
sensors

Article

The Spatiotemporal Data Fusion (STDF) Approach: IoT-Based
Data Fusion Using Big Data Analytics

Dina Fawzy, Sherin Moussa * and Nagwa Badr

����������
�������

Citation: Fawzy, D.; Moussa, S.;

Badr, N. The Spatiotemporal Data

Fusion (STDF) Approach: IoT-Based

Data Fusion Using Big Data Analytics.

Sensors 2021, 21, 7035. https://

doi.org/10.3390/s21217035

Academic Editors: Jose

Manuel Molina López and Christoph

M. Friedrich

Received: 28 July 2021

Accepted: 29 September 2021

Published: 23 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Information Systems Department, Faculty of Computer and Information Sciences, Ain Shams University,
Cairo 11566, Egypt; dina.fawzy@cis.asu.edu.eg (D.F.); nagwabadr@cis.asu.edu.eg (N.B.)
* Correspondence: sherinmoussa@cis.asu.edu.eg

Abstract: Enormous heterogeneous sensory data are generated in the Internet of Things (IoT) for
various applications. These big data are characterized by additional features related to IoT, including
trustworthiness, timing and spatial features. This reveals more perspectives to consider while
processing, posing vast challenges to traditional data fusion methods at different fusion levels for
collection and analysis. In this paper, an IoT-based spatiotemporal data fusion (STDF) approach
for low-level data in–data out fusion is proposed for real-time spatial IoT source aggregation. It
grants optimum performance through leveraging traditional data fusion methods based on big data
analytics while exclusively maintaining the data expiry, trustworthiness and spatial and temporal
IoT data perspectives, in addition to the volume and velocity. It applies cluster sampling for data
reduction upon data acquisition from all IoT sources. For each source, it utilizes a combination of
k-means clustering for spatial analysis and Tiny AGgregation (TAG) for temporal aggregation to
maintain spatiotemporal data fusion at the processing server. STDF is validated via a public IoT data
stream simulator. The experiments examine diverse IoT processing challenges in different datasets,
reducing the data size by 95% and decreasing the processing time by 80%, with an accuracy level up
to 90% for the largest used dataset.

Keywords: Internet of Things; big data analytics; data fusion; real-time processing; data reduction;
data aggregation; cluster sampling

1. Introduction

The Internet of Things (IoT) is an emerging technology that connects various objects in
the physical world in order to communicate and exchange data [1,2]. It plays a vital role in
different practical systems for decision support and control by providing intelligent services
and applications as a major source of big data [3,4]. Examples include the healthcare,
environment, transportation, human-based and energy fields, where many sensors and
devices are deployed to sense and perceive various data [5].

However, the multiple sources, heterogeneity and large volumes of unreliable data
collected at unprecedented speeds make receiving all data impossible, which obviously
consumes a high network bandwidth and device power [6]. Hence, data fusion has
become a significant approach to extract and integrate critical data from widely sensed
multimodal sources and types in a uniform manner [7]. Therefore, data fusion can reduce
the size and dimensions of data, optimize data quality and extract useful information
from them [8]. It helps in eliminating data imperfections and handles the sensed data
heterogeneity from different sources [9]. Although IoT has provided huge benefits, it has
posed many challenges to typical data fusion approaches, due to the new data perspectives
introduced by IoT data, such as data expiry, semantics, trustworthiness, accuracy and
spatiotemporality [10].

Furthermore, the processing complexity of IoT data has allowed data fusion at three
levels in IoT-based systems: (1) low-level data fusion, where the raw data generated from

Sensors 2021, 21, 7035. https://doi.org/10.3390/s21217035 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-9593-6909
https://doi.org/10.3390/s21217035
https://doi.org/10.3390/s21217035
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21217035
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21217035?type=check_update&version=2

Sensors 2021, 21, 7035 2 of 30

physical objects are fed directly into the fusion process to provide better information;
(2) middle-level data fusion, where different features from heterogeneous raw data are
fused to find relevant features extracted from diverse data fusion methods; and (3) high-
level data fusion, which provides decisions fused from input decisions to obtain the most
optimum one [11]. In practice, any combination of these three levels can be employed: data
in–data out, data in–feature out, feature in–feature out, feature in–decision out, decision
in–decision out.

