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The rapid dissemination of SARS-CoV-2 has made COVID-19 a tremendous social,
economic, and health burden. Despite the efforts to understand the virus and treat the
disease, many questions remain unanswered about COVID-19 mechanisms of infection
and progression. Severe Acute Respiratory Syndrome (SARS) infection can affect
several organs in the body including the heart, which can result in thromboembolism,
myocardial injury, acute coronary syndromes, and arrhythmias. Numerous cardiac
adverse events, from cardiomyocyte death to secondary effects caused by exaggerated
immunological response against the virus, have been clinically reported. In addition
to the disease itself, repurposing of treatments by using “off label” drugs can also
contribute to cardiotoxicity. Over the past several decades, animal models and more
recently, stem cell-derived cardiomyocytes have been proposed for studying diseases
and testing treatments in vitro. In addition, mechanistic in silico models have been
widely used for disease and drug studies. In these models, several characteristics
such as gender, electrolyte imbalance, and comorbidities can be implemented to study
pathophysiology of cardiac diseases and to predict cardiotoxicity of drug treatments. In
this Mini Review, we (1) present the state of the art of in vitro and in silico cardiomyocyte
modeling currently in use to study COVID-19, (2) review in vitro and in silico models that
can be adopted to mimic the effects of SARS-CoV-2 infection on cardiac function, and
(3) provide a perspective on how to combine some of these models to mimic “COVID-19
cardiomyocytes environment.”
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INTRODUCTION

Since the first reported case in Wuhan, China on December 31st, 2019, the Severe Acute Respiratory
Syndrome coronavirus 2 (SARS-CoV-2) has precipitated the coronavirus disease 2019 (COVID-
19) pandemic, a global socio-economic and health burden (Bialek et al., 2020; Guan et al.,
2020). As of January 08th, 2021, the total number of confirmed cases reported is approximately
86 million with more than 1.8 million deaths registered (WHO, 2020). The disease can affect
most of the population with factors such as age, gender, race, socioeconomic status affecting
prognosis (Gebhard et al., 2020; Golestaneh et al., 2020; Sharma G. et al., 2020; Zhou F. et al., 2020).
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Additionally, pre-existing cardiovascular diseases (CVDs) such as
hypertension, diabetes, and heart failure are prevalent in cohorts
of patients with the most serious forms of COVID-19 (Goyal
et al., 2020; Grasselli et al., 2020; Guan et al., 2020; Huang C. et al.,
2020; Wu and McGoogan, 2020).

At the cellular level, SARS-CoV-2 infects its target by engaging
with the angiotensin-converting enzyme 2 (ACE2) receptor,
followed by cleavage of the viral spike (S) protein by the host
serine protease TMPRSS2. Once in the cytoplasm, the viral RNA
is replicated and released via exocytosis causing cellular damage
(Hoffmann et al., 2020). In fact, human RNA sequencing has
shown that the expression of both ACE2 and TMPRSS2 can be
found in multiple organs (Chen et al., 2020), suggesting that
SARS-CoV-2 might infect several target tissues.

Similar to the viruses responsible for the 2003 SARS
outbreak and the 2012 MERS outbreak (Yu et al., 2006;
Alhogbani, 2016), SARS-CoV-2 can trigger cardiovascular
illnesses such as thromboembolism, myocardial injury, acute
coronary syndromes, and arrhythmias (Clerkin et al., 2020;
Madjid et al., 2020; Zheng et al., 2020). The heart is composed
of many cell types including cardiomyocytes, endothelial cells,
pericytes, epithelial cells, fibroblasts, smooth muscle cells, and
immune cells (Pinto et al., 2016; Zhou and Pu, 2016; Chen et al.,
2020) with all cell types contributing in some way to the overall
cardiac function (Borg et al., 1996). Given the central role of
cardiomyocytes in force generation and the minimal regenerative
capacity of these cells (Cohn et al., 2000), avoiding cardiomyocyte
damage and loss is of paramount importance to survival.

In the context of COVID-19, patients with poor prognosis
who require hospitalization tend to exhibit a high prevalence of
CVDs before viral infection. To understand the cardiovascular
manifestations of COVID-19 and its treatments, experimental
and mathematical cardiomyocyte models are likely to be of value.
In this Mini Review, we: (1) present the state of the art of in vitro
and in silico models of cardiomyocytes currently in use to study
COVID-19, (2) review in vitro and in silico models that can be
adopted to mimic the effects of SARS-CoV-2 infection on cardiac
function, and (3) propose a perspective on how to create robust
models that resemble a “COVID-19 cardiomyocyte environment”
though the combination of in vitro and in silico strategies.

