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Introduction
Analyzing X-chromosomal genetic variants is challenging 
because of the complexity of the X-chromosome inactivation 
(XCI) process for female X-chromosome loci, for which one of 
the 2 copies of the X chromosome is randomly inactivated to 
achieve the dosage compensation of X-linked genes in men 
and women.1–10 The XCI process is in general random, that is, 
on average, 50% of cells have one of the 2 alleles active. 
However, an additional model of XCI was found to be skewed 
XCI,6,8,9,11–16 which is defined as inactivation of one of the 
alleles in >75% or 90% of cells.6,8,9,15,17–26 Previous studies for 
different complex diseases (eg, mental retardation disorders, 
rheumatoid arthritis) have shown that the skewed XCI pattern 
can be more common in affected women compared with unaf-
fected women.13,20,27–29 For example, Chabchoub et al20 showed 
that the significantly skewed XCI pattern was observed in a 
larger proportion of female patients with rheumatoid arthritis 
(34%) and patients with autoimmune thyroid disease (26%) 
than among controls (11%). Therefore, it is important to 
account for XCI skewness when analyzing X-chromosomal 
genetic markers.10 Another complexity of the XCI process is 
escaping XCI, in which both alleles are active (ie, no dosage 

compensation), such as the genes on the pseudo-autosomal 
regions on the X chromosome.8,30–33 To analyze X-chromosomal 
genetic variants, one of the most popular software programs for 
studying genetic associations, PLINK, uses the process of 
escaping XCI as the only model, for which the effect of the 
male deleterious allele is assumed to be the same as the effect 
of the female heterozygote genotype. In this case, the 3 geno-
types of women are coded as 0, 1, or 2, and the 2 allele types of 
men are coded as 0 or 1. Such a coding strategy accounts for 
the escaping XCI but ignores other biological models such as 
random and skewed XCI.34 In another approach, Clayton35,36 
proposed χ2 tests to analyze data by accounting for only the 
random XCI model but ignoring the other XCI models. 
Neither approach accounts for XCI skewness. To account for 
these different biological models of XCI, we had developed a 
novel association test to analyze X-chromosomal single-nucle-
otide polymorphisms (SNPs) that maximizes the likelihood 
ratio (LLR) over all such biological possibilities of XCI.10 In 
that paper, we showed that the LLR association test had higher 
power than the existing approaches, including the χ2 test pro-
posed by Clayton and the PLINK regression approach, in the 
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scenarios where XCI was skewed, whereas the LLR association 
test lost a little power in scenarios where XCI was random or 
escaping XCI occurred.

Even though the originally proposed test allows us to evalu-
ate the association between X-chromosomal SNPs and a dis-
ease of interest, it does not provide knowledge regarding the 
underlying XCI models, which is useful information for under-
standing the contribution of SNPs to the disease, as well as the 
inheritance patterns of diseases.37 In particular, the inheritance 
pattern describes how a disease is transmitted38 and helps to 
predict the recurrence risk of a disease for subsequent genera-
tions.39,40 Also, knowing the mode of disease inheritance helps 
us calculate the risk ratio that is attributed to the SNP41 for a 
relative of an affected individual. Such information enables cli-
nicians to provide genetic counseling to family members 
regarding the likelihood of developing the disease or passing it 
on to their children.42 To identify the XCI model given a SNP, 
one approach is to select the XCI model that has the highest 
LLR (denoted as the max-LLR approach). However, such an 
approach does not formally compare the LLRs that correspond 
to different XCI models to assess whether these models are 
statistically equivalent. This is especially relevant when an 
alternate form of XCI may have an LLR that is very close to 
that of the form of XCI with the highest LLR and so may be 
statistically equivalent. Moreover, when the study sample size is 
small, the highest LLR might not correspond to the true 
underlying XCI model, and therefore, the max-LLR approach 
would identify the wrong XCI model in the analysis.

