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Abstract

In this study, heparin-loaded poly-ε-caprolactone (PCL) fibrous mats were prepared and

characterized based on their physical, cytotoxic, thermal, and biological properties. The

main objective of the work described here was to test the hypothesis that incorporation of

heparin into a PCL carrier could serve as bio-compatible material capable of inhibiting

Human Papillomavirus (HPV) infection. The idea of firmly anchoring heparin to capture solu-

ble virus, vs. a slow heparin release to inhibit a virus in solution was tested. Thus, one mate-

rial was produced via conventional heparin matrix encapsulation and electrohydrodynamic

fiber processing in one step. A second type of material was obtained via heparin crosslink-

ing. This was achieved by running a carbodiimide/N-hydroxysuccinimide (EDC/NHS) cou-

pling reaction on preformed PCL fibers. In vitro HPV16 L1 protein binding capacity studies

were performed. Infectivity assays were done using HPV16 pseudoviruses (PsVs) carrying

a GFP plasmid to directly test the ability of the fibrous mats to prevent internalization of HPV

PsVs. The crosslinked heparin material presented a dissociation constant (Kd) value com-

parable to those found in the literature for different heparin-protein L1 peptide interactions.

Both materials significantly reduced internalization of HPV PsVs, with a reduction of 94% of

PsVs internalization when matrix encapsulated heparin-loaded material was present. Differ-

ences in performance between the two proposed structures are discussed.

Introduction

Human Papillomavirus (HPV), the most common worldwide sexually transmitted virus,

infects the squamous mucosal layers of the stratified epithelium. Of the more than 200 HPV

genotypes known, about 16 are associated with cancers of the penis, vulva, anus, vagina, cervix,

and oropharynx [1–3]. About 14 million new HPV infections occur annually in the United

States (US) [4]. Most HPV infections are asymptomatic and typically clear without any treat-

ment. However, persistent infection with high-risk (HR) HPVs is a key factor for the
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development of pre-cancers and cancers. Infections with HR-HPV types are the primary cause

of cervical cancer, the second most common cancer and the leading cause of cancer deaths in

women in developing countries. In 2015, there were 526,000 cervical cancer cases world-wide

and 239,000 attributable deaths, with 85% of deaths occurring in developing countries [5,6].

According to the American Cancer Society, in 2017, more than 12,800 women in the US were

expected to be diagnosed with cervical cancer and an estimated of 4,210 were expected to die

from it [7]. Current approaches to reduce the incidence of cervical cancer are based on cervical

cancer screening methods (Papanicolaou and HPV tests) and prophylactic HPV vaccines [8–

11]. Gardasil1 and Cervarix1 are the two vaccines approved for the prevention of the most

common HPV types that cause cervical cancer. However, both vaccines are not therapeutically

effective, nor do they cross-protect against all HPV genotypes. No vaccine directly treats cervi-

cal cancer itself. Thus, a remaining challenge is to develop effective tools for both prevention

and intervention against existing HPV infections.

The icosahedral HPV particles are composed of structural proteins, L1 (major) and L2

(minor), which encapsidate the circular double-stranded DNA genome. Papillomaviruses

infect the basal epithelia of the stratified epithelium, and are tightly linked to differentiation of

keratinocytes for completion of the viral life cycle. The initial attachment of HPV is promoted

through interactions between capsid proteins L1 and sulfated sugars on the cell surface [12].

Heparin is a linear, polydispersed polysaccharide which consists of a repeating disaccharide

unit with variable amounts of sulfate substituent groups. Besides its anticoagulant properties,

it has the ability to interact with several proteins to impact a wide range of biological mole-

cules, including enzymes, extracellular matrix proteins, growth factors, and surface proteins of

many pathogens. Heparan sulfate (HS), a molecular variant of heparin, is commonly found on

cell surfaces, and has been shown to serve as the primary attachment molecule for HPV infec-

tion [13–15]. Both heparin and HS have been shown to inhibit HPV infection in keratinocytes

[16,17]. Heparin as a barrier against HPV constitutes an excellent target molecule, since it has

an affinity for HPV capsids with dissociation constants (Kd) estimated to be as low as 10−9

[18,19].

Electrohydrodynamics (EHD) is the most common, inexpensive, simple, cost-effective way

to scale-up production of fibrous mats. The technique is well established, and has been

reviewed elsewhere [20–23]. Our group has exploited EHD to produce a variety of functional

structures for the past fifteen years [24–28]. One of the main advantages of EHD-processed

fibers is that they have a high surface area-to-volume ratio, which enhances their interaction

with different additives relevant to their intended application. This technique also offers an

opportunity to incorporate important biomolecules into the fibers. PCL is a hydrophobic,

semi-crystalline linear aliphatic polyester which has been widely used in the biomedical field.