MODELING THE “COVID-19
CARDIOMYOCYTE” IN VITRO

In some of the first autopsies of deceased COVID-19 patients,
electron microscopy identified viral particles compatible with the
Coronaviridae family in multiple cardiac cell types, including
cardiomyocytes, endothelial cells, macrophages, neutrophils, and
fibroblasts (Dolhnikoff et al., 2020; Fox et al., 2020a,b; Lax et al.,
2020; Lindner et al., 2020). Despite this preliminary evidence, the
mechanism of direct infection of human adult cardiomyocytes is
still not completely elucidated.

A recent single-cell sequencing of adult hearts demonstrated
that expression of ACE2 receptors is higher in pericytes than
in cardiomyocytes (Chen et al., 2020). Additionally, neither
pericytes nor cardiomyocytes seem to significantly express the
protease TMPRSS2 (Litviňuková et al., 2020), strongly suggesting

that, if SARS-CoV-2 does in fact enter cardiomyocytes, it may
do so through a pathway other than ACE2/TMPRSS2 (Pérez-
Bermejo et al., 2020; Yang and Shen, 2020). Further, the high
expression of ACE2 receptors in endothelial cells suggests that
they represent a likely source of SARS-CoV-2 infection. In fact,
the infection of endothelial cells by SARS-CoV-2 results in blood
vessel inflammation (endotheliitis) in multiple organs, including
the heart (Varga et al., 2020).

In this context, the use of in vitro models has been proposed
in an effort to overcome the limitations related to the use
of human tissues post-mortem (Yang et al., 2020). Human
induced pluripotent stem-cell derived cardiomyocytes (hiPSC-
CMs) can be directly infected by SARS-CoV-2 (Bojkova et al.,
2020; Marchiano et al., 2020; Sharma A. et al., 2020; Yang
et al., 2020). These infected cells display impairment of their
spontaneous beating behavior (Bojkova et al., 2020; Marchiano
et al., 2020; Sharma A. et al., 2020). Additionally, an excessive
increase of caspase-3 cleavage, which drives cells to an apoptotic
program, has been reported in these cells (Bojkova et al., 2020;
Sharma A. et al., 2020).

Recent reports have suggested that hiPSC-CMs are infected via
an alternative route involving the ACE2 receptor and cathepsin-
dependent endolysosomes (Bojkova et al., 2020; Marchiano et al.,
2020; Pérez-Bermejo et al., 2020), rather than through TMPRSS2
protease cleavage (Hoffmann et al., 2020). In fact, hiPSC-CMs
display low expression of TMPRSS2 while cathepsins-L and -
B, cysteine proteases which are also able to mediate priming of
the viral S-protein (Hoffmann et al., 2020), are highly expressed
in these cells (Bojkova et al., 2020). Furthermore, the block of
cathepsins by chemical inhibition results in significant reduction
of viral particles in hiPSC-CMs (Bojkova et al., 2020; Pérez-
Bermejo et al., 2020).

In addition, SARS-CoV-2 exposure induces significant
transcriptional changes resulting in the disruption of the
contractile apparatus of hiPSC-CMs (Pérez-Bermejo et al.,
2020). These cytopathic effects progressively affect hiPSC-CM
electrophysiological and contractile properties as recently
demonstrated. Microelectrode array measurements of hiPSC-
CMs infected with SARS-CoV-2 documented a significant
increase in their field potential duration (Marchiano et al., 2020),
an in vitro surrogate for arrhythmogenicity. Similarly, infected
three-dimensional engineered heart tissues displayed progressive
impairment of contractility suggesting a disruption of the
contractile apparatus following infection with SARS-CoV-2,
which may contribute to whole-organ dysfunction (Huang L.
et al., 2020; Marchiano et al., 2020).

Despite the exciting results describing the direct infection
of cardiomyocytes by SARS-CoV-2, increasing clinical evidence
points toward the indirect effects of the infection accounting
for the most prevalent and severe cases that exhibit cardiac
repercussions (Clerkin et al., 2020; Zheng et al., 2020). The field
currently lacks robust models that can clarify these aspects of
COVID-19 at the cardiomyocyte level.