Therefore, in the spirit of the Cox test, which is used for 
comparing 2 nonnested models,43–45 herein we propose an 
LLR comparison procedure (denoted comp-LLR) to for-
mally compare the LLRs of different XCI models using sta-
tistical tests to select the most likely XCI model that describes 
the underlying XCI process. We conduct simulation studies 
to investigate the performance of the comp-LLR approach 
and compare it with that of the max-LLR approach. The 
results show that given an X-chromosomal variant signifi-
cantly associated with the disease of interest, the comp-LLR 
approach has higher probability of selecting the correct XCI 
model for scenarios in which the underlying XCI process is 
random XCI, escaping XCI, or skewed XCI to the deleteri-
ous allele. In our simulations, when the maximum LLR cor-
responded with the true underlying XCI model, the 
comp-LLR approach performed similar to the max-LLR 
approach. However, when the maximum LLR did not cor-
respond to the true simulation XCI model, the comp-LLR 
more often identified the true model as one of the plausible 
XCI process models, which implies that this approach has 
higher probability of selecting the correct XCI model. We 
applied both approaches, max-LLR and comp-LLR, to data 
from a genetic association study of head and neck cancers to 
investigate the underlying XCI processes for the 
X-chromosomal genetic variants.

Methods
LLR and the association test

In this study, we considered a di-allelic SNP on the X chromo-
some and denoted the 2 alleles as A and a, where A is the delete-
rious allele. As described in the original study,10 we used different 
coding values for different XCI processes. Specifically, for ran-
dom and skewed XCI, we, respectively, denoted alleles a and A 
for men using a random variable X = {0, 2} and, respectively, 
denoted genotypes aa, Aa, and AA for women as X = {0, γ, 2}, 
where γ ∈[ , ]0 2 . For escaping XCI, for men, we, respectively, 
denoted alleles a and A as X = {0, 1} and for women, we, respec-
tively, denoted genotypes aa, Aa, and AA as X = {0, 1, 2}. In our 
previous study,10 we proposed to perform a grid search for the γ 
value to obtain the coding value that maximizes the LLRs. 
However, we also observed from simulations that it is not neces-
sary to use a small-step function for a grid search as it has very 
little impact on the LLRs, and multiple comparison issues likely 
lead to a loss of statistical power. Therefore, we considered 3 cod-
ing strategies for random and nonrandom XCI. In particular, the 
γ values of 0, 1, or 2, respectively, represent skewed XCI toward 
the normal allele, random XCI, or skewed XCI toward the del-
eterious allele. Including the escaping XCI model, we have a 
total of 4 coding strategies for the different XCI processes.

Denoting the disease of interest as a binary random variable 
Y = {0, 1}, where 0 represents individuals without the disease 
and 1 represents individuals with the disease, the association 
between an X-chromosomal SNP X and the disease of interest 
Y can be written as follows:

Logit P Y X X X Xsex s sex=( )( ) = + +1 0 1| , β β β

where β0, β1, and βs are regression coefficients and Xsex is the 
variable for the sex. As described above, the value of X ∈Μ  is 
based on each individual’s sex as well as the underlying XCI 
processes. Therefore, we define the set M  as M X XF M= ( , ), 
where X F  denotes a set of coding for genotypes aa, Aa, and 
AA for women, and X M  denotes a set of coding for 2 allele 
types, a and A, for men. Specifically, we evaluate 4 distinct 
models based on 4 different coding sets: (1) M1 = random XCI 
in which X F ∈ { , , }0 1 2  and X M ∈ { , }0 2 , (2) M2 = escaping 
XCI in which X F ∈ { , , }0 1 2  and X M ∈ { , }0 1 , (3) M3 = 
skewed XCI to the normal allele in which X F ∈ { , , }0 0 2  and 
X M ∈ { , }0 2 , and (4) M4 = skewed XCI to the deleterious 
allele in which X F ∈ { , , }0 2 2  and X M ∈ { , }0 2 .

Given a sample data set with N individuals, the likelihood is 
written as L Y X X xsex s i

N
i( | , ; , , ) (exp(β β β β β0 1 1 0 1= + +

=∏
β β β β β βs sexi i s sexi

y
ix x x xi)/ ( exp( ))) ( / ( exp(1 1 10 1 0 1+ + + + + +

 

βs sexi
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associated with the disease, where xi and xsexi are the observed 
values of the X-chromosomal SNP and the sex and yi are the 
observed disease status. Therefore, the LLR can be written as a 
function of different coding of X:

LLR X
L Y X X

L Y X
Xsex s

sex s
( ) ( | , ; , , )

( | ; , )
,= ∈

β β β
β β
0 1

0
Μ

For the SNP-disease association, for each X coded accord-
ing to a specific XCI model, we first estimate the regression 
coefficients β0, β1, and βs, as well as the corresponding LLR. By 
enumerating all different models, X M∈ , we obtain the maxi-
mum LLR, LLR*, based on the sample data. The significance 
of the association between a SNP and the disease was assessed 
by comparing LLR* with its null distribution obtained using a 
permutation-based procedure as described in the original 
study.10 In this study, we are interested in selecting the most 
likely XCI model that describes the underlying XCI process. 
Note that the max-LLR approach selects such an XCI model 
(ie, X) as the one for which the LLR is maximum (ie, LLR*). 
The details of the comp-LLR approach are described below.

