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Pharmacogenomics of poor drug 
metabolism in Greyhounds: 
Cytochrome P450 (CYP) 2B11 
genetic variation, breed 
distribution, and functional 
characterization
Stephanie E. Martinez   1*, Marie C. Andresen1, Zhaohui Zhu1, Ioannis Papageorgiou1,2 & 
Michael H. Court   1

Greyhounds recover more slowly from certain injectable anesthetics than other dog breeds. Previous 
studies implicate cytochrome P450 (CYP) 2B11 as an important clearance mechanism for these 
drugs and suggest Greyhounds are deficient in CYP2B11. However, no CYP2B11 gene mutations 
have been identified that explain this deficiency in Greyhounds. The objectives of this study were 
to provide additional evidence for CYP2B11 deficiency in Greyhounds, determine the mechanisms 
underlying this deficiency, and identify CYP2B11 mutations that contribute to this phenotype in 
Greyhounds. Greyhound livers metabolized CYP2B11 substrates slower, possessed lower CYP2B11 
protein abundance, but had similar or higher mRNA expression than other breeds. Gene resequencing 
identified three CYP2B11 haplotypes, H1 (reference), H2, and H3 that were differentiated by mutations 
in the gene 3′-untranslated region (3′-UTR). Compared with 63 other dog breeds, Greyhounds had the 
highest CYP2B11-H3 allele frequency, while CYP2B11-H2 was widely distributed across most breeds. 
Using 3′-UTR luciferase reporter constructs, CYP2B11-H3 showed markedly lower gene expression (over 
70%) compared to CYP2B11-H1 while CYP2B11-H2 expression was intermediate. Truncated mRNA 
transcripts were observed in CYP2B11-H2 and CYP2B11-H3 but not CYP2B11-H1 transfected cells. Our 
results implicate CYP2B11 3′-UTR mutations as a cause of decreased CYP2B11 enzyme expression in 
Greyhounds through reduced translational efficiency.

Although the genetic causes underlying racial, ethnic, and population differences in drug disposition and 
response have been extensively studied in people1, relatively little is currently known regarding the source of 
variable drug effects among different breeds of domestic dog. The only example so far in which the mechanism of 
a dog breed drug sensitivity has been determined are the Collies and related herding breeds, which were shown 
to be sensitive to p-glycoprotein substrates because of a 4-base pair deletion mutation in the gene encoding 
this transporter2. Another group of dog breeds that have been reported to display significantly different drug 
response compared with other breed groups are the “Sighthounds”. Sighthounds (also known as “Gazehounds”) 
are so-called because they were bred to hunt prey primarily by sight (or gaze), rather than by scent, as is typical of 
the “Scent hound” grouping of breeds. Modern Greyhounds are a prototypical example of a Sighthound dog breed 
that have been bred for over 150 years for hunting, coursing, track racing and other purposes3. It is well known 
among veterinarians, owners and breeders of Greyhounds (and related Sighthound breeds) that many of these 
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dogs are likely to recover more slowly after receiving certain injectable anesthetic drugs compared with other dog 
breeds4–6. These drugs include several thiobarbiturates (thiopental and thiamylal), as well as propofol, which has 
largely replaced the thiobarbiturates for routine induction of anesthesia in dogs and humans.

Initially, this anesthetic sensitivity was thought to be a consequence of the naturally low body fat content of the 
Greyhound breed, which could limit redistribution of lipophilic anesthetic drugs from the brain into peripheral 
fatty tissues and delay the return of consciousness4–6. However, a series of elegant studies subsequently implicated 
poor drug metabolism as a major culprit. Pharmacokinetic studies demonstrated slower elimination of thiopen-
tal, thiamylal and propofol in Greyhounds compared with mixed-breed dogs7,8. Furthermore, both pentobarbital 
and methohexital, oxybarbiturate anesthetics with similar lipophilicity to thiobarbiturates but slightly different 
chemical structures, displayed similar recovery times and plasma pharmacokinetic parameters in Greyhounds 
compared with mixed-breed dogs7. Finally, treatment of Greyhounds with the cytochrome P450 (CYP) enzyme 
inducer, phenobarbital, enhanced thiopental clearance and reduced recovery times9, while treatment with the 
CYP inhibitor, chloramphenicol, reduced propofol clearance and prolonged recovery times10. These studies impli-
cate a major role for CYP in the elimination of these drugs in dogs and suggest that Greyhounds could be defi-
cient in one (or more) CYP enzymes.

Propofol 4-hydroxylation is the major rate limiting step in the clearance of propofol in dogs11. A previous 
study in our laboratory demonstrated reduced propofol 4-hydroxylation by liver microsomes obtained from 
Greyhounds, compared to Beagle (a breed commonly used in pharmaceutical research and development) and 
mixed-breed dog liver microsomes12. An additional study using CYP isoform-selective chemical and anti-
body inhibitors implicated an important role for CYP2B11 (the canine ortholog of human CYP2B6) in propo-
fol hydroxylation by canine liver microsomes and suggested this isoform may be deficient in Greyhounds13. 
However, as of yet, there is no direct evidence that CYP2B11 selectively metabolizes propofol, such as through 
reaction phenotyping using recombinant canine CYPs. Furthermore, no mutations in the gene encoding the 
CYP2B11 protein, CYP2B11 (also called CYP2B6, NCBI gene ID 474177), have been identified in Greyhounds 
that could explain this deficiency.

The primary objectives of this study were to provide further evidence that CYP2B11 is deficient in 
Greyhounds, determine the genetic mechanisms underlying this deficiency, and identify CYP2B11 gene muta-
tions that may contribute to poor drug metabolism in Greyhounds. We also explored the distribution of the 
identified CYP2B11 gene mutations across dog breeds, hypothesizing that they would be more prevalent in 
Greyhounds and closely related breeds within the Sighthound group of dog breeds compared to non-Sighthound 
breeds.

Results
Dog breed differences in hepatic CYP probe activities.  Eight enzyme activities commonly used as 
isoform-selective probes for the major drug metabolizing CYPs in humans were measured in Greyhound, Beagle 
and mixed-breed dog liver microsomes (n = 5 livers per breed) to explore possible breed-related differences in 
hepatic CYP metabolism. Results were compared to an activity (propofol 4-hydroxylation) previously demon-
strated to be lower in Greyhound livers compared with livers from other dog breeds13. As shown in Fig. 1, average 
propofol 4-hydroxylation, and bupropion 6-hydroxylation were lower in Greyhound liver microsomes (P < 0.05, 
Student’s t-test) relative to mixed-breed and Beagle liver microsomes. On the other hand, average activities for 
all other CYP probes measured in Greyhound microsomes were similar to, or in the case of dextromethorphan 
O-demethylation activities somewhat higher than, activities for mixed-breed and Beagle microsomes.

Propofol, bupropion, and omeprazole reaction phenotyping.  Reaction phenotyping with recom-
binant canine CYP enzymes was then used to confirm the identity of the canine CYPs responsible for the two 
activities decreased in Greyhound microsomes (propofol 4-hydroxylation and bupropion 6-hydroxylation). We 
also verified the specificity of omeprazole sulfonation as a canine CYP3A12 probe, since another commonly 
used human CYP3A probe activity (midazolam 1′-hydroxylation) was reported to be primarily mediated by 
canine CYP2B1114. All 8 commercially available recombinant canine hepatic CYPs were evaluated as well as an 
additional 3 recombinant drug metabolizing CYPs (CYP2A13, CYP2A25, and CYP2E1) that were expressed 
in our laboratory. Measured specific activities for each recombinant CYP were also normalized using the aver-
age canine liver microsome abundance of each CYP to enable direct comparison to activities measured using 
pooled dog liver microsomes. As shown in Fig. 2a, CYP2B11 displayed the greatest propofol 4-hydroxylation 
activity; CYP2C41 and CYP3A12 had moderate activities (44% and 14% of CYP2B11, respectively), while all 
other CYPs showed minimal activity. After extrapolation of CYP activities using canine hepatic abundance 
estimates (Fig. 2b), CYP2B11 remained the most active enzyme, which was approximately 50% of the propofol 
4-hydroxylation activity of pooled dog liver microsomes. Some abundance-corrected activity was also observed 
for CYP3A12 (22% of CYP2B11), while activities for other CYPs were negligible. Bupropion 6-hydroxylation 
was mediated exclusively by CYP2B11 (Fig. 2c) with negligible activities observed for all other CYPs tested. 
After extrapolation using average liver abundance estimates, CYP2B11 bupropion 6-hydroxylation activity was 
more than 3 times that of pooled dog liver microsomes, while all other CYPs showed negligible activity rela-
tive to pooled dog liver microsomes (Fig. 2d). Finally, substantial omeprazole sulfonation activity was observed 
for both canine CYP3A isoforms (CYP3A12 and CYP3A26). CYP3A12 was the most active, about 50% higher 
than CYP3A26, and more than 4 times higher than other isoforms (Fig. 2e). After hepatic abundance correc-
tion, CYP3A12 was the predominant enzyme, with almost three times the omeprazole sulfonation activity of 
pooled liver microsomes (Fig. 2f). Some abundance corrected activity was also observed for CYP2B11 (15% of 
CYP3A12), but not for other CYPs.