The scope of this study focuses on low-level data fusion: data in–data out fusion
directly from IoT sources. This provides ready-fused data streams, which can be consid-
ered for further intended business purposes and domain-specific applications to obtain a
domain-specific data out, feature out or decision out. Thus, the main contributions of this
paper can be summarized as follows:

1. We propose the spatiotemporal data fusion (STDF) approach for IoT data;
2. To the best of our knowledge, STDF is the first data in–data out (DAI–DAO) data

fusion approach for IoT data that is independent of any IoT domain;
3. To the best of our knowledge, STDF is the first data fusion approach for IoT data

that preserves the spatial and temporal characteristics of IoT data during fusion,
considering all timing characteristics of IoT data;

4. STDF uniquely investigates predefined and trusted IoT data sources to ensure private
IoT data fusion;

5. STDF grants optimum performance for big IoT data fusion, which effectively supports
scalable real-time processing of such vastly generated IoT data;

6. STDF ensures accurate IoT data fusion, considering both big data and IoT-related
data characteristics;

7. A detailed experimental analysis is conducted to evaluate the proposed STDF ap-
proach using a publicly available IoT data stream simulator for validity.

The remaining sections of this paper are structured as follows. Section 2 evaluates the
related works of data fusion approaches considered for different IoT systems. Section 3
discusses the problem definition and the main contributions of this study. Section 4 presents
the proposed approach, with a detailed description of its layers and modules. Section 5
discusses the experimental methodology and resultant outcomes to evaluate the proposed
approach, whereas Section 6 presents a detailed discussion of the experimental results.
Finally, Section 7 concludes our study and highlights future work.

2. Related Works

We investigated many data fusion studies dedicated to IoT by considering two per-
spectives: (1) the data fusion method, and (2) the data fusion level. From the data fusion
methods perspective, Figure 1 shows a mapping of data fusion approaches for different IoT
domains based on data fusion methods [12]. The main trends include: (1) probability-based
methods (PBMs) that express the relationships among diverse variables using estimation
methods, i.e., Bayesian inference and Kalman filtering, but mainly suffer from limited
performance when dealing with complex and multivariate data; (2) evidence reasoning-
based methods (EBMs) that introduce the concepts of belief and plausibility to show
uncertainty in a given situation, i.e., Dempster–Shafer (D–S) theory and recursive opera-
tors, but encounter difficulty in estimating mass functions with unreliable data; and (3)
knowledge-based methods (KBMs) which gain knowledge from huge data, including intel-
ligent aggregation methods, such as supervised learning, i.e., k-nearest neighbor, support
vector machines, naive Bayes, artificial neural networks and unsupervised learning, i.e.,
k-means [13].

Sensors 2021, 21, 7035 3 of 30

Sensors 2021, 21, x FOR PEER REVIEW 3 of 31

domain-specific approaches, in which they adopt either data in–feature out, feature in–
feature out, feature in–decision out or decision in–decision out perspectives to provide
domain-specific applications. However, the scope of this study includes fusing data di-
rectly from IoT sources at a low-level data perspective, adopting the data in–data out level,
handling challengeable IoT data features to achieve further business purposes based on
the IoT domain, despite the expected outcome after fusion being data, features or deci-
sions. Accordingly, this section investigates the main low-level data fusion approaches
that have been proposed for IoT-based systems and evaluates them from the perspectives
of both big data characteristics and IoT data features to highlight the current research gaps
in this area. The authors of [12] introduced a healthcare data fusion model on the cloud
for complex health event detection by aggregating individual elements over multiple data
sources using the complex event processing (CEP) method. A main concern in this model
was that it ignored the mobility of IoT data while fusing healthcare data. Moreover, it did
not address the data expiry intervals used for analysis. In [13], an anomaly detection data
fusion approach on the cloud was proposed to detect misbehaviors and inaccurate data
source readings for robot motion. Inaccurate actuator and corrupted sensor readings were
determined using a model-based estimation data fusion method. Neither the data source
trustworthiness nor timely IoT data fusion at a certain time/event and sensor metadata
were considered during the analysis, which affected the accuracy of the analysis results.

Figure 1. Data fusion methods considered for different IoT domains.

