undergo geometric optimization, search for different conformers, and calculate partial atomic charges.
Docking of penitrems was then conducted using the Glide 5.8 module (Glide, 2012, Schrodinger,
New York, NY, USA) in extra-precision (XP) mode or in standard-precision mode (SP) [56].

4.3. Cell Viability Assay

Penitrems were dissolved in dimethyl sulfoxide (DMSO) to provide a final 25 mM stock solution.
Proper media were used to prepare penitrems at their final tested doses for each assay. The DMSO
vehicle control was prepared by adding the maximum volume of DMSO used in preparing tested
penitrem to appropriate media type, in which the final DMSO concentration did not exceed 0.2% [30,31].
The effects of penitrems 1–3 on the proliferation and growth of multiple BC cell lines were evaluated
using MTT assay. MDA-MB-231, BT-474, and SK-BR-3 BC cells (ATCC, Manassas, VA, USA) were
initially seeded at 1 × 104 cells/well (6 replicates/group) in 96-well plates in RPMI-1640 media
containing 10% FBS, and allowed to attach overnight. The next day, cells were washed with PBS,
divided into different treatment groups, and then given various concentrations of tested penitrems in
0.5% FBS containing media. Viable cell number was calculated after 48 h using the MTT assay [30].
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To evaluate the effect of penitrems on growth of the human neuronal Schwann CRL 2765 (ATCC,
Manassas, VA, USA), cells were plated at a density of 1 × 104 cell per well (6-wells/group) in 96-well
culture plates using the ATCC-recommended media (Dulbecco’s Modified Eagle’s Medium, DMEM)
and allowed to adhere overnight for growth studies, after which each treatment was added, and cells
were maintained for 48 h [49]. Similarly, the non-tumorigenic mammary epithelial MCF-12A cells were
plated in DMEM/F12 supplemented with 5% horse serum, 0.5 mg/mL hydrocortisone, 20 ng/mL EGF,
100 U/mL penicillin, 0.1 mg/mL streptomycin, and 10 mg/mL insulin. Next day, cells were divided
into different groups and fed serum-free DMEM media supplemented with experimental treatments
or vehicle-treated control media. Viable cell number was determined using the MTT colorimetric assay.
The absorbance was measured at λ570 nm on a BioTek Synergy2 microplate reader (BioTek, Winooski,
VT, USA). The number of cells per well was calculated against a standard curve prepared at the start
of the experiment. The IC50 value for each tested sample was calculated by non-linear regression of
log concentration versus the % survival, implemented in GraphPad® PRISM version 5.0 (Graph Pad
Software, Inc., La Jolla, CA, USA).

4.4. Western Blot Analysis

Western blot analysis was used to demonstrate the effects of penitrem treatments on BK channel
and TNF-α expression level, and to study the combination effects of penitrem A with LP and GF.
MDA-MB-231, BT-474, SK-BR-3, Schwann CRL-2765, and MCF-12A cells, were plated at a density of
1 × 106 cells/100 mm culture plates. MDA-MB-231, BT-474, and SK-BR-3 were plated in RPMI-1640
media supplemented with 10% FBS, Schwann cells CRL-2765 were plated in DMEM media
supplemented with 10% FBS [11], and MCF-12A cells were plated in DMEM/F12 supplemented with
ingredients described earlier. Cells were allowed to adhere overnight, then washed twice with PBS,
and starved in control or treatment in serum-free medium containing 0.5% FBS for 48 h to synchronize
the cells in G1 phase. Afterwards, cells were treated with tested penitrems in serum-free defined
media for 24 h. At the end of treatment periods, cells were lysed in RIPA buffer (Qiagen Sciences Inc.,
Valencia, CA, USA). Protein concentration was determined by the BCA assay (Bio-Rad, Hercules, CA,
USA). Equivalent amounts of protein (50 µg) were electrophoresed on SDS-polyacrylamide gels. The
gels were then electroblotted onto PVDF membranes. These PVDF membranes were then blocked
with 2% BSA in 10 mM Tris-HCl containing 50 mM NaCl and 0.1% Tween 20, pH 7.4 (TBST), and then
incubated with specific primary antibodies overnight at 4 ◦C. The following dilutions were used—1:500
for BK channel antibody (Abbiotec LLC., San Diego, CA, USA) and 1:1000 for each of TNF-α, EGFR,
pEGFR, STAT, pSTAT, HER2, pHER 2, AKT, pAKT, and p27 (Cell Signaling, Danvers, MA, USA).
At the end of incubation period, membranes were washed 5 times with TBST, and then incubated
with respective horseradish peroxide-conjugated secondary antibody in 2% BSA in TBST for 1 h at
room temperature (rt), followed by rinsing with TBST for 5 times. Blots were then visualized and
pictures taken using an enhanced chemiluminescence detection system according to the manufacturer’s
instructions (Chemi-DocTM touch imaging system, Bio-Rad, Hercules, CA, USA). The visualization of
β-tubulin was used to ensure equal sample loading in each lane. Western blot quantification analysis
was done using Image Lab TM Software (Bio-Rad, Hercules, CA, USA) for total protein normalization.