These results were further confirmed by evaluating the strength of correlation between CYP probe activities 
and CYP1A, CYP2B11 and CYP3A protein content measured by semi-quantitative immunoblotting in the same 
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set of dog liver microsomes. Spearman correlation coefficients and their respective P-values are shown in Table 1. 
CYP2B11 protein content correlated strongly with both bupropion 6-hydroxylation (Rs = 0.73, P = 0.002) and 
propofol 4-hydroxylation (Rs = 0.70, P = 0.003), but not with any other activity (P > 0.05). Similarly, CYP3A 
protein content correlated only with omeprazole sulfonation (Rs = 0.86, P < 0.0001) and CYP1A protein content 
correlated only with phenacetin-O-deethylation (Rs = 0.59, P = 0.02).

Dog breed differences in hepatic CYP2B11 protein and mRNA.  Microsomal CYP2B11 protein con-
tent and CYP2B11 mRNA abundance were measured in the same set of Greyhound, Beagle and mixed-breed dog 
liver samples (n = 5 livers per breed). As shown in Fig. 3a, significant breed associated differences in CYP2B11 
content were observed (P < 0.001, ANOVA). Greyhound livers showed the lowest content, Beagle livers had the 
highest content, and mixed-breed livers were intermediate. On the other hand, CYP2B11 mRNA abundance 
in Greyhound livers was similar to Beagle livers (P > 0.05, Holm-Sidak test) and substantially higher than 
mixed-breed livers (P = 0.008; Holm-Sidak test) (Fig. 3b).

Identification of CYP2B11 genetic polymorphisms.  Selected regions of the CYP2B11 gene, includ-
ing the 5′-enhancer (to ~2,000 bp upstream), all 9 exons, and the complete 3′-untranslated region (UTR) 
were sequenced using DNA obtained from 13 Greyhounds, including the 5 Greyhounds used for liver sam-
ples. Sequence variants were identified by comparison to the current canine reference sequence (CanFam3.1) 
and compared to polymorphisms identified by analysis of publicly available whole genome sequence data from 
another 45 dogs representing 45 different breeds. Identified polymorphisms and the genotypes of individual 
dogs are given in Supplementary Table S1. These data are summarized as variant allele frequencies (with 95% 
confidence intervals) for the 13 Greyhounds and the 45 dogs from other breeds in Table 2. Nine genetic poly-
morphisms were identified, three of which were found in the dbSNP public database (rs21894687, rs852076551, 
and rs850924485). One polymorphism was located in the 5′-enhancer region (c.-489 G/A), one polymorphism 
was a synonymous SNP in exon 7 (c.966G/A), while the remaining 7 polymorphisms were clustered together in 
the 3′-UTR from cDNA positions 1913 to 2536. Allele frequencies for all but one of the 3′-UTR polymorphisms 
were more than 2-fold higher in the 13 Greyhounds compared to the 45 other dogs. One 3′-UTR polymorphism 
(c.2498G/T) was not found in any of the 13 Greyhounds evaluated.
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Figure 1.  Breed differences in liver microsome CYP marker activities. CYP activities selective for the major 
drug metabolizing CYP enzymes were measured using liver microsomes obtained from Beagles (n = 5), mixed-
breed dogs (n = 5) and Greyhounds (n = 5). Bars represent the mean and standard error of the activity values 
for individual Beagle and Greyhound liver microsomes expressed as a percentage of the mean activity of mixed-
breed dog liver microsomes. *P < 0.05 by Student’s t-test on log transformed data comparing Greyhound dog 
liver activities with Beagle and mixed-breed dog liver activities. Samples from Greyhound dogs were identified 
by their owners as dogs registered with the National Greyhound Association bred for racing.
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CYP2B11 haplotype analysis.  Linkage disequilibrium analysis indicated strong linkage across the 
CYP2B11 gene (spanning about 16 kilobases) for most polymorphisms in both Greyhounds (Fig. 4a) and dogs 
from 45 other breeds (Fig. 4b). Exceptions were c.2498G/T, which was associated only with the exon 7 SNP and 
partially with the 5′-enhancer polymorphism, while the 3′-UTR SNP c.1952 C/T was not associated with any of 
the other polymorphisms.

Six haplotypes (designated CYP2B11-H1 to -H6) could be inferred from genotype data for all dogs (listed in 
Table 3). Three haplotypes were found in Greyhounds (CYP2B11-H1, H2 and H3). CYP2B11-H1 and –H2 were 
the two most common haplotypes found in both Greyhounds and other dog breeds, although CYP2B11-H2 
predominated (50% frequency) in Greyhounds, while CYP2B11-H1 predominated (62% frequency) in other 
breeds. The other haplotype found in Greyhounds (CYP2B11-H3) was much more common in Greyhounds (19% 
frequency) compared with other breeds (3% frequency). Apart from Greyhounds, CYP2B11-H3 was found in a 
Whippet (homozygous) and a Border Collie (heterozygous CYP2B11-H1/H3).
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Figure 2.  Reaction phenotyping using a panel of recombinant canine CYP enzymes. The rates of propofol 
4-hydroxylation (a,b) bupropion 6-hydroxylation (c,d) and omeprazole sulfonation (e,f) were determined using 
a panel of 11 recombinant canine CYP enzymes. Results are shown after normalization to incubation time and 
recombinant CYP concentration in each reaction (a,c,e) as well as after extrapolation of activities to microsomes 
using the reported average molar concentration of each CYP in canine liver microsomes (b,d,f). Details are 
provided in Materials and Methods section. Activities for pooled dog liver microsomes (pDLMs) normalized to 
microsomal protein content are also shown for comparison. Bars represent the mean and standard deviation of 
3 independent replicate experiments.
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Breed heterogeneity in CYP2B11 H2 and H3 haplotype frequencies.  The heterogeneity of the 
CYP2B11-H2 and -H3 haplotypes across breeds was evaluated in greater depth by genotyping DNA sampled from 
64 different breeds (minimum 10 dogs per breed), including 19 Sighthound breeds, 45 other (non-Sighthound) 
breeds, and 153 mixed-breed dogs. Greyhound samples (n = 241) included 180 National Greyhound Association 
(NGA)-registered dogs bred for racing and 61 dogs bred for other purposes registered with the American Kennel 
Club (AKC).

An initial comparison (Table 4) of haplotype frequencies between breeds that comprised the liver samples 
studied above (i.e. Beagles, NGA-registered Greyhounds, and mixed-breed dogs) showed similar H2 frequen-
cies across the three breeds (21–26%), but a much higher H3 frequency in NGA-registered Greyhounds (18%) 
compared with mixed-breed dogs (2%). The H3 haplotype was not found in any genotyped Beagle dog samples. 
Interestingly, AKC-registered Greyhounds were quite different from the NGA-registered Greyhounds in that they 
lacked the H2 haplotype and had the highest H3 frequency of all breeds sampled (59%).

A broader evaluation of haplotype frequencies across Sighthound and non-Sighthound breed groups is shown 
in Fig. 5. The H2 haplotype was widely distributed across most breeds and was detected in all 19 (100%) of the 
Sighthound breeds sampled as well as in 41 of 45 (91%) non-Sighthound breeds. Furthermore, average (±SE) H2 
frequency calculated for the breed groups was similar (P > 0.05, Mann-Whitney U test) in Sighthound (25 ± 6%) 
compared with non-Sighthound breeds (20 ± 3%). On the other hand, the H3 haplotype was more restricted in 
breed distribution, being found in 10 of 19 (53%) Sighthound breeds and only 10 of 45 (22%) non-Sighthound 
breeds. Furthermore, average haplotype frequency in Sighthound breeds (9 ± 3%) was over 4-fold higher 
(P = 0.003, Mann-Whitney U test) compared with non-Sighthound breeds (1.7 ± 0.7%).

CYP2B11 mRNA splicing.  To explore the mechanism underling CYP2B11 expression variability, whole 
transcriptome sequencing (RNA-seq) analysis was conducted using total RNA extracted from the same 5 
Greyhound and 5 Beagles livers used for determining CYP activities and CYP2B11 mRNA quantitation to eval-
uate variation in mRNA splicing of CYP2B11 gene transcripts. Mapping with transcript analysis identified only 
a single transcript in all samples that was identical in mRNA length exon structure to the CYP2B11 reference 
sequence in Genbank (NM_001006652). No alternate splice forms were found.

CYP2B11 mRNA allelic imbalance.  A potential role for cis-acting regulatory genetic polymorphisms in 
CYP2B11 gene expression was evaluated by assessment of allelic imbalance using RNA-seq data for a subset of the 
previously studied liver samples that were found to be heterozygous with CYP2B11-H1 for the CYP2B11-H2 allele 
(3 Beagles and 3 Greyhounds) and for the CYP2B11-H3 allele (1 Greyhound). To account for mapping efficiency 
differences, RNA allelic ratios at each variant position were normalized using DNA allelic ratios obtained from 
whole genome DNA sequence data for 5 other dogs with the CYP2B11-H1/H2 genotype and one other dog with 
the CYP2B11-H1/H3 genotype. As shown in Fig. 6, dramatically lower RNA expression (mean ratios of 0.05 to 
0.15) was observed for the CYP2B11-H2 allele relative to the CYP2B11-H1 allele for 2 of the 6 polymorphisms 
(c.2137 TG/CA and c.2166G/A) in both Greyhound and Beagle livers. CYP2B11-H3 expression was slightly lower 
(ratio of 0.7) than CYP2B11-H1 at the single SNP (c.1952 C/T) associated with this haplotype.