Another data fusion model for IoT was introduced in [14] for real-time energy pricing
using the distributed state estimation method, aggregating data from various power data
sources. However, it did not consider a data expiry interval in the real-time analysis. A
hierarchal data fusion model for gesture recognition imagery was proposed in [15]. It
maintained and reduced the dimensions of images using principle component analysis
(PCA), and then fusion started by splitting images based on color and information depth
using Gaussian model segmentation and a recognition process using SVM classification.
The model neither addressed the image metadata nor considered the expiry of the images,
affecting the analysis accuracy. Moreover, the model had a negative processing perfor-
mance due to the central processing.

An optimized model for sensor data allocation was introduced in [16] using the par-
ticle swarm optimization (PSO) data fusion method, considering sensors’ spatial infor-
mation. However, it did not handle the sensors’ metadata and temporal data during the

Figure 1. Data fusion methods considered for different IoT domains.

From the data fusion level perspective, various data fusion methods have been con-
sidered for IoT systems at different data fusion levels. Most of these methods consider
domain-specific approaches, in which they adopt either data in–feature out, feature in–
feature out, feature in–decision out or decision in–decision out perspectives to provide
domain-specific applications. However, the scope of this study includes fusing data di-
rectly from IoT sources at a low-level data perspective, adopting the data in–data out level,
handling challengeable IoT data features to achieve further business purposes based on the
IoT domain, despite the expected outcome after fusion being data, features or decisions.
Accordingly, this section investigates the main low-level data fusion approaches that have
been proposed for IoT-based systems and evaluates them from the perspectives of both
big data characteristics and IoT data features to highlight the current research gaps in
this area. The authors of [12] introduced a healthcare data fusion model on the cloud for
complex health event detection by aggregating individual elements over multiple data
sources using the complex event processing (CEP) method. A main concern in this model
was that it ignored the mobility of IoT data while fusing healthcare data. Moreover, it did
not address the data expiry intervals used for analysis. In [13], an anomaly detection data
fusion approach on the cloud was proposed to detect misbehaviors and inaccurate data
source readings for robot motion. Inaccurate actuator and corrupted sensor readings were
determined using a model-based estimation data fusion method. Neither the data source
trustworthiness nor timely IoT data fusion at a certain time/event and sensor metadata
were considered during the analysis, which affected the accuracy of the analysis results.

Another data fusion model for IoT was introduced in [14] for real-time energy pricing
using the distributed state estimation method, aggregating data from various power data
sources. However, it did not consider a data expiry interval in the real-time analysis. A
hierarchal data fusion model for gesture recognition imagery was proposed in [15]. It
maintained and reduced the dimensions of images using principle component analysis
(PCA), and then fusion started by splitting images based on color and information depth
using Gaussian model segmentation and a recognition process using SVM classification.
The model neither addressed the image metadata nor considered the expiry of the images,
affecting the analysis accuracy. Moreover, the model had a negative processing performance
due to the central processing.

An optimized model for sensor data allocation was introduced in [16] using the parti-
cle swarm optimization (PSO) data fusion method, considering sensors’ spatial information.

Sensors 2021, 21, 7035 4 of 30

However, it did not handle the sensors’ metadata and temporal data during the analysis.
Another human transition detection model was proposed in [17] based on fusing captured
images and body-deployed sensors using convolutional neural networks (CNN) for tran-
sition movements and fall detection. This model ignored the real-time processing of the
big data veracity, the semantic information included in the sensor metadata and the data
expiry rate, which negatively impacted the model accuracy and performance. For smart
environments, the authors in [18] introduced a weather forecasting data fusion model
using the kriging with external drift (KED) method. Although several IoT data features
were considered in this proposed model, it did not manage inaccurate sensor data.

A data fusion approach for nuclear power crack detection was proposed in [19] using
visual-based data. First, CNNs were used to detect crack patches, and NB ensured whether
the detected cracks were real or not. Yet, the approach ignored the metadata and data
accuracy during the analysis, which affected the analytical accuracy. Another data fusion
model for opinion mining in social networks was introduced in [20]. The model started by
filtering the unrelated data and then grouping the similar data using k-means clustering. It
considered neither opinion expiry rates nor opinion temporal features during the analysis,
presenting a serious concern. Moreover, using central processing for analysis resulted in a
poor processing performance.

