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Abstract

The mangrove biome stands out as a distinct forest type at the interface between terrestrial, estuarine, and near-shore
marine ecosystems. However, mangrove species are increasingly threatened and experiencing range contraction across the
globe that requires urgent conservation action. Here, we assess the spatial distribution of mangrove species richness and
evolutionary diversity, and evaluate potential predictors of global declines and risk of extinction. We found that human
pressure, measured as the number of different uses associated with mangroves, correlated strongly, but negatively, with
extinction probability, whereas species ages were the best predictor of global decline, explaining 15% of variation in
extinction risk. Although the majority of mangrove species are categorised by the IUCN as Least Concern, our finding that
the more threatened species also tend to be those that are more evolutionarily unique is of concern because their
extinction would result in a greater loss of phylogenetic diversity. Finally, we identified biogeographic regions that are
relatively species-poor but rich in evolutionary history, and suggest these regions deserve greater conservation priority. Our
study provides phylogenetic information that is important for developing a unified management plan for mangrove
ecosystems worldwide.
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Introduction

Preserving ecosystem services – the benefits humans derive

directly and indirectly from nature (e.g. food production, plant

pollination, medicinal plants, clean water, nutrient cycling, carbon

sequestration, climate stability, recreation and tourism) – is a

major challenge [1,2]. Human welfare is intrinsically dependent

on the sustainable delivery of such services; however, they are

being rapidly eroded due to the unprecedented rate at which

species – the service providers – are being lost through extinctions.

For example, early studies suggested that rates of species loss might

be about 1000–10 000 times greater than past extinction rates

[3,4] with particularly elevated rates in tropical biomes [5], a

unique reservoir of life-form diversity.

To date, studies of extinction risk have tended to be focused on

vertebrates (e.g. [6–14]). However, studies on terrestrial plants are

becoming more commonplace (e.g. [15–18]). Although the

taxonomic distribution of extinction risk is generally non-random

[6,7,15,16], the tree of animal life and that for plants are not

pruned the same way. For instance, in vertebrates the majority of

at-risk species are members of species-poor clades, and it has been

suggested that their extinction would result in a disproportionate

loss of evolutionary history [19,20]. However, for terrestrial plants,

extinction drivers appear to target particularly young and fast-

evolving plant lineages [16], and at-risk species tend to fall within

species-rich clades [21]; their extinction might therefore have a less

pronounced impact on the plant phylogeny (but see [15]).

Whilst evidence suggests that many aquatic plants are highly

threatened [22–26], and perform valuable ecosystem services [27],

the phylogenetic ‘fingerprint’ of extinction risks in such systems,

for example, the mangrove biome, has been less well studied. We

know little about the forces relevant to community assembly in

mangrove systems or about the phylogenetic basis of risk factors

that predispose some mangrove species to higher extinction risk. A

more detailed understanding of the phylogenetic structure of

mangrove assemblages will aid in the development of management

practices aimed at safeguarding their evolutionary future, and

ensuring the sustainable delivery of ecosystem services [2,28]. To

date, predictive models of extinction risk at global scales tend to

explain only a small amount of the variation in threat status

(,30% for mammals [10]; and ,10% for tropical angiosperms

[29]). It is therefore urgent that we work to improve our

understanding of extinction risk, especially in understudied

ecosystems, given current rates of species loss [1].

Mangroves have a tropical and subtropical distribution, and are

linked to multiple ecosystem services (e.g. carbon sequestration

and nutrient cycling [30]), act as keystone species [31,32], and

provide direct and indirect economic benefits (e.g. almost 80% of

global fish catches are dependent to some extent on mangroves

[33,34], and indirect benefits may even be greater). Overall, the

ecosystem services provided by mangrove forests are estimated to

be worth at least US$1.6 billion per year worldwide [27,35]. Given

these large ecological and economic benefits, the recent findings of

a global trend towards a reduction of range extent across
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mangrove biome due to human activities [24,36] and climate

change [37] is of major concern. It is estimated that we are losing

1–8% of mangrove cover each year [36,38,39], and that if current

trends continue, the entire mangrove biome may be lost within the

next 100 years [31]. One major consequence of this reduction in

mangrove extent that we are already experiencing is the

concomitant loss of associated species diversity – today, almost

40% of mangrove-dependent animal species are considered to be

at higher risk of extinction [40].