Procedure for comparisons of LLRs (comp-LLR)

To compare 2 LLRs, we use a test statistic that is inspired by 
the Cox test43–45 for comparing 2 nonnested models. Two mod-
els are considered as nonnested if one model cannot be derived 
from the other model by parametric restriction or a limiting 
process, such as imposing constraints on the parameters of one 
of the models.46,47 This is the case in our study where the LLRs 
for different XCI processes use different coding values for the 
X-chromosomal SNPs. When comparing 2 nonnested models, 
M1 and M2, the basic idea of the Cox test is that if M1 repre-
sents the correct model, then a fit of the regressors from M2 to 
the fitted values from M1 should not have further explanatory 
value; if it has, it can be concluded that M1 does not represent 
the correct model.43–45,48 We use the R function “coxtest” in the 
“lmtest” package to conduct the test.49,50 To compare the 4 
LLRs based on 4 different XCI processes, including skewed 
XCI to the normal allele, random XCI, skewed XCI to the 
deleterious allele, and escaping XCI, we started with the XCI 
model with the highest LLR as the most likely model that 
describes the data and compared it with the other XCI models. 
The formal comparison procedure is described below:

1. Rank the LLRs as LR LR LR LR( ) ( ) ( ) ( )1 2 3 4≥ ≥ ≥ . We 
denote the XCI models corresponding to the ranked 
LLRs as M( )1 , M( )2 , M( )3 , and M( )4 , respectively. Let 
X ( )1 , X ( )2 , X ( )3 , and X ( )4  be the sets of regressors asso-
ciated with the 4 models, respectively. Note that X ( )1 , 
X ( )2 , X ( )3 , and X ( )4  are defined as matrices with 3 col-
umns: the first column of 1’s represents the intercept and 
the rest of the columns represent the SNP based on dif-
ferent XCI models and the individual’s sex.

2. Compare the XCI model corresponding to the second 
highest LLR (ie, M( )2 ) with the XCI model correspond-
ing to the highest LLR (ie, M( )1 ). We test the hypothesis 
that X ( )2  is the set of correct regressors, that is, 
H Logit P Y X X0 21: ( ( | )) ( )= = β , where β = (β0, β1, βs)'   
is the vector of the model coefficients. The statistic for 
this test can be written as follows48:

T N s sX X X= ( )/ ln /
( ) ( ) ( )

2
1 1 2

2 2

 where N  is the number of individuals, sX ( )1

2  is the mean 
squared residual for model M( )1 , and sX X( ) ( )1 2

2 =  
s X Q X NX X( ) ( )( ) ( ) /

2 1

2
2 2+ ′ ′β β  , where 

β = ′ ′−( )( ) ( ) ( )X X X Y2 2
1

2
, and 

Q I X X X XX ( ) ( ) ( ) ( ) ( )( )
1 1 1 1

1
1= − ′ ′− , where I  is the identity 

matrix. The estimated variance of the test statistic is cal-
culated as follows:

V T s s X Q Q Q XX X X X X X
  ( ) /

( ) ( ) ( ) ( ) ( ) ( )( ) ( )= ( ) ′ ′
2 1 2 1 2 1

2 4
2 2β β,

 where sX ( )2

2  is the mean squared residual for M( )2  and 
Q I X X X XX ( ) ( ) ( ) ( ) ( )( )

2 2 2 2
1

2= − ′ ′− . T V T/ ( )  is asymp-
totically standard, normally distributed. This test can be 
conducted by computing regressions and retrieving fitted 
values and means of squared residuals,48 the details of 
which are described in Appendix 1.

 If the null hypothesis is rejected, that means model M( )2  
does not have the correct set of regressors, which implies 
that model M( )1  is the most likely model that describes 
the XCI process. Note that, in this case, we will not com-
pare M( )1  with M( )3  and M( )4  because model M( )2  is 
rejected and models M( )3  and M( )4  have lower LLR 
values than model M( )2 . If the test does not reject the 
null hypothesis, we consider that models M( )1  and M( )2  
are equivalent and indistinguishable, and go to step 3.