Some important properties of this polymer are its good biocompatibility and structural stabil-

ity. PCL degrades at a slower rate than most other well-known resorbable polymers, making it

attractive for applications in which preservation of the device’s structural integrity is important

[29,30]. Heparin-loaded fibers have been produced by other groups [31–34], but they have not

been evaluated for use in suppression of HPV infection, which is the primary objective of our

work. The high surface-to-volume ratio is an important characteristic which was selected dur-

ing mat fabrication for the current work. In our application, the very high aspect ratio (length/

diameter) of EHD-processed fibers offer a higher surface area through which HPVs may inter-

act tightly with the heparin component. In addition, the simplicity of the EHD method avoids

the use of harsh chemical reagents, which would have a detrimental effect on functional assays.

A material to inhibit HPV infection can adopt two basic configurations: A) As a typical con-

trolled release device, where heparin, the virus-inhibiting molecule, is liberated in the virus-

containing environment, or B) as a “capture” mesh, where the heparin is firmly anchored onto
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the surface of the material. Either device type could a priori serve its intended purpose, albeit

via entirely different mechanisms. Thus, the objective of this paper is to explore both possibili-

ties, in an effort to determine the best possible alternative for HPV inhibition. Two different

approaches to produce heparin-loaded poly-ε-caprolactone (PCL) fibrous materials were

applied: one involved a standard matrix encapsulation of heparin within the fiber structure,

while the second was based on the use of chemical cross-linking of heparin to the PCL back-

bone. Both materials were characterized on the basis of their physical, cytotoxic, thermal and

biological properties. The ability of the two materials to bind to HPV L1 capsid proteins and to

prevent HPV infection was also evaluated.

Materials and methods

2.1 Materials

Poly-ε-caprolactone (PCL, Mn 80000 GPC), heparin sodium salt from porcine intestinal

mucosa, methanol (MeOH, Fischer Scientific), dichloromethane anhydrous (DCM,�99.8%),

sodium heparin from intestinal mucosa bound to Fluorescein Isothiocyanate (HepF, MW

3–30 kDa, 179–181 U/mg, Polysciences) and the chemicals 2-(N-Morpholino) ethanesulfonic

acid (MES), N-(3-Dimethylaminopropyl)-N-ethylcarbodiimide hydrochloride (EDC), N-

hydroxysuccinimide (NHS) and toluidine blue O (technical grade) were purchased from

Sigma-Aldrich (St. Louis, MO) unless stated.

2.2 Fibrous mat preparation

2.2.1 PCL and PCL-heparin polymeric membranes. PCL solutions at a concentration of

8.8% (w/v) in DCM:MeOH (3:1) solvent mixture were prepared. For the incorporation of hep-

arin, a method previously described was adapted to our needs [32]. PCL heparin solutions at a

concentration of 7% (w/v) PCL with heparin at 1 wt% (relative to dry PCL) in DCM:MeOH

(3:1) solvent were prepared. Heparin was first dissolved in deionized (DI) water (2% w/v), and

then mixed with aliquots of MeOH and DCM:MeOH (3:1) solvent mixture. The volume ratio

of water:MeOH:(DCM:MeOH) was 1:3:22. This final solution was used to dissolve the PCL

polymer. All solutions were freshly prepared and magnetically stirred until complete homoge-

nization. All solutions were EHD-processed and collected over the surface of a circular, alumi-

num foil wrapped, grounded collector electrode (copper disk, OD = 15cm). The flow rate

(1mL/hr) was controlled using a syringe pump (Cole-Parmer 74900–00, Vernon Hills, IL).

The working distance needle tip-to-collector was 15 cm, and the applied voltage was 12kV

(Gamma High Voltage Research, ES30P-5W/PRG, Ormond Beach, FL). The materials were

denominated as PCL and PCL-Hep mats. For cell culture experiments PCL and PCL-Hep

mats were collected and cut in a biosafety hood. All mats were collected for 6 hrs at room tem-

perature and stored in sealed zip-lock bags at 4˚C until further use.

2.2.2 PCL crosslinked membranes. To fabricate the heparin crosslinked material

(PCL-Hep-CL), PCL-Hep mats were crosslinked by applying a well-known method via the

EDC/NHS coupling reaction (S1 Fig and S1 Text) [33,35,36]. Before the crosslinking reaction,

circular PCL-Hep mats (OD = 1cm) were saturated with 0.05 M MES buffer (pH 5.5) for 30

min and then incubated at room temperature with gentle shaking, in freshly prepared solution

of heparin (1% w/v), 0.5 M EDC and 0.5 M NHS in MES buffer for 20 hrs. Discs were washed

(x3) with DI water and placed at -21˚C. Samples were freeze-dried overnight and stored in the

refrigerator.

PCL-heparin functionalized mats to prevent HPV infection
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2.3 Materials characterization

2.3.1 Fiber size and morphology. Fibers diameter and morphology of all mats were

assessed by scanning electron microscopy (SEM) images taken with Quanta 200 FEG Environ-

mental Scanning Electron Microscope using an accelerating voltage of 15–20 kV and working

distance of approximately 10 mm. A Cressington 108 Auto Sputter Coater was used for sample

coating with metallic gold for 30 seconds before SEM characterization. Statistical analysis of

fiber diameter measurements from SEM images was performed on sets of at least 200 counts

within each specimen.