In this study, we contrast the global distribution of mangrove

species richness and threatened species richness with the

distribution of phylogenetic diversity. We then construct alterna-

tive models of global decline (proportion of global population in

decline) and extinction risk (derived from IUCN Red List

categories) to identify key drivers of threat. We show that areas

rich in evolutionarily unique species (subtending from long

phylogenetic branches) match to those with highest global decline,

and that human pressure and species ages are important predictors

of risk of extinction in mangrove ecosystems.

Results

Across the mangrove biome, we found that biogeographic

regions of high species richness contained a high proportion of

species in decline globally (mean decline in population size, see

Materials and Methods) (Pearson correlation r = 0.38, p,0.001).

The American West coast proved an exception to this general

trend, with low species richness and high global decline

(Figure 1A,B). Further, we compared the spatial distribution of

mean global decline versus mean species terminal branch length

(representing species evolutionary ages) and evolutionary distinc-

tiveness (Figures 1B, 2A,B). Both species ages and evolutionary

distinctiveness depict species phylogenetic uniqueness with the

difference that the latter additionally accounts for evolutionary

relationships deeper in the phylogenetic tree [41]. Species which

are more evolutionarily distinct have few close relatives, whereas

species descending from long terminal branch lengths are

evolutionarily distant from their nearest phylogenetic neighbour,

but might nonetheless fall within species rich clades. We found that

only branch length was significantly correlated with global decline

(Pearson correlation r = 0.46, p,0.0001) such that areas with older

species (species subtending from longer branch lengths) tended to

experience greater global decline (Figure 1B vs. Figure 2A).

We evaluated species evolutionary relatedness across the six

mangrove biogeographic regions (West America, East America,

West Africa, East Africa, Indo-Malesia and Australasia) using the

net relatedness index (NRI) and the net taxon index (NTI). Using

the NRI metric, we found a trend towards phylogenetic over-

dispersion such that species are, on average, less closely related to

one another than expected by chance, but significantly so only

along the East African and Indo-Malesian coasts (East America:

NRI =20.32, p = 0.59 NS; West Africa: NRI =21, p = 0.79 NS;

Australasia: NRI =20.99, p = 0.82 NS; East Africa and Indo-

Malesia:(NRI =21.62 and 21.51, p,0.05* respectively). The

American West coast again diverged from general trends, with a

positive, but non-significant NRI (NRI = 0.04; p = 0.5 NS).

Contrasting with the patterns observed for NRI, NTI, which

better captures relationships towards the tips of the phylogeny

[42,43], indicated a tendency for closely related species to co-occur

more often than expected by chance, and significantly so in four of

the six biogeographic regions (West America: NTI = 2.87,

p = 0.002**; East America: NTI = 2.59, p = 0.004**; West Africa:

NTI = 1.62, p = 0.05 NS; East Africa: NTI =20.68, p = 0.72NS;

Indo-Malesia: NTI = 2.52, p = 0.005**; Australasia: NTI = 1.77,

p = 0.039*).

We found no evidence for phylogenetic signal in extinction risk

as quantified by the IUCN Red List (K = 0.02, p = 0.93) or global

decline (K = 0.05; p = 0.67; Figure S1). However, phylogenetically

informed analyses are recommended even in the absence of

phylogenetic signal in the response variable [44], we therefore

used phylogenetic generalised least squares regressions (PGLS) to

model global decline and extinction risk. In our univariate models,

we found only species branch length (species age) was a significant

predictor of global decline (p = 0.03*), such that older species

tended to have greater global decline, explaining 10.16% of the

total variation in declines (Table 1). In the multivariate model,

species age becomes highly significant (p = 0.008**) but explana-

tory power increases only marginally (13.84%), and the covariates

in the model remained non-significant (model p-value = 0.03*). In

contrast, our models of extinction risk (IUCN threat category)

identified human pressure as the single best predictor, but it was

only significant when either species evolutionary distinctiveness or

species age was also included into the model (p = 0.013*,

r2 = 0.254, and p = 0.0087**, r2 = 0.145 for the multiple regression

with species age and species evolutionary distinctiveness respec-

tively, Table 2). However, we found that the relationship between

extinction risk and human pressure was negative, such that species

exposed to higher human pressure tended to have lower

probability of extinction. Of the 16 uses examined, two, structural

building and forage, showed an independent association with

global decline although significance was marginal (building:

x2 = 5.3, df = 1, p = 0.02*; forage: x2 = 3.0, df = 1, p = 0.08;

Figure 3).