Rising evidence shows that COVID-19 patients with
worse prognosis present cardiac damage that correlates
with the concentration of pro-inflammatory molecules
(Akhmerov and Marbán, 2020; Ruan et al., 2020; Zhou F.
et al., 2020). Indeed, severe symptoms, mainly related to the
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hyperinflammation and deficit of oxygenation, have been
described in the most aggressive cases (Iannaccone et al.,
2020; Lax et al., 2020). The inability to promptly defeat a viral
infection can elicit a cytokine storm, in which pro-inflammatory
molecules including Interleukin-1β (IL-1β), Interleukin-6
(IL-6), and Tumor necrosis factor (TNF-α) are released in
pathogenic concentrations causing systemic hyperinflammation
(Iannaccone et al., 2020).

Pro-inflammatory molecules can directly cause adverse
consequences in cardiomyocytes including arrhythmias (Long,
2001; El Khoury et al., 2014; Aromolaran et al., 2018; Keck
et al., 2019), cellular hypertrophy (Long, 2001; Carreño et al.,
2006; Smeets et al., 2008), and cell death (Wang et al., 2016).
Elevated levels of IL-1β can trigger cardiac arrhythmias through
the impairment of expression of proteins that control calcium
handling, ultimately affecting cardiomyocyte’s contraction
(McTiernan et al., 1997; El Khoury et al., 2014). Similarly,
neonatal cardiomyocytes (NCs) exposed to IL-6 in culture
display augmentation of cell size suggesting cellular hypertrophy
(Hirota et al., 1995). Interestingly, NCs co-cultured with
fibroblasts overexpressing IL-6 are driven to apoptosis (Wang
et al., 2016). Furthermore, IL-6 converts cardiac fibroblasts
into myofibroblasts which produce collagen contributing to
the formation of fibrosis (Wang et al., 2016). Pathological
levels of IL-6 cause down-regulation of hERG channel (ether-
a-go-go-related gene) expression, resulting in increased risk of
action potential duration (APD) prolongation and arrhythmias
(Aromolaran et al., 2018).

TNF-α is another pro-inflammatory molecule that triggers
cardiac arrythmias and induces cardiomyocytes’ hypertrophy
and death (Nakamura et al., 1998; Carreño et al., 2006; Shen
et al., 2018). Rat NCs treated with TNF-α exhibit abnormal
size (Nakamura et al., 1998). Further, pathological levels of
TNF-α can enhance mitochondrial fragmentation, promoting
cell death (Shen et al., 2018), and a slow and sustained
increase in hypertrophic markers through the NF-Kβ pathway
(Smeets et al., 2008).

The cytokine storm caused by SARS-CoV-2 triggers an
acute respiratory distress syndrome (ARDS) resulting in severe
outcomes such as oxygen deprivation (hypoxia) and electrolyte
disturbance (e.g., hypokalemia), factors that cause cardiomyocyte
distress (Bhatia et al., 2012; Coperchini et al., 2020; Xu et al.,
2020). Moreover, it appears that this hypoxia may induce release
of additional cytokines, potentially leading to further myocyte
dysfunction. In isolated rat NCs subjected to hypoxia (5% O2),
production and release of IL-6 are enhanced (Yamauchi-Takihara
et al., 1995; Wang et al., 2016). In addition, conditioned media
from rat NCs cultivated at 1% O2 exhibit higher levels of TNF-
α, IL-1β, IL-6, and transforming growth factor beta (TGF-β)
compared to cells cultivated in normoxia (Shi et al., 2017).

Electrolyte imbalance and fever are two other typical
conditions implicated in COVID-19 patients. Several models
of hypokalemia and hyperthermia have indicated that slight
changes in the cellular environment can dramatically impair
cardiomyocytes’ stability (El-Battrawy et al., 2016; Weiss et al.,
2017; Tazmini et al., 2020). Hypokalemia is a systemic decrease in
the concentration of K+ ions that can produce APD prolongation

and arrhythmias in cardiomyocytes (Weiss et al., 2017), including
hiPSC-CMs (Kuusela et al., 2017). In addition, arrhythmias
associated with hyperthermia have also been reported in both
healthy and ill individuals (Saura et al., 2002; Pasquié et al., 2004;
Burrell et al., 2007), and cellular studies have reported reductions
in important cardiac ion channels caused by hyperthermia
(El-Battrawy et al., 2016).