CYP2B11 3′-UTR haplotype reporter gene expression.  The effect on gene expression of a subset of 
the CYP2B11-H2 and CYP2B11-H3 polymorphisms located in the 3′-UTR region were then evaluated using 
3′-UTR-luciferase reporter constructs transiently transfected into canine MDCK cells. The constructs (illus-
trated in Fig. 7a) included CYP2B11-3′UTR-H1 (control), CYP2B11-3′UTR-H2 (c.1913 TCA > TCCA; c.2137 
TG > CA; c.2166G > A; c.2283A > G; c.2536G > C) and CYP2B11-3′UTR-H3 (c.1952 C > T). As shown in 
Fig. 7b, compared to CYP2B11-3′UTR-H1, CYP2B11-H3-3′-UTR showed markedly lower gene expression (by 
over 70%; P = 0.001, Holm-Sidak test), while expression of CYP2B11-H2-3′-UTR was intermediate (about 40% 
less than CYP2B11-H1-3′UTR; P = 0.012, Holm-Sidak test).

Enzyme marker activity

Attributed CYPs Spearman correlation coefficient (P-value)

Human Dog CYP1A protein CYP2B11 protein CYP3A protein

Phenacetin-o-deethylation CYP1A2 CYP1A2 0.59 (0.02*) 0.30 (0.28) 0.10 (0.71)

Coumarin 7-hydroxylation CYP2A6 CYP2A13 −0.29 (0.29) −0.35 (0.20) 0.06 (0.83)

Propofol 4-hydroxylation CYP2B6 CYP2B11 0.32 (0.24) 0.70 (0.003*) 0.18 (0.51)

Bupropion 6-hydroxylation CYP2B6 CYP2B11 0.25 (0.36) 0.73 (0.002*) 0.00 (1.00)

Flurbiprofen hydroxylation CYP2C9 ? 0.41 (0.13) 0.42 (0.12) 0.14 (0.61)

S-mephenytoin 4-hydroxylation CYP2C19 ? 0.38 (0.16) 0.28 (0.31) 0.15 (0.56)

Dextromethorphan o-demethylation CYP2D6 CYP2D15 −0.31 (0.26) −0.47 (0.07) −0.05 (0.84)

Chlorzoxazone 6-hydroxylation CYP2E1 CYP2E1 0.06 (0.81) −0.10 (0.71) −0.04 (0.87)

Omeprazole sulfonation CYP3A4 CYP3A12 0.13 (0.64) 0.35 (0.20) 0.86 (<0.001*)

Table 1.  Correlation of CYP isoform protein content with CYP marker activities measured in dog liver 
microsomes. CYP isoform protein content (determined by immunoblotting) and CYP marker activities were 
measured in the same set of dog liver microsomes (n = 15) and correlated. Shown are the Spearman correlation 
coefficients and associated P-values (*P < 0.05). Also shown are the human and canine CYP isoforms that have 
been attributed to each activity by reaction phenotyping. (?) – No evidence yet to identify the dog CYP isoform 
responsible for this activity.
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CYP2B11 3′-UTR transcript length variation.  Reverse transcriptase PCR was used to determine the 
approximate length of the 3′ end of the CYP2B11-3′UTR reporter mRNA in MDCK cells transfected with each of 
the luciferase reporter constructs. PCR primers were designed to amplify the cDNA in 3 regions, from position 
c.1773 to c.1872 (Region 1), from c.1853 to c.2199 (Region 2) and from c.1853 to c.2312 (Region 3) (Fig. 8a). 
These regions were chosen to be upstream (5′) of the two polymorphisms (c.2137 TG/CA and c.2166G/A) that 
demonstrated significant allelic imbalance (Region 1), or to span these polymorphisms (Regions 2 and 3). Primers 
for GAPDH were also used to confirm RNA extraction and reverse transcription in each sample. Untransfected 
cells were assayed to exclude background CYP2B11 expression in the cell line.

As shown in Fig. 8b, the GAPDH primers resulted in bands of similar intensity in cells transfected with each 
CYP2B11-3′UTR reporter construct, as well as in untransfected cells. Strong bands were also detected with the 
Region 1 primers for all three CYP2B11-3′UTR reporter constructs, but not in untransfected cells. The Region 2 
primers resulted in a strong band for CYP2B11-3′UTR-H1, but much weaker bands for CYP2B11-3′UTR-H2 and 
CYP2B11-3′UTR-H3. Furthermore, the Region 3 primers showed a strong band for CYP2B11-3′UTR-H1, but no 
bands for CYP2B11-3′UTR-H2 or CYP2B11-3′UTR-H3.

By combining the RT-PCR results with the RNA-seq allelic imbalance information, the approximate locations 
of the 3′ end of the mRNA for each CYP2B11 polymorphism were inferred (shown in Fig. 8c). For CYP2B11-
3′UTR-H1, the data were consistent with the 3′end at c.2625 as given in the Genbank reference sequence 

a.

b.

P = 0.02

Beagle      Mixed-breed  Greyhound

P < 0.001
P = 0.024

P = 0.008

Beagle      Mixed-breed  Greyhound

P = N.S.
P = 0.003

Figure 3.  Breed differences in CYP2B11 protein and mRNA. Microsomal CYP2B11 protein content (a) and 
CYP2B11 mRNA abundance (b) were measured in the same set of livers obtained from Beagles (n = 5), mixed-
breed dogs (n = 5) and Greyhounds (n = 5). Data are expressed relative to the liver with the lowest value. Shown 
are box and whiskers plots summarizing data for individual dogs in each breed group. Significant differences 
between breed groups were identified by ANOVA on log transformed data (P < 0.05) for both CYP2B11 protein 
and mRNA. Shown for each set of data are the P-values for post hoc pairwise multiple comparisons testing 
(Holm-Sidak method).
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NM_001006652. For CYP2B11-3′UTR-H2, the 3′end is likely located between c.1913 and c.2138, while for 
CYP2B11-3′UTR-H3, it is likely between c.1952 and c.2199.

The CYP2B11 3′-UTR sequence was then evaluated for the presence of consensus polyadenylation signal 
sites. Two canonical polyadenylation signal sites (AAUAAA) were found. One site was located at c.2582, about 
40 bp upstream of the predicted 3′ end of CYP2B11-3′UTR-H1, while the other site was at c.1715, about 200 bp 
upstream of the predicted ends of CYP2B11-3′UTR-H2 and CYP2B11-3′UTR-H3. None of the 3′-UTR polymor-
phisms appeared to create a novel consensus polyadenylation signal site or abolish an existing one.

CYP2B11 diplotype association with activity, protein and mRNA.  Differences in CYP2B11 
enzyme activity, protein content, mRNA abundance, and protein/mRNA ratio (as an index of translation effi-
ciency) between the 15 (previously studied) dog livers after grouping by CYP2B11 diplotype are shown in Fig. 9. 
Identified diplotypes included H1/H1 (2 Beagles and 3 mixed-breed), H1/H2 (3 Beagles, 2 mixed-breed, and 3 
Greyhounds), H1/H3 (one Greyhound) and H3/H3 (one Greyhound). No dogs possessed the H2/H2 diplotype. 
Since there was only one dog liver with the H1/H3 diplotype and one dog liver with the H3/H3 diplotype, these 
data were grouped with the H1/H2 livers (10 livers total) for statistical comparison with the H1/H1 livers (5 liv-
ers). No differences in bupropion hydroxylation, CYP2B11 protein abundance or CYP2B11 mRNA expression 
were observed between H1/H1 and other diplotypes (P > 0.05, Mann-Whitney U test). However, CYP2B11 pro-
tein/mRNA values were significantly higher (P = 0.032, Mann-Whitney U test) in the H1/H1 group, compared 
with livers with other diplotypes with median (interquartile range) ratios of 5.6 (2.4–19) and 1.7 (1.1–3.2).

Discussion
Based on the results of the microsomal CYP activity marker assays and CYP2B11 immunoblotting, this study 
provides further evidence that CYP2B11 is deficient in Greyhounds. Furthermore, other CYPs involved in drug 
metabolism appear to be equally active, or, in the case of CYP2D15, perhaps even more active in Greyhounds 
compared with other dog breeds. Recombinant enzyme phenotyping indicated that propofol hydroxylation is 
largely mediated by CYP2B11, although with some involvement from CYP3A12. A role for CYP3A12 in propo-
fol hydroxylation was confirmed by showing significant correlation of propofol hydroxylation activities with 
microsomal CYP3A protein content, although somewhat weaker than with CYP2B11 protein content. To rule 
out possible, perhaps additional, deficiency of CYP3A12 in Greyhounds, breed differences were evaluated using 
activity probes that were confirmed by recombinant enzyme phenotyping to be more selective than propofol 
hydroxylation for CYP2B11 (bupropion hydroxylation) and CYP3A12 (omeprazole sulfonation). Results using 
these latter probes suggest that CYP3A12 is not deficient in Greyhounds. These results have since been confirmed 
by us through quantitation of microsomal CYP protein concentrations using proteomic techniques that are more 
accurate and precise than immunoblotting15.