3. Compare the XCI model corresponding to the third 
highest LLR (ie, M( )3 ) with the XCI model correspond-
ing to the highest LLR (ie, M( )1 ), using the same test 
described in step 2. Now the null hypothesis is 
H Logit P Y X X0 31: ( ( | )) ( )= = β . If the null hypothesis 
is rejected, that means model M( )3  does not have the 
correct set of regressors, which implies that models 
M( )1  and M( )2  remain the most likely models that 
describe the XCI process. If the test does not reject the 
null hypothesis, we consider that models M( )1 , M( )2 , 
and M( )3  are equivalent and indistinguishable, and go 
to step 4.

4. Finally, we compare the XCI models M( )4  and M( )1 . If 
the null hypothesis is rejected, that means model M( )4  
does not have the correct set of regressors, which implies 
that models M( )1 , M( )2 , and M( )3  remain the most likely 
models to describe the XCI process. If the test does not 
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reject the null hypothesis, we consider that all the models 
are equivalent and indistinguishable.

Simulation approach

We conducted simulation studies to investigate the perfor-
mance of the comp-LLR and max-LLR approaches for select-
ing the XCI models that best describe the XCI process. We 
investigated 2 di-allele X-chromosomal SNPs that were in 
high linkage disequilibrium (LD) with the causal variant for 
the disease of interest, which we denoted as SNP1 and SNP2. 
To generate the genotypes for SNPs in LD, we employed the R 
package “HapSim,” which is a simulation tool for generating 
haplotype data based on minor allele frequency (MAF) and 
LD coefficients.51,52 Specifically, HapSim generates haplotypes 
for each of the 2 strands of the chromosome based on the LD 
pattern and then combines the base pairs at each locus to gen-
erate the genotypes.51,52 For the purpose of simulation, the 
MAF for the causal SNP was assumed to be 40%, whereas the 
MAF for both SNP1 and SNP2 was assumed to be either 30% 
or 40% for different scenarios. We considered different LD val-
ues among the SNPs, with the LD coefficient r2 set to be either 
0.85 or 0.95 for different scenarios. The sex of each individual 
was generated on the basis of the prevalence of men in the 
general population (ie, 50%). Because men are hemizygous, the 
genotypes of the causal SNP generated from HapSim were 
recoded conditional on sex according to the different XCI pro-
cesses as discussed above.

Finally, given the data of the causal SNP, the disease of 
interest, denoted as a random variable Y, was simulated using 
the logistic regression model: Logit(P(Y = 1|X, Xsex)) = β0 + β1X 
+ βsXsex. In the logistic model, X represents coding associated 
with the XCI process for the causal SNP and Xsex represents 
the covariate for sex, where we assumed that sex was also asso-
ciated with the disease. We fixed the regression coefficients at 
β1 0 53= .  and βs = 0 34. , which correspond to odds ratios of 
1.7 and 1.4, respectively. We assumed that the proportion of 
men in the general population was 50%. The intercept coeffi-
cient β0  was set as −5. We considered 4 different XCI pro-
cesses: skewed XCI to the normal allele, skewed XCI to the 
deleterious allele, random XCI, and escaping XCI. Given dif-
ferent MAFs for the associated SNPs of interest (ie, SNP1 and 
SNP2), different LD coefficients and different XCI processes, 
we had a total of 16 scenarios in the simulation studies (Table 
1). For each scenario, we simulated 500 replicates, each with 
2000 cases and 2000 controls. For the comp-LLR approach, we 
had up to 3 tests for each genetic variant; therefore, we used a 
significance level of .017 (ie, .05/3) to control for the multiple 
comparison issue. In the simulations, we considered common 
X-chromosomal SNPs (MAFs = 30% or 40%) assuming an 
effect size of 0.53 for the SNP-disease association, which has 
been observed in real genetic association studies.53,54 The prev-
alence of the disease was assumed to be ~1% in the general 

population. Because sex was used as a covariate in the simula-
tion models, the simulation scenarios include different propor-
tions of men and women in cases and controls. In particular, 
across all scenarios, the proportion of men among the controls 
varied from ~20% to ~40%.