2.3.2 Fourier Transform Infrared spectroscopy. Surface chemical analysis of PCL,

PCL-HEP-CL and heparin powder was performed by Attenuated Total Reflection-Fourier

Transform Infrared (ATR-FTIR) Spectroscopy using a Nicolet iS50 FT-IR Spectrometer

(Thermo Scientific, Waltham, MA). ATR-FTIR transmittance spectra were collected with the

built-in diamond ATR crystal module using 16 scans and 4 cm-1 resolution over the range of

4000 and 500 cm-1 wave number.

2.3.3 Distribution and surface immobilization of heparin in PCL mats. To assess the

distribution of heparin in PCL fibers, HepF conjugate was used instead of regular heparin.

PCL-HepF mats, loaded with the fluorescent conjugate of heparin, were made following the

same procedure as the one used for PCL-Hep mats. PCL-HepF fibers were collected in a

microscope glass slide and analyzed using confocal microscopy (Olympus IX 81). The amount

of immobilized heparin was determined using toluidine blue (TB) assay [37–39]. PCL-Hep

and PCL-Hep-CL circular discs (OD = 1cm) were incubated with 5 mL of freshly prepared

solution of 0.005 wt% TB in aqueous 0.01 N HCl/0.2 wt% NaCl for 4 hrs. The membranes

were rinsed (x3) with DI water and incubated in 5 mL of a 1:4 (v/v) mixture of aqueous 0.1 N

NaOH and ethanol solution, until complete mat discoloration. The absorbance of the resultant

solution was measured at 530 nm, and the amount of heparin was calculated using a calibra-

tion curve obtained using the same procedure, with solutions of untreated heparin of known

concentrations.

2.3.4 Contact angle measurement. To evaluate the hydrophilicity of the fibrous mats,

contact angles of PCL, PCL-Hep and PCL-Hep-CL mats were measured using a simplified

experimental set up [40]. Each measurement was performed by placing a 5 μL DI water droplet

on the samples and measuring contact angles between the water droplets and mat surfaces.

2.3.5 Thermal properties of PCL mats. Differential Scanning Calorimetry (DSC) runs

were performed on Q100 machine (TA Instruments, New Castle, USA), calibrated for temper-

ature and heat flow using indium (melting point 156.6˚C, ΔHm 28.45 J/g). Two analytical runs

were performed on each sample using an empty hermetic Al pan as reference. Two heating

cycles were performed at a scanning rate of 10˚C/min from 0 to 100˚C under nitrogen gas

flowing at 25 mL/min. DSC plots from the second heating cycle were exported using TA Uni-

versal Analysis 4.4v software. The melting temperature (Tm) and melting enthalpy (ΔHm, area

of melting peak) were determined from the respective thermograms. The degree of crystallin-

ity (Xc) was calculated as ΔHm/ΔHmo, where ΔHmo is the enthalpy of melting of fully crystalline

PCL, which is 139 J/g [41].

2.3.6 Cytotoxicity assay of fibrous mats. Cell lines were purchased from ATCC (Manas-

sas, VA). Mouse fibroblast cell line L-929 was cultured in Eagle’s Minimum Essential Medium

(EMEM, ATCC) supplemented with 10% fetal bovine serum (FBS, PAA Lab, Westborough,

MA), 100IU units/mL penicillin, and 100 μg/mL streptomycin. Human cell line: 293 Human

Embryonic Kidney cells expressing SV40 T-antigen (293FT) were cultured in Dulbecco’s mod-

ified Eagle’s medium (DMEM, Global Cell Solutions, Charlottesville, VA) supplemented with

10% FBS (DMEM-10), 100IU/mL penicillin, and 100μg/mL streptomycin. Both cell cultures
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were kept at 37˚C and 5% CO2 in a humidified incubator. Cell viability was determined using

a WST-8 assay kit performed as manufacturer’s instructions (Dojindo Molecular Technolo-

gies, Inc.). Briefly, mouse fibroblast and 293FT cells were seeded in 96-well plates at a density

of 1 x 104 cells/well. PCL, PCL-Hep and PCL-Hep-CL mat discs (OD = 0.5cm) were pre-incu-

bated in DMEM for 24 hrs. Mat supernatants were added to cells and incubated for 3 days at

37˚C and 5% CO2. Then 10 μL of WST-8 reagent was added to each well. Plates were incubated

for 1 hr prior to OD450 measurement with an Elx800TM universal microplate reader (BioTek

Instruments, Inc.). Cells viability was determined by comparing the absorbance of WST-8

reagent in the cell suspension with that of control wells (cells in media alone).