Taken together, the previous reports provide substantial
information on how to model several outcomes that account for
the cardiac deterioration observed in many COVID-19 patients.
Studies that use patient-derived hiPSC-CMs carrying inherited
diseases can also be found in the literature (Granéli et al., 2019;
Hoes et al., 2019; Jimenez-Tellez and Greenway, 2019). Several
of these models can be adopted to evaluate additive effects of
COVID-19 and pre-existing comorbidities such as heart failure,
cardiomyopathies, diabetes. The most representative in vitro
models that mimic COVID-19 outcomes, as well as some of the
significant hiPSC lines derived from patients with pre-existing
comorbidities are described in Table 1.

MODELING THE “COVID-19
CARDIOMYOCYTE” IN SILICO

Besides the use of in vitro strategies, many authors have been
reporting in silico models to study COVID-19. Most of them
are concerned with predictions of mortality and risk factors
(Scheiner et al., 2020; Wicik et al., 2020; Yadaw et al., 2020),
disease infection and spread (Ivorra et al., 2020; Zeb et al., 2020),
and drug-target interactions (Ciliberto and Cardone, 2020; Iqbal
Choudhary and Shaikh, 2020; Muthuramalingam et al., 2020;
Zhou Y. et al., 2020). Regarding the cardiac repercussions of
COVID-19 and its potential treatments, mechanistic approaches
based on dynamical models have been proposed to predict
effectiveness of treatments (Iqbal Choudhary and Shaikh, 2020;
Peterson, 2020), and to measure the toxicity of repurposed drugs
(Sutanto and Heijman, 2020; Varshneya et al., 2020).

Notably, several drugs currently under testing have been
previously reported to cause toxicity (Chary et al., 2020; Saleh
et al., 2020; Smith et al., 2020; Zhang et al., 2020). Particular
attention needs to be paid to drugs that can substantially
increase arrhythmia risk or increase the risk of heart failure
(Michaud et al., 2020), as addressed in a few recent studies.
For example, Sutanto and Heijman used a canine ventricular
cardiomyocyte model to simulate action potentials (APs) of
cardiomyocytes treated with chloroquine (CQ) and azithromycin
(AZM). The authors demonstrated that β-adrenergic stimulation
is protective against CQ- and AZM-induced proarrhythmia by
preventing APD prolongation and afterdepolarizations (Sutanto
and Heijman, 2020). Meanwhile, our group has combined
pharmacokinetics (PK) and electrophysiology modeling of
human ventricular cardiomyocytes to predict the risk of potential
cardiac adverse events caused by CQ, AZM, lopinavir (LP), and
ritonavir (RT). Our simulations showed treatment with clinically
relevant doses of CQ/AZM was more dangerous than treatment
with LP/RT, and that females with pre-existing heart failure
were at the highest risk of developing ventricular arrhythmia
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TABLE 1 | In vitro models to be used to mimic “COVID-19 cardiomyocytes.”

Outcome Stimuli Treatment Specie Cell type References

Inflammation/
Hypertrophy

IL-1β 1 ng/mL, 12–16 h (adult cells)
and 30 pg/mL 24–32 h

mouse neonatal ventricular
myocytes and adult
ventricular myocytes

El Khoury et al., 2014

TNF-α 1 ng/mL, 12–16 h and
30 pg/mL 24–32 h

TNF-α 50 ng/mL, 2, 12, 24, and 48 h rat Neonatal cardiomyocytes Smeets et al., 2008

TNF-α 1, 10, and 100 ng/mL
(centered in 10 ng/mL), from 1
hour to 3 days.

rat Neonatal cardiomyocytes Nakamura et al., 1998

TNF-α 5, 10, and 20 ng/mL, 6 or 48 h rat H9C2 rat cardiomyocytes Shen et al., 2018

IL-6 5, 10, and 20 ng/mL, 6 or 48 h

IL-6 2 µg/mL for 72 h mouse neonatal cardiomyocytes Hirota et al., 1995

IL-6 20 ng/mL for 40 min guinea-pig adult ventricular myocytes Aromolaran et al., 2018