Application to head and neck cancer data

We applied the max-LLR and comp-LLR approaches for iden-
tifying the underlying XCI process to the X-chromosomal data 
from a head and neck cancer genome-wide association (GWA) 
study. The details of the data, including demographical, geno-
typing, and quality control information, were described in our 
original study.10 In particular, this GWA study involved 2 inde-
pendent phases. In the phase 1 study, 14 169 SNPs were geno-
typed on the X chromosome for 2718 individuals, where 1161 
were patients with head and neck cancer and 1557 were con-
trols. In the phase 2 study, 14 371 SNPs were genotyped on the 
X chromosome for 3996 individuals, where 1031 were patients 
and 2965 were controls. For both phases, the patients with head 
and neck cancer were accrued at The University of Texas MD 
Anderson Cancer Center (MD Anderson). For the controls in 
the phase 1 study, 531 individuals were recruited by MD 
Anderson for the study of head and neck cancers, and 1026 
individuals had been previously recruited at MD Anderson for 
the study of cutaneous melanoma.55 For the controls in the 
phase 2 study, 643 individuals were recruited by MD Anderson 
and data for 2322 individuals were obtained from the Study of 
Addiction: Genetics and Environment, provided by the 
National Center for Biotechnology Information, which were 
downloaded from dbGaP.56 The study was approved by the 
institutional review board at MD Anderson, and written 
informed consent was obtained from all participants.

Results
Simulation results

As described in the “Methods” section, using the proposed 
comp-LLR approach, we may not be able to identify one single 
model to represent the underlying XCI model as the max-LLR 
approach does. Instead, the comp-LLR approach may result in 
multiple possible XCI models. If the true underlying XCI 
model is included in the resulting multiple equivalent possible 
XCI models, we consider that the true model is identified by 
the comp-LLR approach. For the max-LLR, we consider that 
the true model is identified if the highest LLR corresponds to 
the true XCI model. Table 1 lists the proportions of the 500 
replicates for which the true underlying XCI model was identi-
fied for the associated SNP1 and SNP2 under 16 scenarios, 
using the 2 approaches.

From the results, we observe that compared with the max-
LLR approach, the comp-LLR approach has higher or compa-
rable probability of identifying the true underlying XCI model 
for both SNPs through all the scenarios.
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When the true underlying XCI model is skewed toward the 
deleterious allele (scenarios 2, 6, 10, and 14), the comp-LLR 
approach has higher probability of identifying the true model. 
For example, in scenario 2 (MAF = 0.3 and r2 = 0.95), the pro-
portions of replicates for which the true XCI model was identi-
fied are, respectively, 0.830 and 0.832 for the 2 SNPs when 
using the max-LLR approach, whereas when using the comp-
LLR approach, the proportions are, respectively, 0.910 and 
0.918 for the 2 SNPs.

Similarly, when the true underlying XCI model is random 
(scenarios 3, 7, 11, and 15), we observe a pattern similar to that 
for the scenarios with XCI skewed toward the deleterious 
allele. For example, in scenario 11 (MAF = 0.3 and r2 = 0.85), 
the proportions are, respectively, 0.926 and 0.940 for the 2 
SNPs when using the max-LLR approach, whereas when using 
the comp-LLR approach, the proportions are, respectively, 
0.982 and 0.982 for the 2 SNPs.

When the true underlying XCI model is escaping XCI (sce-
narios 4, 8, 12, and 16), the proposed comp-LLR approach 
provides substantial gains in identifying the true XCI model 
compared with that of the max-LLR approach. For example, in 

scenario 16 (MAF = 0.4 and r2 = 0.85), the proportions are, 
respectively, 0.500 and 0.496 for the 2 SNPs when using the 
max-LLR approach, whereas when using the comp-LLR 
approach, the proportions are, respectively, 0.926 and 0.934 for 
the 2 SNPs.

When the true underlying XCI model for the simulations is 
skewed toward the normal allele (scenarios 1, 5, 9, and 13), the 
2 approaches perform similarly, with almost identical propor-
tions for all the scenarios.

Effect of sample size

Through simulations, we also investigated the effects of sample 
sizes on selecting the true underlying XCI model. In particular, 
we considered scenario 8, in which the true underlying model 
was escaping XCI. We simulated a data set with 2000 cases and 
2000 controls. The highest LLR corresponded with the ran-
dom XCI model, so the max-LLR approach led to incorrect 
model selection for the XCI process. In contrast, the comp-
LLR approach concluded that the random XCI and the true 
escaping XCI models were equivalent and indistinguishable. 

Table 1. Proportions of simulated replicates for which the true underlying XCI model was identified by the max-LLR and comp-LLR approaches for 
SNP1 and SNP2.