2.3.7 Evaluation of heparin stability on fibrous mats. PCL-HepF mats (~20 mg) were

immersed in 12 mL of phosphate buffered saline (PBS, pH = 7.4) and kept at 37˚C over a

period of 18 days (n = 3). Samples of 600 μL were extracted at specific time points, and

replaced with fresh PBS. Fluorescence intensity of samples was measured with a fluorescence

spectrophotometer (HITACHI, F-4500) at excitation and emission wavelengths of 490 and

515 nm, respectively. The HepF content was calculated using a calibration curve previously

obtained. The release kinetics was calculated by regression analysis according to the Ritger and

Peppas equation [42]: Mt/M1 = ktn, in which k is a constant related to the structure and geo-

metrical characteristics of the system, n is the exponent, which depends on the release mecha-

nism, and Mt/M1 is the fraction of the drug released at time t. The stability of heparin in

PCL-Hep-CL mats was determined using TB assay. PCL-Hep-CL discs (OD = 1cm) were

immersed in 6 mL of PBS (pH 7.4) at 37˚C, over specific periods of time (n = 3). After each

time’s interval, discs were taken out and rinsed with DI water. To determine the amount of

heparin still present on the discs’ surfaces the same TB assay procedure used for heparin

immobilization studies was followed.

2.4 Evaluation of heparin-loaded PCL materials with HPV16 virion

proteins

2.4.1 Glutathione S-transferase (GST)- L1 protein production. Bacterial, Escherichia
coli (E. coli) BL21 (DE-3) cells were transformed with the pGEX-3T-16L1 vector to express

GST moiety fused to the NH2-terminus of the HPV16 L1 protein. E. coli BL21 (DE-3) bacteria

expressing the T7 phage RNA polymerase were used to achieve high levels of GST-16L1 fusion.

Briefly, mid-log phase cultures of bacteria were incubated at 37˚C with shaking. Cultures were

induced to express GST-16L1 by addition of 0.5 mM Isopropyl β-D-1-thiogalactopyranoside

(IPTG) for 2 hrs. Cells expressing exogenous proteins were prepared as lysates by extraction of

the protein with 0.5% NP-40 in Tris-Buffered-Saline (TBS) solution. Lysates were clarified by

centrifugation at 14,000Xg for 20 min at 4˚C. The supernatant transferred to fresh centrifuge

tubes which were stored at -80˚C until further use. The L1 protein content in lysate was deter-

mined by comparison to bovine serum albumin (BSA) standards using Western Blot.

2.4.2 Binding assay between heparin loaded materials and GST-L1 protein. PCL (con-

trol), PCL-Hep and PCL-Hep-CL mat discs (OD = 1cm) were preblocked with 1% non-fat

milk in 1xTBS (pH 7.4) for 1 hr. Mats were washed and incubated with increasing concentra-

tions of GST-L1 protein for 1 hr. To quantify the amount of bound protein, Western Blot was

performed directly onto the mats. GST-L1 protein was detected using a rabbit polyclonal IgG

anti-GST (1:1000 dilution, Santa Cruz Biotechnology, TX) as primary antibody, and an anti-

rabbit IgG conjugated to horse-radish peroxidase (HRP) (1:2000 dilution, GE Healthcare Life

Sciences, PA) as secondary antibody. Visualization using developing solution for chemilumi-

nescence detection, according to the manufacturer’s protocol (Pierce), was done with a BIO

RAD ChemiDoc ™ MP Imaging System. Antibody and L1 protein dilutions were made in TBS.

PCL-heparin functionalized mats to prevent HPV infection
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The incubation steps were performed with rocking at 4˚C. Experiments were run in triplicates,

means and SE were calculated.

2.4.3 HPV16 PsV production and purification. The methods adopted for the production

of HPV16 PsVs are essentially based on protocols published elsewhere [43,44]. In brief, 293FT

cell line was cultured in DMEM supplemented with 10% heat-inactivated FCS (HyClone), 1%

nonessential amino acids (Invitrogen, CA), and 1% Glutamax-I (Invitrogen, CA). 250 μg/mL

of hygromycin B (Roche, Indianapolis, IN) were added to promote maintenance of T antigen

expression. Preplated 293FT cells were co-transfected (Lipofectamine 2000, Invitrogen, CA)

with plasmid pShell encoding HPV16 L1/L2 capsid proteins genes and a reporter plasmid con-

taining the green fluorescent protein (GFP). After 48 hrs, cells were resuspended and lysed in

DPBS supplemented with 9.5mM MgCl2, 0.2% Brij 58, 0.2% Benzonase, and 0.1% Plasmid

Safe exonuclease (Epicentre). For PsV maturation, cell lysate was incubated overnight at 37˚C,

then chilled, adjusted to 0.8M NaCl, and centrifuged at 2,000 x g for 15 min at 4˚C. Clarified

PsV supernatants were stored at -80˚C until use.

2.4.4 HPV16 PsV infection inhibition assay. PCL, PCL-Hep and PCL-Hep-CL mat discs

(OD = 1cm) were preblocked with DMEM-10 in 96-well tissue culture plates at 37˚C for 1 hr.

A dilution of PsV stock in DMEM were pre-incubated with the different mats for 1 hr at 37˚C

and subsequently added to 293FT preplated cells, and incubated at 37˚C, 5% CO2 for 48 hrs.

Images of transduced cells under each condition were taken with a confocal microscope, and

fluorescence intensities from the images were quantified with ImageJ 1.49v software.

2.5 Statistical analysis

Results are presented in the form of mean ± standard deviation (SD) or standard error (SE)

with n-values listed below each corresponding figure. Statistical evaluation was performed

using ANOVA test with p-values below 0.01 considered as significant.