For the wireless communication field, a data fusion model for automatic modulation
recognition (AMR) was proposed in [21] using the global average and max pooling (GAMP)
method. The fusion model was responsible for extracting relevancy between spatial and
temporal signal features. However, the model ignored the data expiry rate and signal source
trustworthiness, which downgraded the result accuracy. Another video summarization
data fusion model was proposed in [22] on the cloud to enhance the video retrieval process.
The proposed model used CNNs to extract video features while preserving big data
characteristics. Yet, it did not preserve video-associated metadata during the analysis.

Considering all the presented studies, IoT has become a major source of big data.
Therefore, managing big data complexity is essential while processing IoT data. This can
be achieved by reducing the big data volume, supporting the processing of diverse data
types and ensuring real-time processing of the data velocity rather than using a traditional
central processing approach. However, many data fusion approaches do not consider such
issues during analysis, as discussed earlier. Another major concern is that all the studies
presented data in–decision out data fusion approaches, which makes them domain-specific
and data-dependent approaches with poor adaptability to different domains. Table 1
presents a comprehensive summary of the investigated data fusion approaches, associated
with their evaluation from the perspectives of big data characteristics and IoT data.

Table 1. Evaluation of data fusion methods in IoT systems from the big data and IoT perspectives.

Ref Data Fusion
Target

Processing
Technology

Data Fusion
Method

Handled Big Data
Characteristics

Ignored IoT Data
Perspective

Evaluation
Metrics

[12]
Complex event

pattern detection for
smart healthcare

Cloud
processing

Complex event
processing

Variety,
veracity and

velocity

Data dynamicity
and data expiry Processing time

[13]
Data source

anomaly detection for
smart mobility

Cloud
processing

Model-based
estimation

Variety and
veracity

Data
trustworthiness,

data semantics and
data time

Accuracy using
data variance

[14]
Real-time energy
pricing for smart

energy

Distributed
processing

system

Distributed
state estimation

Velocity,
veracity and

variety
Data expiry Accuracy using

F-measure

[15] Gesture recognition
imagery

Central
processing

Segmentation
followed by
classification

Volume and
veracity

Data semantics and
data expiry

Accuracy using
recognition rate

Sensors 2021, 21, 7035 5 of 30

Table 1. Cont.

Ref Data Fusion
Target

Processing
Technology

Data Fusion
Method

Handled Big Data
Characteristics

Ignored IoT Data
Perspective

Evaluation
Metrics

[16] Optimization of sensor
data allocation

Central
processing

Particle swarm
optimization

Veracity and
variety

Data semantics and
data time -

[17]
Body movement

monitoring for smart
healthcare

Central
processing CNNs Veracity and

volume
Data semantics and

data expiry Processing time

[18] Weather forecasting for
smart environments

Cloud
processing

Kriging with
external drift Variety Data

semantics
Accuracy using

mean error

[19] Nuclear power crack
detection

Central
processing CNNs and NB - Data

semantics

Accuracy using
root mean

square error

[20] Reputation generation
and opinion mining

Central
processing Data clustering Variety and

veracity
Data expiry and

data time
Accuracy using
data deviation

[21]
Automatic

Modulation
recognition

Central
processing

Global average
and max
pooling

Variety and
veracity

Data expiry and
data

trustworthiness

Classification
accuracy

[22] Video
summarization

Cloud
processing CNNs

Volume,
variety,

velocity and
veracity

Data semantics Accuracy using
F-measure

3. Problem Definition and Main Contributions

Data fusion for IoT concerns all data types to be collected, transmitted, aggregated
from different sources and processed for better decision making. New data features
related to the IoT domain can be inferred as per the discussed previous studies, which
added further complexity to the data fusion process. Although many studies have tried
to customize their data fusion approaches for IoT, most of them were application specific
for certain analytical purposes, as they restricted their data fusion outcome to be domain-
dependent features or application-dependent decisions. Hence, this section elaborates the
deduced IoT data features and discusses their impact on the current data fusion approaches
for IoT systems, followed by our main contributions in the proposed STDF.

3.1. IoT Data Features

Specifying the unique characteristics of IoT data helps to determine the requirements
of data fusion to consider for IoT systems. Figure 2 summarizes the explored IoT data
features with respect to the IoT data perspectives investigated in Section 2 across different
IoT domains, mapping them to their resultant processing challenges. These features should
be specifically addressed in IoT-related data fusion approaches. A detailed explanation is
presented below.