Hypoxia Gases
concentration

95% N2 – 5% CO2 (different
regimens of time)

rat neonatal ventricular
cardiomyocytes

Yamauchi-Takihara et al., 1995

Gases
concentration

not described rat neonatal ventricular
cardiomyocytes

Wang et al., 2016

Gases
concentration
and culture
medium

nitrogen equilibrated DMEM
and 1% O2 and 5% CO2 for 2,
4, 6, 8, 10, and 12 h

mouse neonatal cardiomyocytes Shi et al., 2017

Gases
concentration

1% O2 (adjusted by N2

replacement in different
regimens of time)

human/chimpanzee iPSC-CMs Ward and Gilad, 2019

Gases
concentration

1% O2 (adjusted by N2

replacement)
human iPSC-CMs Plant et al., 2020

Electrolyte imbalance
(hypokalemia)

K+ concentration
in the medium

5.33, 4, 3, 2 and 1 mM of K+

(adjusted by adding KCl into a
K+ free medium)

human iPSC-CMs Kuusela et al., 2017

K+ concentration
in buffer solution

from 5 to 2.7 mmol/L rapidly
reduction of K+ superfusion

rat atrial and ventricular adult
myocytes

Tazmini et al., 2020

Hyperthermia Temperature
increase

36 vs. 40◦C human iPSC-CMs El-Battrawy et al., 2016

HCM MYH7 missense mutation
(Arginine442Glycine)

human iPSC-CMs Han et al., 2014

MYBPC3 c.2373dupG mutation human iPSC-CMs Birket et al., 2015

MYBPC3 heterozygous c.1358-1359insC human iPSC-CMs Prondzynski et al., 2017

DCM phospholamban
(PLN)

R14del mutation human iPSC-CMs Stillitano et al., 2016

LMNA gene R225X, Q354X, and T518fs
patient mutation

human iPSC-CMs Lee et al., 2017

from drug treatments (Varshneya et al., 2020). These studies
(Sutanto and Heijman, 2020; Varshneya et al., 2020) suggests
that future work needs to address how pre-existing diseases and
COVID-19 clinical presentation (e.g., hyperinflammation, fever,
ion imbalance) may affect arrhythmia susceptibility.

The use of in silico models to simulate electrophysiological
perturbations and to predict disease severity and treatment
efficacy is a mature field of research (Lancaster and Sobie,
2016; Passini et al., 2017; Jæger et al., 2019a,b; Li et al.,
2019; Gando et al., 2020). Dynamic models of cardiomyocyte’s
electrophysiology are particularly useful for simulating between-
patient variability (Muszkiewicz et al., 2016), allowing the study
of phenotypic minorities, such as high-risk COVID-19 patients
(Varshneya et al., 2020). This variability among individuals is
hard to replicate in other model types (e.g., in vivo, in vitro).

Further, in silico approaches can provide a quick illustration
of how multiple factors in combinations (e.g., cytokine storm
plus pre-existing diseases plus drug-treatments), can exacerbate
positive or negative outcomes.

Over the past decades numerous in silico models that resemble
electrophysiological properties of cardiomyocytes have been
proposed based on experimental data from different species
(Krogh-Madsen et al., 2016; Mayourian et al., 2018). These
models can be used to highlight physio- and pathophysiological
characteristics of ion channels and cellular compartments, as well
as their intricate relationships, in order to gain a mechanistic
understanding of a variety of illnesses and drug-treatments
(Pandit et al., 2003; Sarkar and Sobie, 2011; Petkova-Kirova
et al., 2012; Atkinson et al., 2016; Devenyi and Sobie, 2016;
Das et al., 2017; Paci et al., 2018; Varshneya et al., 2018;
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Gong et al., 2020; Sutanto et al., 2020). However, only few
models that mimic inflammation (Petkova-Kirova et al., 2012)
and hyperthermia (Atkinson et al., 2016) can be found in
the literature, posing barriers to the modeling of COVID-19
secondary effects on cardiomyocytes. Further, many of these
models are based on animal experiments, limiting translation
of their findings.