CYP2B11 mRNA concentrations in Greyhound livers were similar to Beagle livers and higher than 
mixed-breed livers indicating that low CYP2B11 activity and protein content in Greyhound livers was not a 
consequence of reduced gene transcription or mRNA instability, but could involve aberrant mRNA splicing 
or reduced translational efficiency. The most clinically important genetic polymorphism in human CYP2B6 

Genetic polymorphism

#1 #2 #3 #4 #5 #6 #7 #8 #9

Positiona 112817078 112828499 112832580 112832619 112832805 112832834 112832951 112833166 112833204

Reference allele G G TCA C TG G A G G

Alternate allele A A TCCA T CA A G T C

dbSNP (v.146) ID — rs21894687 rs852076551 — — — — rs850924485 —

Location 5′-enhancer Exon 7 3′UTR 3′UTR 3′UTR 3′UTR 3′UTR 3′UTR 3′UTR

Protein — p.Glu322Glu — — — — — — —

cDNA c.-489_G/A c.966_G/A c.1913_TCA/TCCA c.1952_C/T c.2137_TG/CA c.2166_G/A c.2283_A/G c.2498_G/T c.2536_G/C

Allele frequencies (95% C.I.)

Greyhounds 
(N = 13)

0.50 0.50 0.50 0.19 0.50 0.50 0.50 1.0 0.50

(0.30–0.70) (0.30–0.70) (0.30–0.70) (0.09–0.38) (0.30–0.70) (0.30–0.70) (0.30–0.70) (0.87–1.0) (0.30–0.70)

Other breeds 
(N = 45)

0.24 0.34 0.20 0.03 0.18 0.18 0.18 0.86 0.18

(0.17–0.34) (0.25–0.45) (0.13–0.29) (0.01–0.09) (0.11–0.27) (0.11–0.27) (0.11–0.27) (0.77–0.91) (0.09–0.23)

Table 2.  CYP2B11 genetic polymorphisms and allele frequencies. Genetic polymorphisms located in the 
CYP2B11 5′-enhancer (to ~2,000 bp upstream), exons 1–9, and 3′-UTR were identified by genomic PCR with 
Sanger sequencing (in 13 Greyhounds) or by analysis of publicly available whole genome sequence data by 
sampling one dog from each of 45 different breeds. Samples from Greyhound dogs were identified by their 
owners as dogs registered with the National Greyhound Association bred for racing. Shown are the locations of 
each polymorphism, predicted effect on the cDNA and protein, as well as the observed allele frequencies (95% 
confidence interval) in the Greyhounds and the dogs from the other breeds. Genotype data for each individual 
dog used to derive these allele frequencies are given in S1 Table. The genetic polymorphism labels used here (#1 
to #9) correspond to the labels used in Fig. 4 and Table 3. aPosition in base pairs in the CanFam 3.1 chromosome 
1 sequence for the first nucleotide of the polymorphism.
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(g.15631G/T) is located within a splice enhancer site in exon 4 that results in exon skipping and exclusion of 
exons 4, 5 and 6 from the final edited transcript16. However, evaluation of the CYP2B11 liver transcriptome by 
RNA-seq analysis excluded mRNA splicing variation as a potential mechanism in Greyhounds.

mRNA allelic imbalance analysis has been used for a number of years in pharmacogenetic research and related 
disciplines to identify cis-acting polymorphisms that differentially alter expression levels of mRNA transcribed 
from different alleles17. Samples that are known to be heterozygous at polymorphic sites located within the 
transcript are typically used to enable direct comparison of the amount of variant transcript with the reference 
transcript within the same sample. Here, we used RNA-seq data from liver samples that were heterozygous for 
polymorphisms located within the CYP2B11 transcript. These polymorphisms had been identified by sequencing 
of genomic DNA extracted from the same liver samples and included 6 linked variants located in exon 7 and the 
3′-UTR (CYP2B11-H2), and one SNP in the 3′UTR (CYP2B11-H3).

Although there was no clear evidence for allelic imbalance with the CYP2B11-H3 SNP, we did observe almost 
complete loss of expression of the variant allele at two, but not all 6 of the CYP2B11-H2 variant sites. This find-
ing was identical in all 6 liver samples with the H1/H2 diplotype (regardless of breed). Since these two variants 

a.

b.
Greyhounds (n = 13)

Other breeds (n = 45)

Cyp2B11 gene
Exons 1             2  3    4   5   6      7  8         9

-3’UTR

Figure 4.  Linkage disequilibrium across the CYP2B11 gene. Results of genotype association analysis conducted 
using the Haploview program40. Shown are the locations of polymorphic sites identified in the 5′-enhancer, 
exons 1 to 9, and 3′UTR in 13 Greyhounds (a) and single dogs sampled from 45 different breeds (b). Below each 
set of polymorphisms are matrices of linkage disequilibrium r2 values (as a percent) for pairwise comparisons. 
All black squares indicate complete linkage (r2 = 100%). c.1952 C/T (#4) was not associated (r2 = 0%) with any 
other polymorphism genotyped in both Greyhounds and non-Greyhound dogs. c.2498 G/T (#8) was invariant 
in all Greyhounds genotyped. The genetic polymorphism labels used here (#1 to #9) correspond to the labels 
used in Tables 2 and 3. Samples from Greyhound dogs were identified by their owners as dogs registered with 
the National Greyhound Association bred for racing.
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(c.2137 TG/CA and c.2166G/A) were located within the middle 3′-UTR region, this finding is consistent with 
a shortened 3′-UTR in the CYP2B11-H2 mRNA at some position between c.1913 and c.2137, rather than at 
the expected 3′-UTR end at c.2625. This was confirmed by RT-PCR analysis of the transfected CYP2B11-H1 
and CYP2B11-H2 3′-UTR luciferase reporters (Fig. 7b). Furthermore, in the initial study that cloned CYP2B11 
cDNA, two CYP2B11 mRNA species (one long and one short) by Northern blot analysis of dog liver RNA were 
also reported18. The approximate sizes of those mRNA species (2.9 kb and 1.9 kb) are similar to the predicted sizes 
of the CYP2B11-H1 (2.6 kb) and CYP2B11-H2 (1.9 – 2.1 kb) mRNA. Finally, sequence analysis of the 3′-UTR 
identified two canonical consensus polyadenylation signal sites, one located upstream of the CYP2B11-H1 3′-end 
and an alternate canonical polyadenylation signal site upstream of the predicted CYP2B11-H2 3′-end (Fig. 7C).

Surprisingly, we did not observe CYP2B11-H2 allelic imbalance in the RNA-seq data at the two polymorphic 
sites further downstream (c.2283A/G and c.2636G/C). This would have been expected if the shorter CYP2B11-H2 
transcript was generated through early termination of transcription with polyadenylation close to the internal 
alternate polyadenylation signal site. Recently, a novel widely used mechanism has been identified that generates 
shorter transcripts from longer transcripts through post-transcriptional 3′-UTR cleavage19. This process results 
in two separate RNA fragments; the mRNA coding region with a shorter 3′-UTR tail and a stable uncapped 
autonomous RNA fragment. Our RNA-seq data provides preliminary evidence that such a mechanism may be 
involved in generating the shorter (final) CYP2B11-H2 transcript from a longer (precursor) CYP2B11-H2, as well 
as a separate stable RNA fragment containing the variant allele. Importantly, our data suggests that one or more of 
the CYP2B11-H2 3′-UTR polymorphisms may serve to enhance utilization of this process through mechanisms 
that do not involve altering the polyadenylation signal sequence.

Since the CYP2B11-H3 only consisted of a single 3′-UTR SNP located at c.1952, RNA-seq data was unin-
formative regarding the length of the CYP2B11-H3 3′UTR downstream of this position. However, RT-PCR of 
CYP2B11 3′-UTR luciferase reporters indicated that the CYP2B11-H3 3′UTR was also truncated relative to 
CYP2B11-H1 with a length that was similar to CYP2B11-H2. More precise mapping of the 3′UTR of the CYP2B11 
mRNA variants could be done in futures studies using techniques such as 3′-rapid amplification of cDNA ends 
(3′-RACE) or single molecule real-time (SMRT) sequencing.