SCENARIO XCI MODEL MAF LD MAX-LLRa COMP-LLRb

SNP1 SNP2 SNP1 SNP2

1 Skewed XCI to normal allele 0.3 0.95 0.828 0.840 0.828 0.840

2 Skewed XCI to deleterious allele 0.3 0.95 0.830 0.832 0.910 0.918

3 Random XCI 0.3 0.95 0.942 0.944 0.990 0.992

4 Escaping XCI 0.3 0.95 0.596 0.614 0.960 0.948

5 Skewed XCI to normal allele 0.4 0.95 0.970 0.974 0.970 0.974

6 Skewed XCI to deleterious allele 0.4 0.95 0.932 0.912 0.954 0.932

7 Random XCI 0.4 0.95 0.962 0.970 0.994 0.998

8 Escaping XCI 0.4 0.95 0.688 0.698 0.952 0.940

9 Skewed XCI to normal allele 0.3 0.85 0.616 0.660 0.618 0.660

10 Skewed XCI to deleterious allele 0.3 0.85 0.696 0.678 0.876 0.844

11 Random XCI 0.3 0.85 0.926 0.940 0.982 0.982

12 Escaping XCI 0.3 0.85 0.444 0.474 0.938 0.936

13 Skewed XCI to normal allele 0.4 0.85 0.860 0.834 0.864 0.834

14 Skewed XCI to deleterious allele 0.4 0.85 0.768 0.756 0.808 0.804

15 Random XCI 0.4 0.85 0.986 0.978 0.994 0.990

16 Escaping XCI 0.4 0.85 0.500 0.496 0.926 0.934

Abbreviations: LD: linkage disequilibrium (r2); LLR, likelihood ratio; MAF, minor allele frequency for the associated SNPs; SNP, single-nucleotide polymorphism; XCI, 
X-chromosome inactivation.
The proportions were calculated based on 500 replicates, each with 2000 cases and 2000 controls.
a If the maximum LLR corresponds to the true XCI model, we consider that the true model is identified using the max-LLR approach.
b If the true underlying XCI model is included in the resulting one or multiple equivalent possible XCI models, we consider that the true model is identified by the  
comp-LLR approach.
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To further assess the sample size issue, we increased the sample 
size to 10 000 cases and 10 000 controls. The highest LLR cor-
responded with the escaping XCI model, so the max-LLR 
approach led to correct model selection for the XCI process. 
Similarly, the comp-LLR approach concluded that the true 
escaping XCI model was the most likely XCI model.

XCI models for X-chromosomal genetic variants 
using head and neck cancer data

The purpose of the analysis of real data is to identify the poten-
tial underlying XCI models for the X-chromosomal SNPs 
reported in our original study, using both approaches, max-
LLR and comp-LLR, based on the phase 1 data, phase 2 data, 
and the combined data merged from both phases of the head 
and neck cancer GWA study. In our original study,10 we ana-
lyzed the top 33 X-chromosomal SNPs using phase 1 and 
phase 2 data separately and then performed the meta-analysis 
based on the results from both phases using the fixed and ran-
dom effects models, as well as the Fisher method, in which the 
natural logarithm of P values from 2 phases were summed and 
then multiplied by −2 to create a test statistic, which has a χ2 
distribution when the null hypotheses are true and the P values 
are independent.57,58 We focused on the 4 top SNPs ranked by 
the P values obtained using the Fisher method. The results for 
the XCI models identified for the 4 top SNPs are reported in 
Table S1 of the Supplementary Material. In particular, we were 
interested in the SNP rs12388803 (meta-analysis P = 2.04 × 
10−6 using Fisher method), which is the only SNP that reached 
the chromosome-wide significance threshold in our original 
study. When using the max-LLR approach, the SNP 
rs12388803 was found to have an XCI model that skewed 
toward the deleterious allele based on phase 1, phase 2, and the 
combined data. When using the comp-LLR approach, 
rs12388803 was found to have an XCI model that skewed 
toward the deleterious allele based on phase 1 data and the 
combined data but to have equivalent models of random XCI 
and XCI skewed toward the deleterious allele based on phase 2 
data. Of note, the other 3 SNPs were statistically not signifi-
cant at the chromosome-wide significance level and had LLRs 
for different XCI models that were very close; consequently, 
the comp-LLR approach was not able to distinguish different 
XCI models and resulted in multiple equivalent models.