Results

3.1 Materials characterization

3.1.1 Fiber diameters and morphology of the fibrous mats. SEM images of PCL,

PCL-Hep and PCL-Hep-CL mats are shown in Fig 1. The morphology of the as-collected PCL

and PCL-Hep fibers (Fig 1A and 1B) was characterized by a continuous and smooth texture.

However, the crosslinked fibers displayed noticeable sub-micron roughness (Fig 1C and

inset). The average fiber diameter in PCL mats was 419.40 ± 86.64 nm (Fig 1D). While the

average fiber diameters in PCL-Hep and PCL-Hep-CL mats were 519.64 ± 85.07nm and

756.03 ± 117.76nm, respectively (Fig 1D). PCL and PCL-Hep mats presented a narrower fiber

diameter distribution with respect to the crosslinked mat.

3.1.2 FTIR spectra. The ATR-FTIR spectra of PCL mat, PCL-Hep-CL mat and heparin

powder are displayed in Fig 2. PCL and PCL-Hep-CL mats showed absorptions peaks at 2940

cm-1 and 2860 cm-1 representing -CH2- stretching. In addition, the absorbance of carbonyl

group is shown at 1720 cm-1 for both mat types. The PCL-Hep-CL material presented a new

peak at 1660 cm-1 and a band at 3400 cm-1 which correspond to an amide C = O and -OH

stretching, respectively. These results suggest that heparin was successfully incorporated into

PCL fibers by means of the crosslinking method.

3.1.3 Distribution and surface immobilization of heparin in PCL mats. Fig 3A and 3C

show that the HepF conjugate is distributed along the entire length of PCL-HepF fibers. This

also proves that HepF present in the DCM:MeOH solution is stable throughout the EHD pro-

cess. Fig 3D shows the amount of immobilized heparin on PCL-Hep and PCL-Hep-CL per

unit mat surface area, with values of 15.92 ± 1.22 μg/cm2, and 68.56 ± 3.02 μg/cm2,

PCL-heparin functionalized mats to prevent HPV infection
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respectively. Taking into account the specimen’s weight, we estimate that 12.5 μg of heparin

were immobilized in the PCL-Hep discs (geometrical area of 0.785 cm2). In addition, the cova-

lent bonding of heparin to a PCL-Hep-CL mat of the same geometrical area and disc size led

to more than a four-fold increase in the payload of heparin (53.82 μg). This increase in heparin

content was expected to improve the binding affinity with HPV virus.

3.1.4 Contact angle measurements. In Fig 4, representative images of 5μL DI water drop-

lets on the PCL (A) and PCL-Hep (B) mats are shown, which measured contact angles corre-

sponded to 123 ± 0.8˚ and 92 ± 1.4˚, respectively. Water droplets in PCL-Hep-CL were

absorbed instantaneously once deposited onto them, thereby preventing the collection of any

Fig 1. SEM images and fiber diameter distributions of PCL fibrous materials. (A) As-collected PCL mat, (B) as-collected PCL-Hep mat, (C)

PCL-Hep-CL mat, inset: fibers with higher magnification. Scale bars represent 5μm (A and B) and 10 μm (C). (D) Fiber diameter distributions

of mats, PCL: 419.40 ± 86.64nm, PCL-Hep: 519.64 ± 85.07nm, and PCL-Hep-CL: 756.03 ± 117.76nm. Values represent means ± SD. Average

fiber diameter (■), box range: 10–90%, whisker range: 5–95%, (x) 1–99%, (−) minimum and maximum values of fiber diameter within

investigated population. There were significant differences between the different types of mats (��, p<0.01).

https://doi.org/10.1371/journal.pone.0199925.g001
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meaningful contact angle measurements. This is however, an indication of complete wettabil-

ity i.e., a water contact angle of 0˚.

3.1.5 Thermal properties of PCL mats. DSC thermograms and thermal properties of the

starting and the PCL fibrous materials are shown in Fig 5 and Table 1, respectively. The PCL

fibers in this study were semi-crystalline, as confirmed by DSC analysis, showing a single melt-

ing temperature peak that corresponds to the melting point of PCL (~60˚C). The Tm and Xc

values for all the EHD-processed materials, presented lower values when compared to that of

the as-received PCL pellets (Table 1), indicating that the EHD process led to lower degrees of

polymer crystallinity.