4.5. Immunocytochemistry

Immunocytochemical fluorescent studies were conducted by growing MDA-MB-231 and
BT-474 cells mammary cancer cells on 8-chamber culture slides (Becton Dickinson and Company,
Franklin Lakes, NJ, USA) at a density of 2 × 104 cells/chamber (2 replicates/group), and allowed
to attach overnight in complete serum media supplemented with 10% FBS. Cells were then washed
with Ca2+ and Mg2+-free phosphate buffered saline (PBS), and incubated with vehicle control or
treatment media containing 0.5% FBS for 48 h. At the end of experiment, cells were washed with
pre-cooled PBS, and fixed with acetone, pre-cooled to −20 ◦C, for 2 min. Fixed cells were then washed
with PBS, and blocked with 2% BSA in 10 mM Tris-HCl containing 50 mM NaCl and 0.1% Tween 20,
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pH 7.4 (TBST) for 1 h at rt. Cells were then incubated with specific primary antibody for BK channel
KCNMA1 (1:300) overnight at 4 ◦C in 2% BSA-TBST. At the end of incubation time, cells were washed
five times with pre-cooled PBS, followed by incubation with Alexa-Fluor 594-conjugated secondary
antibody (1:5000) in 2% BSA-TBST for 1 h at rt. After final washing for five times with PBS, cells were
embedded in Vectashield Mounting Medium with DAPI (Vector Laboratories Inc., Burlingame, CA,
USA). Fluorescent images were obtained by using a confocal laser scanning microscope (Carl Zeiss
Microimaging Inc., Thornwood, NY, USA). The red color indicates the positive fluorescence staining
for BK channel KCNMA1, and the blue color represents MDA-MB-231 cell nuclei counter-stained with
DAPI [30]. The experiment was repeated at least three times and multiple images for each chamber
were captured. Magnification of each photomicrograph is 20×.

4.6. Analysis of Cell Cycle Progression by Flow Cytometry

To study 1 effect on cell cycle, BT-474 cells were plated, allowed to synchronize in G1 phase, and
then treated with 1 at concentrations of 0, 5, 10, 20, and 30 µM. At the end of the experiment, cells in
different treatment groups were isolated with trypsin and then resuspended in ice-cold PBS, fixed with
cold (−20 ◦C) 70% ethanol, and stored at 4 ◦C for 2 h. The cells were then rehydrated with ice-cold
PBS and incubated with DNA staining buffer (sodium citrate 1 mg/mL, Triton X-100 3 µL/mL, PI
100 µg/mL, ribonuclease A 20 µg/mL) for 30 min at 4 ◦C in the dark. DNA content was analyzed using
a FACScaliber flow cytometer (BD Biosciences, San Jose, CA, USA). For each sample, 10,000 events
were recorded. A histogram was generated using Cell Quest software (BD Biosciences, San Jose, CA,
USA). All experiments were repeated at least three times.

4.7. Statistical Analysis

The biochemical parameters were analyzed by repeated measures, one-way ANOVA followed by
Tukey’s test. Differences with p < 0.05 were considered statistically significant.

5. Conclusions

Findings from this study revealed remarkable expression of BK channels in multiple BC subtypes,
and the potential pharmacological targeting for this channel. Penitrem 1 is a BK channel antagonist
with promising antiproliferative activity in BC subtypes overexpressing BK channels. Combination of
penitrem A with HER-targeting drugs, LP or GF, resulted in synergistic antiproliferative effects via
STAT3 and p27 pathways (Figure 16), which could represent a novel strategy to improve cancer cell
sensitivity to targeted regimens and reduce the emergence of resistance to these treatments.
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