Discussion
In this article, we extended the approach we developed in the 
original study,10 which was a novel approach to analyze 
X-chromosomal SNPs, and proposed a comp-LLR approach to 
select the most likely XCI model that describes the underlying 
XCI biological process. We performed simulation studies to 
investigate the performance of the proposed comp-LLR. Our 
results show that if the SNP is significantly associated with the 
disease of interest, the comp-LLR approach has higher probabil-
ity of identifying the true XCI model for scenarios where the 

random XCI, skewed XCI to the deleterious allele, and escaping 
XCI were used as the underlying models for the simulations. 
When the underlying XCI model is skewed toward the normal 
allele, both approaches lead to similar conclusions. Note that 
when the SNP is not associated with the disease of interest, there 
is no associated mode of inheritance or XCI model; therefore, 
there is no need to conduct model comparisons for such a SNP. 
In practice, for each SNP, we first check the SNP-disease asso-
ciation using the association test proposed in our original study, 
and the comparison procedures proposed in this article are only 
needed when the SNP-disease association is statistically signifi-
cant. Note that the proposed comp-LLR focuses on identifying 
the XCI models; thus, it will not lead to an inflated type 1 error 
rate for the SNP-disease association test as the significance of 
the X-chromosomal SNP has already been checked. Although 
logistic regression was used to formulate the problem and dem-
onstrate the proposed approach, the comp-LLR approach is 
applicable to other types of data (eg, continuous) or different 
sampling schemes (eg, case-control study based on frequency 
matching for covariates such as sex). Note that the unconditional 
logistic regression, used in this article, is commonly used for 
frequency-matched case-control studies. In some situations, the 
likelihood function may need to be modified accordingly (eg, 
linear regression for continuous phenotype, conditional logistic 
regression for a pairwise matched sampling design). In genetic 
association studies, one may observe different MAFs and effect 
sizes for men and women, as well as different proportions of 
male:female among the cases and controls.3,4 To account for 
such differences between men and women, we recommend 
always including sex as a covariate in the study of X-chromosomal 
genetic variants using the proposed approach. Our method does 
not assume Hardy-Weinberg proportions in women.

The approach proposed here has some assumptions. For 
example, we assumed that the XCI model corresponding to 
the highest LLR, M( )1 , is the most likely XCI model that 
describes the underlying XCI process and compared this 
model with the other XCI models. For each comparison (steps 
2-4), we also assumed that if the null model (eg, M( )2  in step 
2) is rejected, then other models (eg, M( )3  and M( )4 ) are not 
compared with M( )1  because of the lower LLRs for the other 
models. In addition, we considered only the analysis of a single 
locus but not a multifactorial disease model. We also assumed 
that there are only 4 XCI models represented by 4 different 
coding strategies.

The sample size has a significant impact on the performance 
of the 2 approaches. When the sample size is large, both 
approaches can identify the correct underlying model. However, 
when the sample size is relatively small, as is commonly 
observed in many real data sets, the max-LLR approach is 
more likely to identify the wrong model, whereas the comp-
LLR approach still provides a solution with multiple equiva-
lent possible XCI models, including the true underlying model.

Alternative approaches are available to compare 2 non-
nested models (eg, M(1) and M(2)), such as the encompassing 
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approach and the J test proposed by Davidson and 
MacKinnon.45,48 The encompassing approach creates a 
“supermodel,” which contains all regressors from both mod-
els, M(1) and M(2), for comparison. In this case, both models 
are nested within the “supermodel,” and each model is com-
pared with the “supermodel.” However, this approach does 
not specifically distinguish between M(1) and M(2), rather it 
distinguishes between the “supermodel” and M(1) or M(2)

48; 
therefore, we did not consider this approach in our study. 
However, the basic idea of the J test is that if M(2) contains the 
correct regressors, then inclusion of the fitted values of M(1) 
into M(2) as a regressor will not significantly improve the fit-
ted values as compared with fitted values based on M(2).45,48 
The J test is also available in the R “lmtest” package.49,50 We 
applied the J test to the simulated data and obtained results 
similar to those obtained from the Cox test. For example, for 
scenario 4 (MAF = 0.3 and r2 = 0.95), using the J test for 
comparing LLRs, the proportions of replicates for which the 
true underlying XCI model was identified were 0.966 and 
0.954, respectively, for the associated SNP1 and SNP2. 
Comparatively, these proportions using the Cox test were 
0.960 and 0.948, respectively.