Fig 2. ATR-FTIR spectra of heparin and PCL mats. (A) PCL mat, (B) PCL-Hep-CL mat and (C) heparin powder. PCL-Hep-CL material presented a new peak at 1660

cm-1 (amide C = O stretching) and a band at 3400cm-1 (-OH stretching).

https://doi.org/10.1371/journal.pone.0199925.g002
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3.1.6 Cytotoxicity of fibrous mats. Fig 6 shows the survival rate (%) of fibroblasts and

293FT cells after 3 days of incubation with PCL, PCL-Hep and PCL-Hep-CL supernatants. Sig-

nificant cytotoxicity effects for both types of cells were not observed in all materials at 0.01

level when compared with the control (cells alone). In PCL-Hep-CL mats, heparin was cova-

lently attached to the PCL fibers via the EDC/NHS coupling reaction. This method is broadly

used for immobilization of bioactive molecules, due to its mild and non-cytotoxic reaction

Fig 3. Heparin distribution and surface immobilization in PCL mats. Images represent the confocal (A), optical (B) and superposed (C) microscopy

images of PCL-HepF mats obtained with an Olympus IX 81 Microscope. Scale bars are 10 μm for all images. (D) Immobilized amount of heparin

present in PCL-Hep and PCL-Hep-CL mats per unit area corresponded to 15.92 μg ± 1.22, and 68.56 μg ± 3.02, respectively. Data represents

means ± SE (n = 3). There were significant differences between the heparin present in the two types of mats (��, p<0.01).

https://doi.org/10.1371/journal.pone.0199925.g003
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Fig 4. Contact angle images of fibrous materials. Representative images for contact angle measurements of PCL (A) and PCL-Hep

(B) as collected mats, which values corresponded to 123 ± 0.8˚ and 92 ± 1.4˚, respectively. Data represent means ± SD (n = 4).

https://doi.org/10.1371/journal.pone.0199925.g004

Fig 5. DSC thermograms of heparin and PCL samples. (a) Heparin powder, (b) PCL polymer pellets, (c) PCL-fibers, (d) PCL-Hep fibers and (e)

PCL-Hep-CL fibers. All thermograms correspond to the second heating cycle.

https://doi.org/10.1371/journal.pone.0199925.g005
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conditions [45]. Cytotoxicity results suggest that both the as-collected and the crosslinked PCL

mats support cell viability and proliferation.

3.1.7 Heparin stability on heparin-loaded mats. Fig 7A shows the cumulative HepF per-

centage release over a period of 18 days. This study shows that 17 ± 1% of the heparin in the

PCL-HepF mat was released in PBS during the first hour. In addition, 52 ± 4% was released

during the first day of incubation, and almost all heparin loading was released by day 18. From

the release profile, it is apparent that there is a “burst” release phase (Fig 7A, inset), followed by

a delayed phase that lasts up to 430 hrs. Fig 7B shows the heparin content in PCL-Hep-CL as a

function of incubation time. This figure shows that the amount of heparin initially present

(~48 μg) was almost entirely preserved after an incubation period of 21 days, which is clearly

indicative of the stability of immobilized heparin in the PCL-Hep-CL sample.

3.2 Heparin-loaded PCL materials interactions with HPV16

3.2.1 Binding assays with GST-L1 protein. The results of binding assays are shown in

Fig 8. The amount of GST-L1 bound to PCL-Hep-CL mats increased with increasing GST-L1

concentration in solution. The bound protein amount reached a saturation plateau when the

protein concentration was 4.4 μM. At this point, about 6 μg (74 picomoles) of protein per mat,

remained bound. No further increase in binding was observable at higher GST-L1 concentra-

tions. Considering the weight of the PCL-Hep-CL mat, the maximum amount of heparin

bound per mat weight corresponded to a value equal to 2.4 mg/g. However, the same binding

assay using PCL-Hep mats yielded no significant results. As shown in their release profile (Fig

7A), the direct quantification of L1 protein bound to PCL-Hep mats was masked by the

extended release of heparin to the liquid medium. In spite of the fact that formation of the

L1-heparin complex is a priori a possibility, it was not detected by means of the proposed

quantitative approach.

To further evaluate the affinity of GST-L1 proteins for the heparin present in PCL-Hep-CL

mats, the dissociation constant (Kd) was calculated via a Scatchard plot (Fig 9). Scatchard plots

are generated by plotting the bound-to-free protein ratio versus the bound protein concentra-

tion. Bound protein concentration was calculated as the ratio of the amount of bound GST-L1

to sample volume. The mat discs used in these experiments had a geometrical surface area of

0.785 cm2, and a thickness of 150 μm. The slope of the straight line in the Scatchard plot is -1/

Kd, which corresponded to a Kd value of 35 μM.

3.2.2 HPV16 PsV inhibition assay. Fig 10 shows the confocal images of 293FT infected

cells expressing the GFP plasmid under each condition. Fig 10E shows the cell infection per-

centages of each group relative to the control, with corresponding values of 58.46 ± 5.05%,

30.50 ± 5.31%, and 6.01 ± 1.57% for PCL, PCL-Hep-CL, and PCL-Hep materials, respectively.

Both of the heparin-loaded materials presented significant differences when compared to

Table 1. Thermal properties of PCL mats.