The main purpose of constructing the CYP2B11 3′-UTR luciferase reporters was to evaluate the functional 
effects of the H2 and H3 haplotypes on gene expression. Both haplotypes significantly reduced gene expression 
as measured by luciferase activity, although H3 had the greatest effect, more than twice that of H2. Truncation 
of the 3′-UTR in the H2 and H3 variants would be expected to decrease mRNA stability. However, no differ-
ences were observed in mRNA expression between H1, H2 and H3 luciferase constructs using primers targeting 
Region 1 (Fig. 8B). Furthermore, CYP2B11 mRNA abundance was not lower in dog livers with either of the H2 
or H3 haplotypes compared to those with only the H1 haplotype (Fig. 9C). Genotyped dog liver data did suggest 

Genetic polymorphism Haplotype frequency % (N haplotype/N total haplotypes)

#1 #2 #3 #4 #5 #6 #7 #8 #9 Greyhounds (n = 13) Other breeds (n = 45)

Haplotype 1 G A TCA C TG G A T G 31 (8/26) 62 (56/90)

Haplotype 2 A G TCCA C CA A G T C 50 (13/26) 18 (16/90)

Haplotype 3 G A TCA T TG G A T G 19 (5/26) 3 (3/90)

Haplotype 4a G G TCA C TG G A G G — 8 (7/90)

Haplotype 5 A G TCA C TG G A G G — 7 (6/90)

Haplotype 6 G G TCCA C TG G A T G — 2 (2/90)

Table 3.  CYP2B11 haplotypes in Greyhounds and other dog breeds. Greyhounds (n = 13) and one dog from 
each of 45 other breeds were genotyped for 9 polymorphisms in the CYP2B11 gene. Samples from Greyhound 
dogs were identified by their owners dogs registered with the National Greyhound Association bred for racing. 
Details regarding the polymorphisms are given in Table 2. Six haplotypes (H1 to H6) could be inferred from 
these genotypes. The allele sequences are shown for each haplotype. Alleles that differ from the CanFam 3.1 
reference sequence are indicated by bolding and underlining for each haplotype. Also shown are the frequencies 
of each haplotype. The genetic polymorphism labels used here (#1 to #9) correspond to the labels used in Fig. 4 
and Table 2. aHaplotype 4 was identical to the CanFam 3.1 reference sequence.

Breed N dogs

Number of dogs with each CYP2B11 diplotype Haplotype frequency (%)

H1/H1 H1/H2 H2/H2 H1/H3 H2/H3 H3/H3 H2 H3

Beagle 50 30 15 5 0 0 0 25 0

Mixed-breed 153 95 44 9 3 2 0 21 2

Greyhound (NGA) 180 56 54 12 39 14 5 26 18

Greyhound (AKC) 61 14 0 0 22 0 25 0 59

Table 4.  Comparison of CYP2B11 haplotype frequencies in Greyhound, Beagle and mixed-breed dogs. DNA 
samples were genotyped by allelic discrimination assay for haplotype-specific polymorphisms, including c.2137 
TG/CA (CYP2B11-H2) and c.1952 C/T (CYP2B11-H3). Shown are the numbers of dogs with each diplotype 
and the derived haplotype frequencies. Greyhounds were divided into two groups based on whether they were 
identified by their owners as dogs registered with the National Greyhound Association (NGA) bred for racing 
or dogs registered with the American Kennel Club (AKC) bred for other purposes.
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that these haplotypes might reduce translational efficiency as reflected by lower CYP2B11 protein/mRNA ratios 
(Fig. 9D). Consequently, it is possible that the CYP2B11-H2 and CYP2B11-H3 variants create novel binding sites 
for microRNAs on the mature mRNA (c.1913 insert C and c.1952 C > T, respectively), which are known to regu-
late gene expression by repressing translation.

Other 
dog breeds

Sighthound 
dog breeds

Other 
dog breeds

Sighthound 
dog breeds

Figure 5.  Breed variation in CYP2B11 haplotypes in Sighthounds and other breeds. CYP2B11-H2 and 
-H3 genotypes were determined using 2,057 DNA samples collected from 64 different breeds, including 19 
Sighthound breeds, 45 other (non-Sighthound) breeds, and 153 mixed-breed dogs. Breeds were designated by 
the dog’s owner. Greyhounds were divided into two breed sub-groups based on whether they were identified by 
their owners as dogs registered with the National Greyhound Association (NGA*) bred for racing or were dogs 
registered with the American Kennel Club (AKC**) bred for other purposes. Haplotype frequencies are shown 
for individual breeds grouped into “Sighthound dog breeds” and “Other dog breeds” for comparison. Shown next 
to the breed name are the number of individual dogs that were sampled. At least 10 dogs were sampled per breed.
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Figure 6.  CYP2B11 mRNA allelic imbalance. Variant allelic expression ratios were derived by RNA-seq analysis 
of liver RNA from dogs that were identified as heterozygous for the H1/H2 (3 Beagles and 3 Greyhounds) 
and H1/H3 (one Greyhound) diplotypes. Raw ratios (averaged by breed and diplotype group) were corrected 
for mapping efficiency differences between alleles by using whole genomic sequencing data obtained from 
H1/H2 and one H1/H3 diplotype dogs. Details are given in the Materials and Methods section. Corrected 
allelic expression ratios are shown plotted against the polymorphism position in the cDNA (adenine in start 
codon = +1). Samples from Greyhound dogs were identified by their owners as dogs registered with the 
National Greyhound Association bred for racing.
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Figure 7.  Effect of CYP2B11 3′-UTR polymorphisms on gene expression. (a) Firefly luciferase 3′-UTR reporter 
plasmids were constructed using the complete 3′UTR region cloned using DNA from dogs homozygous for the 
H1, H2 and H3 haplotypes. (b) Plasmids were co-transfected with Renilla luciferase (transfection control) into 
MDCK cells and assayed using the Dual-Glo assay kit. Results are expressed relative to CYP2B11-3′UTR-H1 
plasmid transfected cells and represent the mean (standard deviation) of 3 independent experiments conducted 
in quadruplicate. Significant differences between haplotypes were identified by ANOVA (P < 0.05). Shown are 
the P-values for post hoc pairwise multiple comparisons testing to H1 control (Holm-Sidak method).
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Although Greyhounds are the principle breed reported to experience anesthetic drug sensitivity, veterinarians, 
owners, and breeders suspect that some closely related breeds within the Sighthound group of dog breeds may 
also be sensitive4–6. Consequently, we determined and compared the prevalence of both the H2 and H3 haplo-
types across diverse breeds. We hypothesized that any variant contributing to the slow metabolizer phenotype 
should be more prevalent in Greyhounds and possibly other related Sighthounds compared with non-Sighthound 
breeds. This hypothesis was not confirmed for CYP2B11-H2, which could reflect the milder effects of this hap-
lotype on drug metabolism phenotype. However, we did find a significantly higher prevalence of CYP2B11-H3 
among Sighthounds compared with non-Sighthounds, with AKC Greyhounds having the highest H3 frequency 
of all breeds sampled (nearly 60%).

A recent genomic study indicates that most Sighthound breeds belong to one of two monophyletic groups20. 
Sighthound Group 1 contains the following breeds; Greyhound, Whippet, Scottish Deerhound, Irish Wolfhound, 
Borzoi, and Italian Greyhound. Sighthound Group 2 contains breeds from most of the other Sighthounds sam-
pled in our study, as well as some breeds not considered Sighthounds, such as Great Pyrenees, Komondor, and 
Anatolian Shepherd. The CYP2B11-H3 haplotype was found in all of the Sighthound Group 1 breeds except 
Irish Wolfhound, while only one of the 7 Sighthound Group 2 breeds sampled (Ibizan Hound) had this haplo-
type. This finding suggests that CYP2B11-H3 may have arisen in a common ancestor of the Sighthound Group 
1 breeds. Given the sporadic presence of CYP2B11-H3 in largely unrelated breeds outside of Group 1, it is likely 
that CYP2B11-H3 was dispersed from the Sighthound Group 1 breeds to other breeds through admixture and 
haplotype sharing, as was recently shown for other alleles by Parker et al.20.

b.
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cDNA: C H1 H2 H3 -- C H1 H2 H3 --
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Figure 8.  Effect of CYP2B11 3′-UTR polymorphisms on transcript length. (a) PCR primers were designed to 
amplify CYP2B11 3′-UTR cDNA upstream (5′) of any polymorphism (Region 1) and downstream (3′) adjacent 
to Region 1 overlapping two polymorphisms (c.2137 TG/CA and c.2166 G/A) that demonstrated significant 
allelic imbalance (Regions 2 and 3). (b) PCR was then conducted with each primer set using reverse transcribed 
RNA extracted from MDCK cells transfected with luciferase reporter constructs containing each of the 
CYP2B11 3′-UTR haplotypes (H1, H2 or H3), untransfected cells (C), or no input RNA (−). PCR primers for 
the housekeeping gene, GAPDH, were included to exclude an effect of differences in RNA extraction and reverse 
transcription efficiency. DNA bands of the appropriate size were identified by agarose gel electrophoresis with 
Sybr Green staining. Supplementary Figure S1 contains full length gels. (c) Sequence analysis of the CYP2B11 
3′-UTR identified two canonical consensus polyadenylation signal (AAUAAA) sites. Their locations are 
indicated relative to the predicted 3′ ends of each 3′-UTR haplotype. (?) indicates the region likely to contain the 
3′-end of the mRNA based on RT-PCR and RNA-seq data.
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AKC Greyhounds differed considerably from NGA Greyhounds in that they had a higher CYP2B11-H3 
prevalence and lacked CYP2B11-H2. This difference may reflect a founder effect that occurred when these two 
populations were initially isolated. It might also be a consequence of selective breeding for different purposes, 
in that NGA Greyhounds are primarily bred for racing speed, while AKC Greyhounds are primarily bred for 
conformation.