This study has 2-fold improvement over the original study. 
First, the proposed comp-LLR approach, which compares dif-
ferent XCI models, will help us better understand the underly-
ing XCI models and provide useful information about the 
contribution of SNPs to diseases and the inheritance model of 
disease. Second, in this study, we observed that the SNPs in 
high LD (r2 > 0.8) tend to have the same XCI models. This 
finding potentially improves the power of the original associa-
tion test by reducing the number of multiple comparisons. For 
each X-chromosomal SNP, the original association test needs 
to conduct 4 tests, each corresponding to one of the 4 XCI 
biological processes. In this case, the power of the test might be 
impaired due to the multiple comparison issue. For example, 
given that SNP1 and SNP2 are in high LD (r2 > 0.8), if the 
comp-LLR shows that both the random XCI model and the 
skewed XCI to the normal allele model can describe SNP1, 
then for SNP2, we do not need to check all 4 XCI models, but 
instead can investigate only 2 models when testing the associa-
tion. Thus, when testing tens of thousands of X-chromosomal 
variants, such a strategy potentially reduces the number of mul-
tiple comparisons.

In summary, we have proposed a comp-LLR approach to 
select the most likely XCI model that describes the underlying 
XCI biological process, which has higher probability of identi-
fying the true XCI model compared with the naïve approach 
that uses the highest LLR.
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Appendix 1
When comparing 2 XCI models, we follow the Cox test pre-
sented by Greene.48 The details of the test are described in the 5 
steps shown below48 using the comparison of M( )2  with M( )1  
as an example; that is, to test the hypothesis that X ( )2  is the set 
of correct regressors (ie, H Logit P Y X X0 21: ( ( | )) ).( )= = β  
Other tests for the comparisons of M( )3  or M( )4  with M( )1  
can be conducted similarly following these same steps. In the 
calculation, X ( )1  and X ( )2  are defined as matrices with 3 col-
umns: the first column of 1’s represents the intercept and the rest 
of the columns represent the SNP based on different XCI mod-
els and the individual’s sex. The test is conducted using the R 
function “coxtest” in the “lmtest” package49,50:

Step 1. Regress Y  on X ( )2  to obtain the estimations of the 
coefficients β β β β   = ′( , , )0 1 s

. The fitted values can be cal-
culated as Y XX

 

( ) ( )2 2= β , and the residuals can be calcu-
lated as r Y XX

� �
( ) ( )2 2= − β . Thus, s r r NX X X

( ) ( ) ( ) /
2 2 2

2 = ′
  .

Step 2. Regress Y  on X ( )1  to obtain the estimations of the 
coefficients α α α α   = ′( , , )0 1 s . The fitted values can be calcu-
lated as Y XX

 

( ) ( )1 1= α, and the residuals can be calculated as 
r Y XX
� �

( ) ( )1 1= − α . Thus, s r r NX X X
( ) ( ) ( ) /
1 1 1

2 = ′
  .

Step 3. Regress Y X


( )2  on X ( )1  to obtain the estimations of the 
coefficients β β β β   

X X X X s( ) ( ) ( ) ( )
( , , )

2 2 2 20 1= ′. The residuals can be 
calculated as r Y X Q XX X X X X

� � � �
( ) ( ) ( ) ( ) ( )( ) ( ) ,1 2 2 2 11 2= − =β β  where 

Q I X X X XX ( ) ( ) ( ) ( ) ( )( )
1 1 1 1

1
1= − ′ ′− . Thus, ′ =r rX X X X

� �
( ) ( ) ( ) ( )1 2 1 2

β β 

′ ′X Q XX( ) ( )( )2 21

.

Step 4. Regress r X X


( ) ( )1 2
 on X ( )2  to obtain the estima-

tions of the coefficients α α α α   

X X X X s( ) ( ) ( ) ( )( , , )1 1 1 10 1= ′. The 
residuals can be calculated as r Q Q XX X X X X

� �
( ) ( ) ( ) ( ) ( ) ( ) ,2 1 2 2 1 2= β  

where Q I X X X XX ( ) ( ) ( ) ( ) ( )( )
2 2 2 2

1
2= − ′ ′− . Thus, r X X X
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( ) ( ) ( )2 1 2

 
r X Q Q Q XX X X X X X
� � �

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) .2 1 2 1 2 12 2= ′ ′β β

Step 5. Compute s s r rX X X X X X X
( ) ( ) ( ) ( ) ( ) ( ) ( ) .1 2 2 1 2 1 2

2 2= + ′
   Compute 

T N s sX X X= ln( / ) /
( ) ( ) ( )1 1 2

2 2 2  and V T s rX X X X
� �( ) (

( ) ( ) ( ) ( )= ′
2 2 1 2

2

r sX X X X X


( ) ( ) ( ) ( ) ( )
/ )2 1 2 1 2

4 . Compare the value of T V T/ ( )  
to the critical value of the standard normal distribution to 
assess the significance (2-sided test).
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