Sample ΔHm (J/g) Tm (˚C) Xc
a (%)

PCL polymer pellets 57.85 59.81 41.62

PCL fibers 51.08 59.21 36.75

PCL-Hep fibers 46.11 58.99 33.17

PCL-Hep-CL fibers 37.93 57.35 27.29

a Xc(%) = (ΔHm/ΔHmo)

ΔHm = enthalpy of melting of sample

ΔHmo = enthalpy of melting of fully crystalline PCL, 139 J/g.

https://doi.org/10.1371/journal.pone.0199925.t001
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either the control or PCL mats. Interestingly, PCL-Hep-CL mats reduced cell infection by

70%; however, although the crosslinked materials possess a higher amount of heparin on its

surface, it did not show an inhibitory effect as pronounced as for the case of the non-covalent

material. The PCL-Hep material reduced cell infection with HPV16 PsVs by 94%, as shown by

its lowest count of fluorescent cells.

Discussion

The increase in fiber diameter in PCL-Hep mats is likely related to the change in the solution

formulation before the electrospinning process. Methanol compared to DCM, has a higher

boiling point temperature and lower surface tension. The increment of methanol affected the

volatility and surface tension of the final solution, consequently increasing the fiber diameter

of the electrospun product. Similarly, the surface roughness and diameter also increased for

the case of PCL-Hep-CL fibers. This modification in PCL-Hep fibers after the EDC/NHS hep-

arin crosslinking method was also evident in the work of other groups [46–49]. The increment

in fiber diameter may be attributed to distention and swelling of the polymer caused by water

intake. This phenomenon has been termed “crimp accentuation” in the textile industry [50],

Fig 6. Cell viability of fibroblasts and 293FT cells on mats. Supernatants which were preincubated with PCL, PCL-Hep and PCL-Hep-CL

mats were added to cells and incubated for 3 days at 37˚C and 5% CO2. The WST-8 reagent solution was contacted with the samples for 1 hr

prior to OD450 measurement with a BioTek Elx800 microplate reader. Cytotoxicity effects of the different materials were not statistically

significant different when compared with their respective controls. Data represent means ± SE (n = 4).

https://doi.org/10.1371/journal.pone.0199925.g006
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which also causes a decrease in the overall dimension of samples. After crosslinking, besides

the increment in fiber diameters, the sample discs presented a 10% diameter decrease, and

their weight increased by approximately a 26% when compared to their initial values before

treatment. These effects have also been reported by other research groups when analyzing the

impact of using crosslinking agents on EHD-processed collagen mats [48].

The surface of the heparin conjugated mats showed more hydrophilic characteristics than

those created with PCL alone, which can be attributed to the highly hydrophilic sulfonic

groups in heparin. The increased PCL-Hep-CL hydrophilicity was viewed as being highly

desirable in this material. Ideally, a device acting as a virus capture should be as wettable as

possible when in contact with biological fluids.

The lower crystallinity of EHD-processed fibers can be explained by the rapid solvent evap-

oration caused by the large drying surface area, which, in fact, prevents rearrangement of poly-

mer chains [51,52]. Our results are also in agreement with the findings of other groups, in

which the preparation of PCL fibers by EHD also showed a decrement in Xc values [53–55].

The Xc and Tm values were also reduced in PCL-Hep fibers (33.17% and 58.99˚C, respectively).

These changes in the thermal properties of PCL-Hep fibers seems to be due to the presence of

heparin. Heparin (an amorphous linear polymer) showed the absence of a melting peak that is

characteristic of crystalline phases (Fig 5A). Finally, it was found that the effect of heparin

crosslinking in PCL-Hep-CL fibers resulted in an additional decrease in Xc (27.29%) and con-

sequently, in a lowered Tm (57.35˚C). Crosslinked polymer systems tend to be stable mechani-

cally and thermally: once formed, they are difficult to break. This type of chemical

modification introduces new moieties that can negatively impact the migration and diffusion

of otherwise mobile polymer chains to the surface of the growing polymer crystal. The mole-

cules in PCL-Hep-CL fibers thus have less mobility to rearrange and effectively crystallize, evi-

denced by its lowest Xc among all the PCL mats produced in this study. In addition, and even

though the majority of crosslinked heparin is located at the surface of PCL-Hep-CL fibers, the

massive changes in fibers’ morphology and dimensions caused by the crosslinking process is

Fig 7. Heparin stability in heparin-loaded materials. (A) Cumulative release curves of heparin-fluorescent from PCL-HepF mats in PBS at 37˚C. The inset

shows the release profile during the first 9 hrs. Data represent means ± SD (n = 3). (B) Heparin content on PCL-Hep-CL mat surface after different incubation

times in PBS at 37˚C. Data represent means ± SE (n = 3).

https://doi.org/10.1371/journal.pone.0199925.g007
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expected to be responsible for the additional decrement in thermal properties and polymer

crystallinity.

The heparin release mechanism from PCL-Hep mats was investigated by measuring the

exponent (n) in the general solute release equation proposed by Ritger and Peppas. For the

case of cylindrical samples, this equation predicts that the mechanism for solute release is con-

trolled by diffusion when n = 0.45, and of a zero-order kinetics type when n = 0 [42]. The

cumulative HepF release curve was thus fitted to an allometric power growth equation (y =

ktn), casting an n value equal to 0.28. This number, which clearly falls within the two mechanis-

tic extremes of the drug release process, suggests the occurrence of “anomalous” transport i.e.,

an overlap of drug diffusion and polymer swelling phenomena [56]. This finding further cor-

roborates that heparin in PCL-Hep is mostly physically adsorbed on the fibers’ surface. The

stability of covalently immobilized heparin in PCL-Hep-CL material was shown to be higher

Fig 8. Binding of GST-L1 protein to PCL-Hep-CL mats. PCL-Hep-CL mat discs were incubated with increasing concentrations of GST-L1 protein.