Our results predict that some, but not all Greyhounds would have decreased CYP2B11 expression. Lowest 
CYP2B11 expression would be expected in dogs with the CYP2B11 H3/H3 diplotype, about 70% lower than for 
dogs with the H1/H1 diplotype. Although prior reports have shown lower clearance of propofol and thiobar-
biturates in Greyhounds compared with mixed-breed dogs, all results were presented as aggregated data (i.e. 
mean ± SD) from 10 to 12 dogs per breed group7,8. Consequently, it is unclear whether there were differences 
between individual Greyhounds of a magnitude that would be consistent with the difference predicted by our in 
vitro data. It should also be pointed out that non-genetic factors such as enzyme induction and inhibition could 
contribute to variable CYP2B11 metabolism on top of genetic regulation. This is exemplified by enhancement of 
thiopental clearance by phenobarbital and inhibition of propofol clearance by chloramphenicol, respectively, in 
Greyhounds9,10.

Figure 9.  CYP2B11 diplotype-phenotype association analysis. Differences in (a) CYP2B11 activity, (b) protein, 
(c) mRNA, and (d) protein/mRNA ratio between the 15 previously studied dog livers are shown as box and 
whisker plots after grouping by CYP2B11 diplotype. Diplotypes included H1/H1 (2 Beagles and 3 mixed-breed), 
H1/H2 (3 Beagles, 2 mixed-breed, and 3 Greyhounds), H1/H3 (one Greyhound) and H3/H3 (one Greyhound). 
No dogs had the H2/H2 diplotype. Since only one dog liver had the H1/H3 diplotype and one liver had the 
H3/H3 diplotypes, these data were grouped with the H1/H2 livers (10 livers total) for statistical comparison 
by Mann-Whitney U test (P-values shown, N.S = not statistically significant) with the H1/H1 livers (5 livers). 
Samples from Greyhound dogs were identified by their owners as dogs registered with the National Greyhound 
Association bred for racing.
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In addition to detecting CYP2B11-H3 in 9 Sighthound breeds (other than Greyhounds), we also found this 
haplotype in 10 non-Sighthound breeds suggesting that the Sighthound CYP2B11 poor metabolizer phenotype 
might be found in non-Sighthound breeds. For most of these non-Sighthound breeds, the H3 haplotype fre-
quency was relatively low (less than 10%). Therefore, the predicted frequency of the poor metabolizer CYP2B11 
H3/H3 diplotype would be less than 1% (assuming we had a sufficiently representative sample of these breeds). 
However, we note that three of the breeds, including Labrador Retriever, Golden Retriever, and English Bulldog 
were ranked by the AKC in 2018 as the first, third, and fifth most popular dog breeds owned in the USA, respec-
tively, based on annual AKC registration21. Consequently, the overall impact of this gene variant on these breeds 
could be substantial, at least in terms of the absolute numbers of dogs affected.

There were some limitations to the current study. The numbers of available dog livers from different breeds 
and with different genotypes were somewhat limited and so the results utilizing those samples should be viewed 
with caution. Also, the numbers of available DNA samples for some dog breeds was limited by availability, with 
a minimal sample size of 10 dogs arbitrarily set by us, so extrapolation to the entire breed should be done with 
caution. Furthermore, genotyping of the over 2,000 dogs was carried out using single haplotype marker poly-
morphisms and so for H2, which consists of multiple SNPs, it remains possible that the selected marker is not 
unique to the variant haplotype within the larger population. Finally, our predictions concerning the impact of 
the H2 and H3 variants on CYP2B11 expression are entirely based on in vitro studies with extrapolation in vivo. 
Consequently, future studies are needed to confirm these findings such as through evaluation of CYP2B11 func-
tion in vivo using isoform specific drug phenotyping probes comparing dogs from different breeds and with dif-
ferent CYP2B11 genotypes. Studies are ongoing in our laboratory to further characterize the impact of CYP2B11 
haplotypes in vivo.

Materials and Methods
Animal ethics statement.  The collection and use of liver tissue employed in this study were considered 
exempt from review by the Institutional Animal Care and Use Committee at Washington State University since 
all tissues collected would have been normally discarded. The collection, storage, and use of the DNA samples 
employed in this study were approved by the Institutional Animal Care and Use Committee at Washington State 
University (protocols #04194 and #04539) and were collected in accordance with relevant guidelines and regula-
tions. Informed owner consent was obtained for all dogs prior to DNA collection.

Chemicals and reagents.  Phenacetin, acetaminophen, 2-acetamidophenol, coumarin, 7-hydroxy-comuarin 
(umbelliferone), flurbiprofen, dextromethorphan, dextrorphan, trazodone, thymol, bupropion, 
6-hydroxy-bupropion, alprazolam, 1′-hydroxy-alprazolam, NADP+, isocitrate dehydrogenase, and DL-isocitrate 
were purchased from Sigma-Aldrich (St. Louis, MO, USA). Pronethalol was from Tocris (Minneapolis, MN, 
USA). Propofol was provided by Zeneca Pharmaceuticals (Wilmington, DE, USA). 4′-hydroxy-flurbiprofen, 
2-fluoro-4-biphenyl-acetic acid, 4-hydroxy-propofol, chlorzoxazone, and 6-hydroxy-chlorzoxazone were pur-
chased from Toronto Research Chemicals (Toronto, ON, Canada). S-Mephenytoin and 4-hydroxymephenytoin 
were purchased from Gentest (Corning, Corning, NY, USA). GW340416A, a chemical analogue of bupropion, 
was kindly provided by GlaxoSmithKline (Research Triangle Park, NC, USA). Omeprazole was purchased from 
BeanTown Chemical, Inc. (Hudson, NH, USA) and omeprazole sulfone was purchased from Cayman Chemical 
Company (Ann Arbor, MI, USA). Sodium hydroxide, potassium phosphate monobasic and potassium phosphate 
dibasic and EDTA were purchased from J.T. Baker (Center Valley, PA, USA). HPLC-grade acetonitrile and meth-
anol were purchased from Thermo Fisher Scientific (Waltham, MA, USA). Ultra-pure water was obtained using 
a Milli-Q® Q-POD Millipore System (EMD Millipore, Burlington, MA, USA).

Dog liver tissues and microsomes.  Snap frozen liver tissue samples were obtained and stored at −80 °C 
from 15 untreated healthy adult dogs, including 5 Greyhounds (3 males and 2 females; all registered NGA dogs 
bred for racing), 5 male mixed-breed dogs, and 5 male Beagle dogs. Dogs were untreated (control) research ani-
mals that had been euthanized for reasons unrelated to this study. Liver microsomes were prepared from the liver 
tissue samples detailed above as previously described22 and stored at −80 °C until use. Microsomal protein con-
centrations for liver microsomes were determined using the bicinchoninic acid assay (Thermo Fisher Scientific).

Dog breed DNA sampling.  Stored DNA samples from client-owned dogs were retrieved from the 
Washington State University Veterinary Teaching Hospital Patient DNA Bank (n = 1,182) and the Comparative 
Pharmacogenomics Laboratory Sighthound DNA Bank (n = 875). DNA had been extracted from buccal swab 
samples obtained by the hospital staff or by the dog’s owner. The majority of the hospital patient samples derived 
from dogs living in the Pacific Northwest of the United States, while the Sighthound samples were obtained 
primarily by mail from dogs living throughout the United States. A dog’s breed was identified by the owner 
for the Hospital Bank whereas breed was identified by the owner along with accompanying breed registration 
identification for the Sighthound Bank. For the purposes of this study, the designations “mix”, “mixed”, “cross”, 
“mutt”, “mongrel” or similar by the owner was considered as a single group of “mixed-breed” dogs. The 2,057 
DNA samples represented 64 different dog breeds including 19 Sighthound breeds, 45 non-Sighthound breeds, 
as well as 153 mixed-breed dogs. The designation of a breed as belonging to the ‘Sighthound’ group was based on 
the AKC’s breed inclusion for Sighthounds23. Samples from Greyhound dogs were divided into two groups based 
on whether they were identified by their owners as dogs bred for racing and registered with the NGA (n = 180) 
or were dogs bred for other purposes and registered with the AKC (n = 61). All breed groups included samples 
from at least 10 different dogs.
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Recombinant canine CYPs.  Recombinant canine CYP1A1, CYP1A2, CYP2B11, CYP2C21, CYP2C41, 
CYP2D15, CYP3A12 and CYP3A26, all co-expressed with canine P450 oxidoreductase (POR) as bactosomes, 
were purchased from Sekisui Xenotech LLC (Kansas City, KS, USA). Since recombinant canine CYP2A13, 
CYP2A25 and CYP2E1 were not commercially available, these enzymes were made in-house as follows.

cDNA sequences for canine CYP2A13, CYP2A25, CYP2E1 and POR (NCBI entries NM_001037345.1, 
NM_001048027.1, NM_001003339.1, and NM_001177805.1, respectively) were synthesized and cloned into the 
pFastBac1™ vector (Thermo Fisher Scientific) by GenScript (Piscataway, NJ, USA). CYP and POR recombinant 
baculoviruses were created using the Bac-to-Bac® baculovirus expression system (Thermo Fisher Scientific) fol-
lowing the manufacturer’s protocols. Briefly, recombinant baculoviruses were created by transforming DH10Bac 
competent Escherichia coli with the recombinant pFastBac1™ plasmids using heat shock. Recombinant bacmid 
DNA was isolated using a QIAprep® Spin Miniprep Kit (Qiagen, Hilden, Germany) and transfected into Sf9 
(Spodoptera frugiperda) insect cells through Cellfectin® II reagent-mediated gene transfer to produce recombi-
nant baculoviruses. Recombinant baculoviruses were clarified and amplified to create high-titer passage stocks. 
Gel electrophoresis and DNA sequencing confirmed the presence of the cDNA in recombinant baculovirus. 
Amplified viral stocks were titered relative to the recombinant POR baculovirus stock using a TaqMan® gene 
expression assay (Thermo Fisher Scientific) as described by Hitchman et al.24.