It is worth mentioning that most of the models previously
cited are based on ordinary differential equations (ODEs) and
describe the action potential and calcium transient of an isolated
cardiomyocyte. Therefore, these models cannot assess how
interactions among cardiomyocytes as well as with fibroblasts and
other cell types contribute to the overall cardiac function. These
shortcomings can be addressed by bi-(2D) and tridimensional
(3D) models (e.g., fiber, tissue), where electrical coupling and
the resultant tissue-level behavior can be simulated (Lines et al.,
2002; Jæger et al., 2019a; Hwang et al., 2020). These models
can be used to investigate mechanisms of cardiac arrhythmia,

such as cardiac reentry that can be induced by Early After
Depolarizations (EADs). Complex models are promising and
can be particularly beneficial considering correlations with
experimental data obtained from 3D hiPSC-CM models (e.g.,
field potential assessments by MEA in hiPSC-CM monolayers
or 3D structures) (Kügler, 2020). However, these spatial models
are more computationally expensive and are less frequently used
than single-cell models (Jæger et al., 2019a). The most significant
in silico models able to partially simulate COVID-19 effect in
cardiomyocytes are listed in Table 2.

DISCUSSION/PERSPECTIVE

Despite the rapid dissemination of high-quality science during
the COVID-19 pandemic, crucial gaps of knowledge remain
open. Here, we (1) reviewed the most up to date protocols

TABLE 2 | In silico models to be used to mimic “COVID-19 cardiomyocytes.”

Outcome Stimuli Treatment/Simulation Specie Cell type References

Drug-treatment
(β-adrenergic signaling)

healthy cells under
sympathetic stimulation

CQ, AZM dog ventricular cardiomyocytes Sutanto and Heijman,
2020

Drug-treatment, heart
failure, gender

healthy cells and heart
failure cells from male and
female

CQ, AZM, LP, RT human endocardial ventricular
myocytes

Varshneya et al., 2020

Drug-treatment healthy cells Several drugs human ventricular cardiomyocytes Lancaster and Sobie,
2016

Drug-treatment healthy cells several drugs human ventricular cardiomyocytes Passini et al., 2017

Drug-treatment healthy cells/dynamic
hERG submodels

several drugs human ventricular cardiomyocytes Li et al., 2019

Genetic disease (Q1475P
Nav 1.5 mutation)

healthy cells modified by
Markov model for fast and
late Na+ current

Nav1.5 mutation human endocardial ventricular
myocytes

Gando et al., 2020

Comorbidity (diabetes
type-I)

streptozotocin-induced,
type-I diabetes in rats

baseline model vs. diabetes
model

rat right ventricle
cardiomyocytes

Pandit et al., 2003

Ion current changes 75% block of IKr baseline vs. IKr blocked cells dog and human ventricular cardiomyocytes Sarkar and Sobie, 2011

Arrhythmogenic
susceptibility

changes in the
conductances of IKr and IKs

baseline vs. IKr and IKs

modified cells
several ventricular cardiomyocytes Varshneya et al., 2018

β-adrenergic
signaling/activity

healthy cells under
sympathetic

human model parametrization
for β-adrenergic system

human epicardial ventricular
cardiomyocytes

Gong et al., 2020

Inflammation/Hypertrophy TNF-α overexpression in
the heart

Parameterization using
cardiomyocytes isolated from
hearts overexpressing TNF-α

mouse apical ventricular
cardiomyocytes

Petkova-Kirova et al.,
2012

Hyperthermia (fever) Fever baseline vs. adjusted model
for fever based on malaria

human atrial and ventricular
cardiomyocytes

Atkinson et al., 2016

Drug-treatments, model
validation, ion current
changes

healthy cells vs.
modifications: physiological
and cardiotoxic spectrum

Tetrodotoxin, nifedipine,
3R4S-Chromanol 293B,
E4031

human Atrial and ventricular
hiPSC-CMs

Paci et al., 2013

Ion imbalances, heart
failure, hiPSC-CM/adult
cardiomyocytes
predictions

healthy cells vs. a variety of
conditions and species
cross predictions and
validations

ion channel blocks, ion buffer
composition changes, pacing
rates, heart failure

human, guinea pig,
rabbit

iPSC-CMs (human) and
adult cardiomyocytes
(different species)

Gong and Sobie, 2018

hiPSC-CM/adult cardiac
microtissues,
Drug-treatments

healthy microtissues from
hiPSC-CMs

Cisapride and verapamil
treatments (different doses)

human iPSC-CMs (human)/adult
myocytes

Tveito et al., 2018

hiPSC-CM/adult cardiac
microtissues,
Drug-treatments

healthy microtissues from
hiPSC-CMs

Cisapride, verapamil,
lidocaine, nifedipine,
flecainide (many dose)

human iPSC-CMs (human)/adult
myocytes

Jæger et al., 2020
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used to study COVID-19 effects in cardiomyocytes, and (2)
reviewed several in vitro and in silico models of inflammation,
ischemia/hypoxia, hyperthermia, hypokalemia, and hypertrophy,
with great relevance cardiovascular effects of COVID-19 that are
not due to direct infection of cardiomyocytes by SARS-CoV-2.