Discussion

We are currently witnessing a mass extinction event on a scale

similar to that of the paleontological past [4,45,46]. Here, we

explored patterns of range contraction and extinction risk in

mangroves, an aquatic forest biome widely distributed across the

tropics. We revealed that regions with a high proportion of species

experiencing population declines, specifically, Indo-Malesia and

Australasia, which represent centres of mangrove species diversity,

also correspond to areas particularly rich in evolutionarily distinct

species (old species subtending from long phylogenetic branch

lengths). The central West coast of America is unusual in that it is

relatively poor in species diversity but rich in species subject to

high global decline.

The global geographical distribution of mangroves is dictated by

several environmental and historical factors [47]. Early studies

suggested a range restriction of mangroves to regions where mean

air temperatures of the coolest months are higher than 20uC and

the seasonal temperature fluctuation does not exceed 10uC [48–

50]. Additionally, limitations to propagule dispersal, for example,

due to barriers imposed by wide expanses of water, and major

continental landmasses likely further restrict movement of species

between biogeographical regions. Given such limitations, we

might expect species within geographical regions to be largely a

product of in situ diversification, representing clusters of closely

related species on the phylogenetic tree of mangroves.

We evaluated the evolutionary relatedness among mangrove

species within biogeographical regions. However, we did not

detect significant phylogenetic clustering, but rather we found that

most mangrove assemblages do not differ from random expecta-

tions, whilst mangrove species along the East African and Indo-

Malesian coastlines were less closely related to each other than

expected by chance. Our results indicate that regional mangrove

Loss of Evolutionarily Unique Mangrove Species
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species assemblages are not simply explained by diversification in

the presence of strong geographical barriers and/or environmental

filtering. Random patterns may arise from competing processes

offsetting one another, for example, environmental attraction

versus competitive repulsion (see [51]), and/or frequent dispersal

between biogeographic regions. Our observation for phylogenetic

over-dispersion in Eastern Africa might also be a product of

complex interacting forces, including facilitation [52], competition

[42,53] and biotic interchange [54], but more data are required to

fully evaluate assembly mechanisms. Nonetheless, evidence of

significant clustering towards the tips of the phylogeny (as

indicated by NTI), perhaps captures the signature of more recent

in situ diversification.

Because we find evidence that the most closely related species

tend to be found within the same biogeographical realms, we

might expect that they would also share similar risk of extinction,

Figure 1. Geographical distribution of species richness (A) and global decline (see Materials and Methods) (B) in mangrove
ecosystems across six biogeographical regions, per quarter degree squares (QDS).
doi:10.1371/journal.pone.0066686.g001
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which should translate to phylogenetic signal in extinction risk and

global decline. However, we found no evidence for phylogenetic

signal in either threat metric (IUCN Red List status or global

decline), rather, our results indicate that threat is randomly

distributed across the phylogeny. The loss of evolutionary history

might be relatively low under random extinction [55], although

contingent upon the underlying tree topology [56]. However, we

observed that areas with a high proportion of species experiencing

global declines correspond to areas of unique evolutionary history,

suggesting that whilst extinction risk might not demonstrate strong

phylogenetic structure, the loss of currently threatened species

might still have a disproportionate impact on mangrove phyloge-

netic diversity regionally. The loss of phylogenetic diversity may be

of concern because it captures the functional and ecological

diversity represented along the branches of the tree-of-life, and has

been linked to ecosystem function (e.g. [57,58]) and stability [57].