Sensors 2021, 21, 7035 6 of 30

Sensors 2021, 21, x FOR PEER REVIEW 6 of 31

 Fast generated data: this feature relates to the big data velocity, in which the fast data
generated require continuous processing to cope with the high data speed;

 Diverse data: this feature reflects the big data variety, in terms of the diversity and
heterogeneity of the collected data types and structures;

 Imprecise data: this is concerned with the big data veracity, in terms of data imper-
fection, conflict, ambiguity and inconsistency due to perceiving data by various sen-
sors.

Figure 2. The inferred IoT data features and their corresponding processing challenges.

3.1.2. IoT-Specific Data Features

 Informative data: IoT data are associated with valuable metadata, enriching data
with more information and semantics. This reveals a new factor for data fusion accu-
racy.

 Volatile data: This indicates either the data freshness or expiration to be used in ana-
lytics. For example, traffic data must be refreshed at short time intervals otherwise
they will be useless. In contrast, environmental data for the same area could be used
for longer periods. This feature directly impacts the quality of data fusion.

 Spatial data: In some IoT domains, IoT data are location based, which indicates they
are dynamically changing and spatially correlated.

 Temporal data: Considering the time factor, this reflects whether the data are con-
stant or time variant. In some domains, IoT data are time based that need regular
processing and analysis as per specific times, e.g., in the renewable energy domain,
tidal power data analysis needs to extract data only at tidal time periods instead of
continuously extracting data which is a useless process.

 Private data: In some IoT domains, IoT data can be collected and accessible from
public sources. This often requires feeding more information to trust these data
sources.

Figure 2. The inferred IoT data features and their corresponding processing challenges.

3.1.1. Common Features of Big Data Characteristics

IoT systems are concerned with a large number of sensors that continuously observe
physical objects and generate big data. As the technology advances, more characteristics
are added to big data [23]. However, data fusion for IoT systems should maintain the
following big data characteristics related to the IoT:

• Massive data: this feature is related to the big data volume, which expresses the huge
amount of sensed and actuated data that need powerful processing techniques;

• Fast generated data: this feature relates to the big data velocity, in which the fast data
generated require continuous processing to cope with the high data speed;

• Diverse data: this feature reflects the big data variety, in terms of the diversity and
heterogeneity of the collected data types and structures;

• Imprecise data: this is concerned with the big data veracity, in terms of data imperfec-
tion, conflict, ambiguity and inconsistency due to perceiving data by various sensors.

3.1.2. IoT-Specific Data Features

• Informative data: IoT data are associated with valuable metadata, enriching data with
more information and semantics. This reveals a new factor for data fusion accuracy.

• Volatile data: This indicates either the data freshness or expiration to be used in
analytics. For example, traffic data must be refreshed at short time intervals otherwise
they will be useless. In contrast, environmental data for the same area could be used
for longer periods. This feature directly impacts the quality of data fusion.

• Spatial data: In some IoT domains, IoT data are location based, which indicates they
are dynamically changing and spatially correlated.

• Temporal data: Considering the time factor, this reflects whether the data are constant
or time variant. In some domains, IoT data are time based that need regular processing
and analysis as per specific times, e.g., in the renewable energy domain, tidal power
data analysis needs to extract data only at tidal time periods instead of continuously
extracting data which is a useless process.

Sensors 2021, 21, 7035 7 of 30

• Private data: In some IoT domains, IoT data can be collected and accessible from public
sources. This often requires feeding more information to trust these data sources.

3.2. IoT Data Processing Open Issues

Considering the data fusion approaches in IoT-based systems and inferred IoT-related
data features discussed earlier, many processing challenges of IoT data have been ignored.
Figure 2 presents our deduced IoT data fusion processing challenges and their relation to
our inferred IoT data features, as explained below.

3.2.1. Massive Data Support

The massive amounts of generated IoT data consume excessive processing resources
and storage, downgrading the overall processing performance using limited resources
or central processing techniques. Data fusion should be efficient and scalable to process
different data sizes. Otherwise, it would aggravate the imperfection of the collected data
and produce incorrect results. This problem arises as a result of ignoring the massive IoT
data feature.

3.2.2. Non-Interrupted Data Fusion

Efficient data fusion supports fast responses and continuous processing to ensure
sensors collect data for fusion without causing bottlenecks and latency in IoT services.
Discarding the fast generated data feature while obtaining IoT data using either offline or
complex processing operations decelerates the overall system response.