In this scenario, hiPSC-CMs emerge as a promising platform
for modeling COVID-19. However, these cells display limited
maturation and biological heterogeneity, partly due to a lack of
consensus protocols for their generation and characterization,
negatively contributing to their clinical translation (Lundy
et al., 2013; Robertson et al., 2013; Koivumäki et al., 2018;
Gintant et al., 2019; Hoang et al., 2019; Ribeiro et al., 2019).
Several strategies have been proposed to overcome hiPSC-CMs
maturation obstacles. Nonetheless, most of them only result
in limited improvement, especially in the case of 2D models
(Talkhabi et al., 2016; Sun and Nunes, 2017). In parallel, 3D
models such as cardiac spheroids (Polonchuk et al., 2017;
Mattapally et al., 2018) and “engineered heart tissues” (EHTs)
(Nunes et al., 2013; Stoehr et al., 2014) have shown promising
results toward obtaining mature cells and a phenotype that more
closely resembles adult tissue. However, the specialized expertise
required for 3D technologies and the expense of these assays
remains a challenge that limits the use of these approaches
for research groups that require scalable or high throughput
implementation (Zuppinger, 2019).

Additionally, in silico models of hiPSC-CMs’ electrophysiology
became a reality (Paci et al., 2013, 2018; Gong and Sobie, 2018;
Tveito et al., 2018; Jæger et al., 2020), allowing the simulation of
disease effects and drug toxicity (Gong and Sobie, 2018; Jæger
et al., 2020). Similarly to the case of experimental models, there
are peculiarities and limitations for modeling cardiomyocytes
in silico (Gong et al., 2017). However, in silico models have
the flexibility of being easily adapted to new experimental data,
such as the ones obtained from hiPSC-CMs, allowing for more
accurate quantitative predictions (Lei et al., 2017; Jæger et al.,
2020; Paci et al., 2020). Furthermore, the most recent mechanistic
models permit an improved translation of electrophysiological
findings from hiPSC-CMs to human adult myocytes at both
single-cell and tissue level (Gong and Sobie, 2018; Tveito et al.,
2018). Overall, these strategies consider proportional changes in
proteins expression throughout maturation without significant
changes in the cell’s function. Therefore, regression models,
among other strategies can be used to parameterize ion current
densities and correlate hiPSC-CM to adult cardiomyocyte models
(Gong and Sobie, 2018; Tveito et al., 2018).

Currently, universal protocols for the generation and
characterization of hiPSC-CMs are not available. Depending
on their application, strengths and weaknesses exist for both
2D and 3D models (Zuppinger, 2019). Especially in the context
of a pandemic, strengths, and weaknesses should be pondered
to allow for fast and meaningful experimental research. The

best models of choice in this scenario are the ones that can
generate accurate results but in a timely fashion. Independently
of the model of choice, experiments need to be conducted in
well-controlled environment, replicated for different cell lines,
and always accompanied by negative controls (non-treated,
healthy). Analogously, in silico models should be chosen to
best match the experimental approach. The interpretation of
results needs to be cautious, always considering the intrinsic
limitations of each model.

Thus, the integration of experimental data obtained from
hiPSC-CMs (single-cell, 2D, and 3D models) with appropriate
in silico models that can quantitatively predict functional cardiac
outcomes in adult cells is of paramount importance. hiPSC-
CMs from healthy donors or patients with pre-established
comorbidities can be utilized to investigate in vitro the reaction
of cardiomyocytes to several conditions precipitated by the
systemic effects of SARS-CoV-2 infection. Many of these models
were discussed in this mini review. The results obtained from
experiments with hiPSC-CMs will provide valuable information
that can be integrated into in silico models and used to predict
disease progression and the effects of treatment.

In conclusion, we presented a perspective on how to
combine in vitro and in silico approaches to generate human-
based platforms to study COVID-19 repercussions on the
cardiomyocyte’s function. The use of robust and precise models
and their integration in mechanistic platforms may contribute
substantially to understanding the impact of COVID-19 and
COVID-19 drug treatments on the heart, constituting an
additional source of guidance to help clinicians in the front line.
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