Sf9 shaking suspension cultures were grown in the dark at 27 °C in Sf-900™ II serum-free medium (Thermo 
Fisher Scientific) supplemented with 5% fetal bovine serum (HyClone Laboratories, Logan, UT, USA) to a cell 
density of 1.5 × 106 cells/mL. Cells were then co-infected with recombinant viruses encoding CYP and POR at 
optimal CYP:POR viral ratios determined in preliminary experiments. At 24 h post-infection, hemin (prepared 
by dissolving in 50% ethanol and 0.2 M NaOH) was added to the culture to achieve a final concentration of 2 µg/
mL25. Cells were harvested at 72 h post-infection by centrifugation and washed twice with 4 °C phosphate buff-
ered saline (pH 7.4). Cells were stored at −80 °C until use.

Microsomes were prepared by homogenization using a pestle tissue grinder follow by 2-speed centrifuga-
tion (9,000 and 100,000 × g at 4 °C) and then reconstituted in 100 mM phosphate buffer (pH 7.4), 20% glycerol 
and 1 mM EDTA26. Functional CYP content of recombinant microsomes was measured by CO-difference spec-
trum using a microplate assay as described by Yang et al.27. For the CO-difference spectra, an extinction coeffi-
cient (Δε450-490) of 106,000 M−1 cm−1 28,29 was used. POR activity of the recombinant microsomes was assessed 
by the cytochrome c reduction assay as described by Guengerich et al.29 but scaled to fit a microplate format. 
Functionality of the recombinant microsomes was assessed through 7-ethoxycoumarin metabolism to umbellif-
erone (7-hydroxycoumarin) as detailed by Waxman and Chang30. Microsomes were stored at −80 °C until use.

Liver and recombinant CYP enzyme activities.  Enzyme activities selective for human CYPs were 
measured and compared using Greyhound, Beagle and mixed-breed dog liver microsomes (n = 5 livers per 
breed). Activities (and the corresponding human CYPs) included phenacetin o-deethylation (CYP1A), coumarin 
7-hydroxylation (CYP2A6), bupropion 6-hydroxylation (CYP2B6), flubiprofen 4-hydroxylation (CYP2C9), 
(S)-mephenytoin 4-hydroxylation (CYP2C19), dextromethorphan o-demethylation (CYP2D6), chlorzoxazone 
6-hydroxylation (CYP2E1), and omeprazole sulfonation (CYP3A)31. There is also evidence that some of these 
activities are selective for the respective canine CYP ortholog; including phenacetin O-deethylation (canine 
CYP1A)14, coumarin 7-hydroxylation (canine CYP2A13)32, propofol 4-hydroxylation (canine CYP2B11)13, dex-
tromethorphan O-demethylation (canine CYP2D15)33, and chlorzoxazone 6-hydroxylation (canine CYP2E1)34.

In vitro incubation assay conditions including substrate concentration, microsomal protein concen-
trations, incubation time, and analytical method details are given in Supplementary Table S2. Most metabo-
lite concentrations were determined by HPLC with absorbance or fluorescence detection (700-series Satellite 
Wisp auto-injector, 500-series pump, 486 absorbance detector, 470 fluorescence detector; Waters, Milford, 
MA, USA). 6-Hydroxybupropion and omeprazole sulfone concentrations were determined using a liquid 
chromatography-triple-quadrupole (LC-MS/MS) system (Agilent 1100 liquid chromatography system; Agilent 
Technologies, Inc., Santa Clara, CA, USA connected to an API 4000 mass spectrometer, AB Sciex, Framingham, 
MA, USA). Preliminary studies were conducted for each biotransformation using pooled dog liver microsomes 
to ensure linear metabolite formation with respect to increasing time and microsomal protein concentration. 
The rate of metabolite formation was calculated by dividing the metabolite concentration in the sample by the 
incubation time and microsomal protein concentration. Experiments were conducted in duplicate and results for 
individual liver microsomes were averaged. Propofol 4-hydroxylation activity values reported previously for the 
same set of dog liver microsomes13 were also used to compare to these newly generated data.

Propofol 4-hydroxylation, bupropion 6-hydroxylation, and omeprazole sulfonation activities were also meas-
ured using a panel of 11 recombinant canine CYP enzymes that included CYPs 1A1, 1A2, 2A13, 2A25, 2B11, 
2C21, 2C41, 2D15, 2E1, 3A12, and 3A26. Propofol 4-hydroxylation activities were quantified as previously 
described12,13 with slight modifications as follows. Recombinant CYP concentration in the incubation was 10 
pmol/mL, propofol concentration was 5 μM, while the incubation time was 10 min. The HPLC column used was a 
4 μm, 150 × 2 mm Phenomenex® Synergi™ Fusion-RP 80 Å (Torrance, CA, USA). A gradient mobile phase (total 
flow of 0.4 mL/min) was used consisting of mobile phases A (100% acetonitrile) and B (80% 20 mM phosphate 
buffer and 20% acetonitrile, v/v). The gradient was as follows: linear gradient from 10 to 20% A over 10 min, 
20 to 46% A over 10 min, 46 to 100% A over 2 min, 100 to 10% A over 1 min. Bupropion 6-hydroxylation and 
omeprazole sulfonation activities were quantified as described in Supplementary Table S2 for liver microsomes, 
except that recombinant CYP enzymes were used instead of liver microsomes at an incubation concentration 
of 10 pmol/mL. The rate of metabolite formation was calculated by dividing the final metabolite concentration 
by the incubation time and recombinant CYP concentration. Unless otherwise indicated, all experiments were 
performed in duplicate and results were averaged for the data point. All experiments were repeated at least three 
times on separate days.
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The relative contributions of individual CYP isoforms to total liver microsome propofol hydroxylation, bupro-
pion hydroxylation, and omeprazole sulfonation activities were estimated by adjustment of specific CYP activities 
using the average liver microsome abundance of each CYP. Abundance values determined by mass spectrometry 
in liver microsomes from 59 dogs of differing breeds were 2.8, 82, 11, 7.7, 79, 52, 1.8, 143, 72, 125, and 3.8 pmoles 
CYP per mg microsomal protein for CYPs 1A1, 1A2, 2A13, 2A25, 2B11, 2C21, 2C41, 2D15, 2E1, 3A12, and 3A26, 
respectively15.

CYP1A, CYP2B11, and CYP3A protein content by immunoblotting.  Microsomal CYP1A, 
CYP2B11 and CYP3A protein content were determined by semi-quantitative immunoblotting using the same 
Greyhound, Beagle and mixed-breed dog liver microsomes (n = 5 per breed) described above. The technique was 
based on a method described previously with minor modifications35. Rabbit polyclonal antisera raised against rat 
CYP1A2 (AB1255) and rat CYP3A1 (AB1253) were purchased from Chemicon Millipore (Temecula, CA, USA). 
Rabbit polyclonal antisera raised against dog CYP2B11 was a generousgift from Dr. James Halpert (School of 
Pharmacy, University of Connecticut, Storrs, CT, USA)36. Briefly, 10 µg of microsomal protein was separated by 
sodium dodecyl sulfate acrylamide gel electrophoresis using a 26-well 5 to 15% gradient gel (Criterion, Biorad, 
Hercules, CA, USA). Proteins were then electrophoretically transferred using a semi-dry technique to polyvinyl 
difluoride membrane (Immobilon-P; Millipore Corporation). Membranes were blocked in 5% powdered non-
fat milk in Tris-buffered saline-Tween (0.15 M NaCl, 0.04 M Tris, pH 7.7, and 0.1% Tween 20) for one hour at 
room temperature and then incubated overnight at 4 °C in Tris-buffered saline-Tween/5% milk containing the 
primary antibody at an appropriate dilution (1:500 for CYP1A2; 1:6,000 for CYP2B11; 1:1,000 for CYP3A). Blots 
were washed, reblocked, and then incubated at room temperature for one hour with a 1:10,000 dilution of a goat 
anti-rabbit IgG antibody conjugated to horse radish peroxidase (PerkinElmer, Inc., Waltham, MA, USA). After 
washing, chemiluminescence reagent (Super Signal; Pierce Chemical Cp., Dallas, TX, USA) was applied, and blots 
were imaged using the Kodak Image Station 440CF (Kodak, Rochester, NY, USA). Bands were quantified using 
Kodak 1D Image Analysis Software (Kodak) and net intensity values for each liver sample were expressed relative 
to the liver sample containing the lowest band intensity. Final results for each liver sample represent the average 
of 3 independent experiments. Preliminary studies were conducted using serial dilutions of pooled dog liver 
microsomes to ensure a linear relationship between the amount of microsomal protein loaded and band intensity 
up to 20 µg of loaded protein. To ensure equal protein loading, membranes were washed and total protein was 
visualized with Ponceau S reagent37.