3.2.3. Fault-Less Data Fusion

Accurate data fusion results are directly related to data extraction. Therefore, handling
IoT data inconsistencies, noise and heterogeneity is required during data acquisition.
During processing, IoT metadata highly enrich the obtained information, which improves
the data fusion result accuracy. Moreover, maintaining the data freshness ensures accurate
results. Therefore, the data fusion accuracy is affected by ignoring imprecise, diverse,
informative and volatile data.

3.2.4. Steady Data Fusion

Data fusion results determine a specified decision, such as a diagnosis or emergency
response. Unreliable fusion results may cause an intolerable danger. Thus, reliability is a
basic requirement of data fusion approaches that is directly affected by spatial and temporal
data, in which decisions may vary as data vary. In addition, ensuring the trustworthiness
of IoT data sources before data extraction is vital for data fusion reliability.

3.3. The Main Contributions

Data fusion has been efficiently applied to reconstruct data, conduct predictions and
detect data anomalies. However, the deduced characteristics of IoT data introduce new
challenges for data fusion in IoT systems that would hinder the benefits of data fusion in
such expanding systems. Thus, we propose the spatiotemporal data fusion (STDF) model
that maintains the newly inferred IoT data features highlighted in Section 3.1, considering
the IoT data processing challenges emphasized in Section 3.2. Thus, the main contributions
of this study are aggregated in the proposed STDF model to provide a customizable IoT
data fusion approach for IoT-based systems with the following characteristics.

3.3.1. Domain-Independent and Spatial-Related IoT Data Fusion

To the best of our knowledge, STDF is the first DAI–DAO data fusion approach for
IoT data that is independent of the data structure or the business analytics purpose. Hence,
it can be integrated on the top of any IoT data source layer. STDF maintains the spatial IoT
data feature by considering data locations as the main factor for data aggregation in the
fusion process, which ensures accurate and corelated data fusion results.

Sensors 2021, 21, 7035 8 of 30

3.3.2. Temporal and Renewed IoT Data Fusion

For fast generated data in real-time systems, STDF considers the temporal IoT data
feature by triggering the fusion process on specific events, which provides a reliable data
fusion process for emergency reactions. STDF also maintains the volatile IoT data feature by
ignoring expired data during data acquisition and fusion, ensuring accurate and updated
data fusion results.

3.3.3. Trusted and Scalable IoT Data Fusion

STDF preserves the IoT data trustworthiness via validating data sources during data
acquisition for a steady and safe data fusion. STDF considers the double-stage cluster
sampling technique for data reduction before data fusion to maintain the massive IoT data.
Applying such data reduction on real-time stream processing would avoid processing
bottlenecks and maintain the data fusion scalability and latency issues.

3.3.4. Accurate and Real-Time IoT Data Fusion

STDF handles IoT data semantics and accuracy by considering metadata during data
acquisition, which reveals data defects and adds more information for an accurate fusion.
STDF is built on top of the “IoTSim-Stream” as an IoT-based stream processing simula-
tor [24,25]. This provides a real-time processing infrastructure for continuous processing of
fast generated IoT data, and for handling data fusion latency.

4. The Proposed Spatiotemporal Data Fusion (STDF) Approach

In this section, we present a detailed explanation of the proposed IoT-based spa-
tiotemporal data fusion (STDF) approach. The STDF functionalities can be categorized
mainly into two layers dedicated to handling the deduced IoT-specific data features: (i) the
IoT-based Data Features Manager, which is responsible for considering most of the IoT
data perspectives in the low-level sensor data, and (ii) the IoT-based Data Fusion Manager,
which resides in a remote server where the data fusion process is accomplished. Figure 3
shows the proposed architecture of STDF, which shows how the two layers of the proposed
STDF reside among the IoT data layer, the business analytics layer and the presentation
layer of any domain-specific IoT application.

Sensors 2021, 21, x FOR PEER REVIEW 8 of 31

For fast generated data in real-time systems, STDF considers the temporal IoT data
feature by triggering the fusion process on specific events, which provides a reliable data
fusion process for emergency reactions. STDF also maintains the volatile IoT data feature
by ignoring expired data during data acquisition and fusion, ensuring accurate and up-
dated data fusion results.