As the tree-of-life is pruned through extinctions we would then lose

Figure 2. Geographical distribution of phylogenetic diversity within mangrove ecosystem for (A) mean terminal branch lengths,
and (B) mean evolutionary distinctiveness across the same six biogeographical regions depicted in Figure 1.
doi:10.1371/journal.pone.0066686.g002
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these services associated with the functional and ecological

diversity represented along its branches.

We evaluated various predictors of threat, including plant

height, propagule size, human pressure, and two evolutionary

variables, species age and evolutionary distinctiveness. We found

that species age was a significant correlate of global decline whilst

human pressure was the best predictor of extinction risk. In all

cases, less than 15% of the variation in species threat was

explained, suggesting other factors not included in our model must

be important in determining species declines. Our findings were

somewhat surprising in that we did not find any evidence linking

morphological characters (i.e. plant height and propagule size) to

threat status; other life-history traits might therefore be missing in

our models.

Contrary to expectations, we found species exposed to higher

human pressure (here defined as the total number of uses per

species) had lower probability of extinction. The negative

correlation between human activities and extinction risk may be

linked to our definition of human pressure. We considered the

total number of uses recorded for each species as indicative of the

level of human pressure. Such surrogacy may be misleading: for

instance, a species known to fill one common need in a given area

may be subject to greater pressure than species with multiple but

less extractive uses. Further, it is likely that our list of uses is not

comprehensive, and some important uses might not be included

despite our best efforts. In addition, we separately tested the

influence of each use on global decline. We found that only uses

associated with building and forage show strong relationships on

their own. It is possible that species which are currently more

common (i.e. those that have not yet declined) are preferably

utilised for more intensive building and forage purposes (Figure 3),

than species that are already in decline. Whilst such species are not

threatened now, if current trends continue, the negative correla-

tions might turn positive in the future.

In addition, we found that older species tended to be more

threatened, in contrast to recent finding for terrestrial plants [16].

There are several explanations for why extinction risk is greater for

older species. First, the ‘taxon cycle’ of Wilson [59] predicts that

older species should have higher extinction probabilities as species

expand and contract in their geographical distributions over their

evolutionary lifetimes. Second, the trend for higher risk in older

species might reflect the pattern of historical extinctions, in which

older species represent survivors of once more diverse clades [7].

Third, it is possible that older species are for some reason less well

Figure 3. Stacked histograms of the proportion of species declining globally when used for (A) structural building, and (B) forage.
doi:10.1371/journal.pone.0066686.g003
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suited to the ongoing changes in environment, resulting in greater

risk.

Mangrove species have evolved a unique suite of specialisations

to tidal environments [60], where they provide important

ecosystem services [24]. A comprehensive species-level analysis

of richness and extinction risk has recently been conducted [24].

Our study adds to this body of work information on the

phylogeography of mangrove forests and the likely phylogenetic

consequences of potential extinctions in these ecosystems. Specif-

ically, our study indicates that species evolutionary history may be

Table 1. Model coefficients for the PGLS models of global decline in mangrove ecosystems.

Univariate models (log10-transformed) Predictors (log10-transformed) P values Multiple R-squared Slope Intercept

Human pressure 0.098 0.0635 20.3820 4.041

BL 0.032 0.1016 0.0470 2.917

ED 0.920 0.0002 20.0063 3.036

FD 0.920 0.0002 0.0285 2.948

Hmax 0.530 0.0089 20.0238 3.075

Propagule size 0.820 0.0012 20.0232 3.045

Multivariate models (log10-transformed) Predictors (log10-transformed) P values Adjusted R-squared Slope Intercept

Global decline , Propagule size+Hmax+BL+
Human pressure (model p-value = 0.03)

Propagule size 0.920 0.1384 0.0103 4.0215

Hmax 0.230 20.0525

BL 0.008 0.0622

Human pressure 0.089 20.3804

Global decline , Propagule size+Hmax+ED+Human
pressure(model p-value = 0.5847)

Propagule size 0.951 20.0224 0.00719 4.1876

Hmax 0.770 20.0127

ED 0.630 20.0312

Human pressure 0.110 20.3920

BL, terminal branch length; ED, evolutionary distinctiveness; Hmax, maximum plant height. For all models the ML estimate of Lambda = 0.
doi:10.1371/journal.pone.0066686.t001

Table 2. Model coefficients for the PGLS models of extinction risk in mangrove ecosystems.