Liver CYP2B11 mRNA quantitation.  Total RNA was isolated using TRIZOL Reagent (ThermoFisher 
Scientific) from the same Greyhound, Beagle and mixed-breed dog livers (n = 5 per breed) used to isolate micro-
somes. CYP2B11 mRNA content relative to 18S rRNA content was determined by real-time PCR with Sybr 
Green-based detection (CFX96 Touch, Bio-Rad) as previously described38. Primers for CYP2B11 mRNA were 
Pri_459_forward: 5′-GGA TTC AGG AGG AGG CTC AGT GTC-3′ and Pri_460_reverse 5′-GAT GTT GGC 
GGT CAT GGA GTG G. Primers for 18S rRNA were Pri_127_forward: 5′-CCC CTC GCT GCT CTT AGC TGA 
GTG T-3′ and Pri_128_reverse 5′-CGC CGG TCC AAG AAT TTC ACC TCT.

CYP2B11 sequencing and genotyping.  Genetic polymorphisms located in the CYP2B11 5′-enhancer 
(to ~2,000 bp upstream), exons 1–9, and 3′-UTR were identified by Sanger sequencing of genomic PCR prod-
uct using DNA obtained from 13 Greyhounds (5 from liver samples and 8 from buccal swab samples). Primers 
used for PCR and sequencing, as well as the gene region amplified and product size are given in Supplementary 
Table S3 Table. Genotype data from the same CYP2B11 gene regions were also obtained from another 45 dogs 
(each of a different breed) by analysis of publicly available whole genome sequence data. Briefly, binary alignment 
files originally submitted by the Institute of Genetics, University of Bern, Switzerland were downloaded from 
the European Nucleotide Archive (Study ID PRJEB16012). Polymorphisms were identified and genotypes called 
on individual dog samples using the Freebayes bayesian genetic variant detector (arXiv:1207.3907) as imple-
mented in Galaxy version 1.1.039 on a Bioteam Appliance (Bioteam, Middleton, MA, USA). The IDs of individual 
dogs that were sequenced and analyzed, as well as their nominal breed, are listed in Supplementary Table S1. 
Haploview40 was used to evaluate the extent of linkage disequilibrium between identified polymorphic sites across 
the CYP2B11 gene and to resolve individual haplotypes.

Custom allele discrimination assays (Applied Biosystems TaqMan SNP Genotyping Assay, Thermo Fisher 
Scientific) were used to genotype DNA samples from 2,057 dogs for the CYP2B11 haplotype marker polymor-
phisms c.2137 TG/CA (CYP2B11-H2) and c.1952 C/T (CYP2B11-H3). Primer and reporter sequences are given 
in Supplementary Table S4. Assays were performed using a real-time PCR instrument (CFX96 Touch, Bio-Rad).

CYP2B11 RNA-seq.  RNA-seq was conducted as described previously41. Total RNA was extracted from 
the same Greyhound and Beagle livers (n = 5 per breed) used for determining CYP activities and quantifying 
CYP2B11 mRNA. Briefly, cDNA libraries were prepared from total RNA from each liver using the Truseq Stranded 
Total RNA LT kit (Illumina, San Diego, CA, USA). Libraries were sequenced on an Illumina 2000 Instrument at 
the Columbia Genome Center (New York, NY, USA), generating 60 million 100-bp paired-end reads. After quality 
filtering, reads were mapped to the canine reference genome (CanFam3.1) using Tophat version 1.5.042 and tran-
scripts assembled using Cufflinks version 0.0.742, as implemented in Galaxy version 1.1.039 on a Bioteam Appliance 
(Bioteam). For allele expression analysis, mapped read depths of the variant and reference alleles in heterozygous 
H1/H2 and H1/H3 samples at the site of each polymorphism comprising the H2 and H3 haplotypes were obtained 
using GenomeBrowse version 2.1.2 (Golden Helix, Bozeman, MT, USA). Variant to reference ratios were obtained 
for each dog and averaged by breed and diplotype group. These raw average ratios were then corrected for possible 
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mapping efficiency differences between alleles by dividing by ratios obtained at the same polymorphic sites using 
mapped DNA sequences from whole genomic sequencing data (described above). These included 5 (other) H1/H2 
diplotype dogs and a H1/H3 dog (since only one dog could be identified with this diplotype).

CYP2B11-3′-UTR luciferase reporter assay.  Plasmid luciferase 3′UTR reporter constructs containing 
the entire CYP2B11-3′UTR reference (-H1) and variant (-H2 and -H3) haplotypes were created using methods 
previously described with minor modifications43. Briefly, PCR was performed using DNA from dogs that were 
homozygous for the CYP2B11-3′UTR H1, H2, and H3 haplotypes. Primers were Pri_1183_forward: 5′-GAC AAC 
TAG TGA GGG TGC TGA GGG AAG G-3′ and Pri_1184_reverse 5′-GAC AAA GCT TAT GGC TCA CCA CCT 
GAC C-3′, which contain 5′-end Hind III and Spe I sites, respectively. PCR products were purified and cloned into 
the Hind III and Spe I sites in the pMIR-REPORT vector. Plasmid clone insert sequences were verified by Sanger 
sequencing. The transfection host was a canine kidney cell line (MDCK [NBL-2] [ATCC® CCL-34™], ATCC, 
Manassas, VA, USA) grown in Eagles minimum essential medium (Thermo-Fisher Scientific) supplemented with 
10% fetal bovine serum (HyClone Laboratories). Approximately 50,000 cells/well were seeded onto 96-well clear 
bottom, white-sided, tissue culture treated plates (Corning) one day prior to transfection. Cells were co-transfected 
with 6 ng of the CYP2B11-3′UTR plasmids and 2 ng of the renilla luciferase pRL-CMV transfection plasmid 
(Promega, Madison, WI, USA) with Lipofectamine 2000 reagent (Thermo Fisher Scientific). Cells were assayed for 
luciferase and renilla activities 48 h after transfection using the Dual-Glo assay kit (Promega) following the man-
ufacturer’s protocol on a SpectraMax i3 plate reader operated with Softmax Pro 6.3 software (Molecular Devices, 
San Jose, CA, USA). Each transfection was carried out in four wells and results were averaged. Independent exper-
iments were repeated on three different days. The final results for each variant CYP2B11-3′UTR haplotype were 
expressed as the mean (and standard deviation) percent of control (H1) renilla normalized luciferase activities.

Reverse transcription followed by PCR (RT-PCR) was used to evaluate effects of the CYP2B11-3′UTR-H2 
and CYP2B11-3′UTR-H3 variants compared with CYP2B11-3′UTR-H1 (control) on expressed RNA in this cell 
model. Briefly, total RNA was extracted (Qiagen spin column) from cells harvested 48 h after transfection. RNA 
(200 ng) was treated with DNAse I enzyme (Thermo Fisher Scientific) and reverse transcribed (Multiscribe, 
Thermo Fisher Scientific) using random hexamer primers (Thermo Fisher Scientific). cDNA was then amplified 
by PCR for 35 cycles using to the manufacturers recommended method (Platinum Taq Supermix, Thermo Fisher 
Scientific) on a thermal cycler (C1000, Biorad). PCR primer sets are given in Supplementary Table S5. PCR prod-
ucts (10 µL) were run on a 1.8% agarose gel stained with Sybr Green and images recorded (Biorad Chemidoc MP).

Statistical analyses.  Statistical analyses were performed using SigmaPlot 13 software (Systat Software 
Inc., San Jose, CA, USA). Associations between breed and drug metabolizing activities and CYP2B11 protein 
and mRNA content were evaluated by analysis of variance (ANOVA) on log-transformed data with post-hoc 
pairwise testing by Holm-Sidak multiple comparisons test. Student’s t-test on log transformed data was also 
used to evaluated differences in enzyme activities between Greyhound and non-Greyhound liver microsomes. 
Relationships between CYP immunoreactive protein content and CYP activities were determined by calculation 
of the Spearman’s correlation coefficient. CYP2B11 haplotype effects on luciferase activity were determined by 
ANOVA followed by Holm-Sidak multiple comparisons test. CYP2B11 diplotype effects on CYP2B11 activity, 
protein, mRNA and protein abundance normalized to mRNA expression in the liver bank, as well as haplotype 
frequencies between Sighthound and non-Sighthound breed groups were evaluated by Mann-Whitney U test. For 
all statistical tests, a P-value < 0.05 was considered statistically significant.

Data availability
All data generated and analyzed during this study are included in this published article and its Supplementary 
Information files.
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