Western Blot was performed directly on the mats to quantify the amount of protein bound to the discs. Data represent means ± SE (n = 3).

https://doi.org/10.1371/journal.pone.0199925.g008
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than that of physically adsorbed or ionically immobilized heparin in PCL-Hep mats, as

Fig 9. Scatchard plot for GST-L1 protein binding to PCL-Hep-CL mats. The amount of GST-L1 protein bound to

PCL-Hep-CL mats was quantified by Western blot. The mean values of three experiments are plotted.

https://doi.org/10.1371/journal.pone.0199925.g009

Fig 10. Infectivity assay with HPV16 PsVs and PCL mats. Confocal microscopy images of 293FT cells, transduced and expressing a GFP reporter plasmid

corresponding to control (A), PCL (B), PCL-Hep-CL (C), and PCL-Hep mats (D). (E) Cell infection percentages of the different groups when compared to the

control. Data represent means ± SD (n = 3). There were significant differences between the heparin loaded materials when compared with PCL (��, p<0.01).

https://doi.org/10.1371/journal.pone.0199925.g010
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demonstrated in Fig 7B. Similar results support the proposal that covalently bonded heparin is

long-term stable [33,36,57].

The binding constant found for the PCL-Hep-CL material falls within the same order of

magnitude as those reported for heparin-protein L1 peptides, and other heparin-peptide inter-

actions [16,58–60]. Sun et al. studied the interaction of heparin with five synthetic peptides of

HPV16, obtaining binding constants in the order of 105 M-1. The ability of HPV11 virus like

particles (VLPs) to interact with heparin was investigated by heparin affinity chromatography

[17]. Results showed that approximately 93% of bound VLPs were eluted, pointing to the high

affinity and strong interactions of HPV L1 protein with heparin, which possessed a similar

molecular weight to the one utilized in this manuscript. Our results however, besides demon-

strating a strong L1 protein-heparin binding interaction, also show that the HPV L1 protein

strongly interacts with the heparin immobilized in an engineered material, namely heparin-

loaded PCL fibers. To the best of our knowledge, this has not yet been reported. In addition, it

points to a potential opportunity to develop materials that actually capture the virus (e.g. tam-

pons, condoms), not just inactivate them.

Previous studies have shown that sulfated polysaccharides such as heparin, cellulose sulfate,

and dextran sulfate, can block the HPV infection [13,17,61]. For instance, high-molecular

weight heparin has been tested as possible material to inhibit PsV binding to HaCaT cells [17].

Results showed a dose-dependent effect, and an IC50 heparin concentration of 0.3 μM. In addi-

tion, infection studies using COS-7 cells and HPV16 PsVs, carrying a GFP reporter plasmid

showed that heparin present at a concentration of 0.14 mg/mL (5.6 μM) was found to suppress

HPV16 infectivity by 50% [13]. From our results, we can estimate that after the infectivity

assay, approximately 8% of heparin is released from PCL-Hep mats. This value corresponds to

a concentration of heparin in solution of 0.3 μM, which translates into the significant observed

HPV16 infection reduction of 94%. While two virus inhibition mechanisms are possible with

these materials, the fact that the PCL-Hep material showed a higher impact in reducing infec-

tivity lends credence to the idea that heparin’s mechanism of virus inhibition is more efficient

when performed in soluble phase rather than only an immobilized phase.

Conclusions

Two different approaches to produce heparin-loaded poly-ε-caprolactone (PCL) fibrous mate-

rials were applied in this study. Both materials showed good cell viability properties, and the

incorporation of heparin into the fibers improved the hydrophilicity of the materials, and

decreased polymer crystallinity. Our first material design method led to a conventional hepa-

rin release profile, and when infectivity assays were conducted with it, a 94% cell infection

reduction with HPV16 PsVs was observed. The second sample production approach consti-

tuted an effective method to immobilize heparin on PCL, and had a high binding affinity for

HPV16 L1 capsid (Kd = 35 μM), in the same range as those generally observed in relevant hep-

arin-peptide complexes. This material also reduced HPV cell infection by 70%. The two pro-

posed materials design options provide clues, for the first time to the best of our knowledge,

for eventually making an effective device to combat HPV infection, either by direct association

of the virus with heparin in solution, or via selective capture of the virus in the fibrous mat.

These studies also suggest that this approach may be effective against HPV as well as other hep-

arin-binding viruses.

Supporting information

S1 Fig. Schematic diagram of heparin conjugation onto PCL mats by means of EDC/NHS

coupling reaction. Heparin is incorporated to the PCL fibers via the formation of a stable
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amide bond.

(TIF)

S1 Text. Chemical synthesis process of PCL-Hep-CL mats.

(PDF)
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