(b) Extinction probability
Univariate models (log10-transformed) Predictors (log10-transformed) P values Multiple R-squared Slope Intercept

Human pressure 0.053 0.0841 23.9970 1.467

BL 0.250 0.0302 0.2320 29.728

ED 0.390 0.0168 20.4870 27.698

FD 0.230 0.0321 23.0890 21.929

Hmax 0.088 0.0661 0.5890 210.708

Propagule size 0.320 0.0228 0.9200 210.395

Multivariate models (log10-transformed) Predictors (log10-transformed) P values Adjusted R-squared Slope Intercept

extinction probability , Propagule size+Hmax+BL+
Human pressure (model p-value = 0.04)

Propagule size 0.740 0.1254 0.3203 2.2520

Hmax 0.110 0.6483

BL 0.540 0.1238

Human pressure 0.013 25.1415

extinction probability , Propagule size+Hmax+ED+
Human pressure (model p-value = 0.03 )

Propagule size 0.890 0.145 0.1361 5.5950

Hmax 0.057 0.7253

ED 0.260 20.6234

Human pressure 0.009 25.5424

BL, terminal branch length; ED, evolutionary distinctiveness; Hmax, maximum plant height. For all models the ML estimate of Lambda = 0.
doi:10.1371/journal.pone.0066686.t002
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an important predictor of extinction risk, although the underlying

mechanisms remain to be identified. We observe a worrying

overlap between regions in which species are undergoing declines

and regions rich in evolutionarily distinct species. We suggest that

to safeguard the provisioning of the many and valuable ecosystem

services provided by mangrove forests, conservation efforts should

focus not only on preserving species, but also upon maintaining

their evolutionary diversity.

Materials and Methods

Sampling, Morphological Traits and Human Pressure
Data

Mangrove forests comprise 70 species widely distributed in

tropical and subtropical regions. Recent studies have explored the

patterns of IUCN categories and global decline among mangrove

species [24,47] distributed across six biogeographical coastal

regions: West America, East America, West Africa, East Africa,

Indo-Malesia and Australasia ([61]; Figures 1 and 2). Here we

focus on the phylogenetic ecology of mangrove ecosystems, and

included in our study the 54 species for which DNA sequences are

available, thereby allowing us to construct a robust phylogenetic

tree depicting evolutionary relationships within the group.

We recorded from the literature two plant life-history traits,

plant maximum height and propagule size, which are linked to

plant dispersal ability [24,47,60,62]. Our measures of extinction

risk and global decline follow Polidoro et al. [24], and are derived

from IUCN Red List categories, and comprehensive data on

mangrove taxonomy, distribution, population trends, ecology, life-

history traits, past and current threats, and conservation actions

for each species. In addition, we recorded the different uses

associated with each mangrove species, including firewood and

charcoal, building and structural, carving, cultural, spiritual, food,

forage and fodder, medicinal, ornamental, shade or chemical

compounds, and medicinal [34,35,60,63–74]. We used the total

number of uses recorded for each species as an indirect measure of

human pressure on that species.

Phylogeny Reconstruction and Divergence Time
Estimation

We retrieved from GenBank/EBI DNA sequences for three

genes, rbcL, ITS and 18S (see Table S1 for accession numbers) for

54 of the 70 mangrove species. DNA sequences were aligned using

Multiple Sequence Comparison by Log-Expectation (MUSCLE

v.3.8.31; [75]) and manually edited. The aligned sequences were

then concatenated in a single matrix. Phylogeny reconstruction

was performed using BEAST v.1.7.4 assuming a relaxed-clock

model [76] and a GTR+I+C model of sequence evolution for each

partition, selected based on Akaike information criterion (AIC)

using Modeltest v.2.3 [77]. The tree prior was estimated assuming

a speciation model following a Yule process with an uncorrelated

lognormal model for rate variation among branches. For

calibration purpose, we added to the mangrove matrix members

of the families Oleaceae, Moraceae, Malvaceae and Vitaceae.

These families were used as secondary calibration points with a

normal prior distribution based on Bell et al. [78] as follows:

Oleaceae crown node (41 Ma, SD 6 Ma), Moraceae crown node

(31 Ma, SD 4 Ma), Malvaceae crown node (39 Ma, SD 4 Ma),

Vitaceae crown node (43 Ma, SD 9 Ma), angiosperm crown

(149 Ma, SD 3 Ma). We included Amborella trichopoda and Nymphaea

alba as outgroups, following Schneider et al. [79]. Monte Carlo

Marcov Chains were run for 100 million generations sampling

every 1000 generations. Convergence was checked using Tracer

v.1.5, and of the resulting 100001 trees, we removed 15000 as

burnin, the remaining 85001 trees were combined using

treeAnnotator v.1.7.1.

Data Analysis
First, for each of the mangrove species represented in the

phylogenetic tree, we extracted range map data from the IUCN

Red List database (http://www.iucnredlist.org). Species distribu-

tions were then projected onto a Behrmann equal-area cylindrical

projection in ArcMap v.10, and gridded at a resolution of

0.25u60.25u (approximately 27.5627.5 km at the equator). We

then generated a series of maps to capture spatial variation in

species richness (SR), global decline, species evolutionary distinc-

tiveness (ED), and mean species age. Species richness simply

captures the number of species occupying a grid cell. Global

decline represents information on the mean decline in population

size of each species and was recorded from Polidoro et al. [24].

Evolutionary distinctiveness was calculated using the R library

Picante [80]. This metric partitions branch lengths by the total

number of species subtending it and was evaluated using the

function ‘evol.distinct’ based on fair proportions [41]. Species ages

were calculated as the terminal branch length (BL) connecting

each species to the phylogeny, and captures species evolutionary

uniqueness (unshared branch lengths).

Second, we evaluated the phylogenetic structure within

biogeographic regions using the net relatedness index (NRI) and

net taxon index (NTI; [42,43]) to compare observed pair-wise

phylogenetic distances against expectations from random species

assemblage. This comparison provides insights into community

assembly mechanisms (e.g. competition vs. habitat filtering, [42])

within mangrove ecosystems. For this purpose, we used all

mangrove species included in our phylogenetic tree as the regional

pool (null model "phylogeny.pool" in R library Picante [80]). NRI

describes a tree-wide pattern of dispersion, whereas NTI is more

sensitive to phylogenetic structure towards the tips of the

phylogeny. A strong negative value of NRI or NTI indicates that

communities are composed of less related species whereas a strong

positive value indicates clustering of closely related species. Values

of NRI and NTI that do not depart significantly from zero indicate

random species assemblages [42].

Finally, we tested for a phylogenetic signal in extinction risk and

global decline using Blomberg’s K statistics [81], and constructed a

series of regression models to explore predictors of threat using

phylogenetic GLS models [82,83]. Extinction risk and global

decline data were recorded from Polidoro et al. [24] and

converted into extinction probabilities using the extinction

probability IUCN50 (see [84]). Regression models were generated

using the function ‘pgls’ implemented in the R package ‘Caper’

[85]. For both extinction risk and global decline, we evaluated four

explanatory variables: plant maximum height, propagule size

(measured as propagule volume recorded from Duke et al. [46]),

human pressure (measured as total number of uses recorded for

each species), and species ages or species evolutionary distinctive-

ness (see above). In addition, we explored separately whether

different uses had varying levels of impact on global decline using

Pearson’s Chi-squared test with Yates’ continuity correction.

Supporting Information

Figure S1 The 50% majority rule consensus tree
showing distribution of global decline within mangrove
species obtained from a Bayesian analysis of the
combined dataset (rbcL+ITS +18S). Numbers above branch-

es are posterior probability above 50%. Outgroups and taxa used

for calibration were pruned from the tree prior to further analyses.
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(TIFF)

Table S1 Voucher table with GenBank accession num-
bers for the gene regions used in phylogeny reconstruc-
tion, IUCN categories, extinction probabilities, global
decline, life history traits (maximum plant height and
propagule size), and human pressure for the mangrove
species included in our analysis.

(DOC)
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