3.3.3. Trusted and Scalable IoT Data Fusion
STDF preserves the IoT data trustworthiness via validating data sources during data

acquisition for a steady and safe data fusion. STDF considers the double-stage cluster sam-
pling technique for data reduction before data fusion to maintain the massive IoT data.
Applying such data reduction on real-time stream processing would avoid processing
bottlenecks and maintain the data fusion scalability and latency issues.

3.3.4. Accurate and Real-Time IoT Data Fusion
STDF handles IoT data semantics and accuracy by considering metadata during data

acquisition, which reveals data defects and adds more information for an accurate fusion.
STDF is built on top of the “IoTSim-Stream” as an IoT-based stream processing simulator
[24,25]. This provides a real-time processing infrastructure for continuous processing of
fast generated IoT data, and for handling data fusion latency.

4. The Proposed Spatiotemporal Data Fusion (STDF) Approach
In this section, we present a detailed explanation of the proposed IoT-based spatio-

temporal data fusion (STDF) approach. The STDF functionalities can be categorized
mainly into two layers dedicated to handling the deduced IoT-specific data features: (i)
the IoT-based Data Features Manager, which is responsible for considering most of the
IoT data perspectives in the low-level sensor data, and (ii) the IoT-based Data Fusion Man-
ager, which resides in a remote server where the data fusion process is accomplished.
Figure 3 shows the proposed architecture of STDF, which shows how the two layers of
the proposed STDF reside among the IoT data layer, the business analytics layer and the
presentation layer of any domain-specific IoT application.

Figure 3. The proposed STDF architecture. Figure 3. The proposed STDF architecture.

Sensors 2021, 21, 7035 9 of 30

The IoT data layer is responsible for connecting the IoT physical data sources for real-
time data acquisition. This can include any IoT data sources of any domain. On the other
side, the business analytics layer performs the required analytics to generate application-
specific decisions based on the defined business requirements of the IoT system after fusing
IoT data and maintaining their IoT data features to ensure the quality of the fused data.
The presentation layer is responsible for presenting the analytical results to the system
users, in which various presentation tools can be plugged in as per the system needs.

In this context, the IoT data layer, the business analytics later and the presentation
layer are out of the scope of the proposed STDF approach, in which all are completely
independent, application specific and related to the domain of the IoT-based system in
hand and, thus, do not affect the processing of STDF. STDF can be integrated with any IoT-
based system to provide efficient IoT-oriented DAI–DAO fusion capability for any IoT data
sources to be represented in any analytical business logic for further decision making pur-
poses. Hence, STDF can be deployed in any distributed, cluster-based streaming framework
having the capabilities of spatial partitioning (e.g., GeoHash), DAG operator placement
and processing or message middleware solutions such as Kafka and NATS [26,27].

Accordingly, STDF assumes that all data sources at the IoT data layer generate the
same data structure. Thus, the data in STDF are manipulated as data packets/units. For
example, geographic data sources might generate imagery data, while healthcare data
sources might generate numeric and imagery data. In the following sub-sections, a detailed
clarification of the STDF layers and their modules is discussed.

4.1. IoT-Based Data Features Manager

This layer directly operates on the top of the IoT data layer where raw data are
continuously received from different IoT devices to maintain the IoT data trustworthiness,
data expiry and volume. The metadata should be kept for each received data unit such
as the source ID (Source ID), generation time (GT), data unit size and location ID (LocID).
This layer includes three sub-modules as follows.

4.1.1. IoT Data Source Validator

This module ensures the trustworthiness of the IoT data by calculating the trust
degree of each Source ID to validate it. Each IoT source is identified by several parameters
such as the energy rate, as most IoT sources operate at a low energy rate (in watts), and
the processing size and storage size (in megabytes), as most IoT sources have minimal
processing and storage capabilities [28]. Let WTi be a user-defined weight based on the
IoT domain assigned to each parameter i, and let PRij be the value of parameter i at data
source j. The weight values are fixed for all sources and in a range of 0–1, in which the
summation of all weight values equals 1. STDF ensures the trustworthiness of each IoT
source j by calculating its trust degree Tj, as shown in (1) [29]:

Tj =
i=n

∑
i=1

WTi ·PRij (1)

where WTi is the weight value of the parameter i, PRij is the value of parameter i at source
j and n is the total number of considered parameters. After calculating the trust degree Tj
for each source j, STDF prevents the ignored source ISj that has a trust degree Tj greater
than or equal to a user-defined trust degree threshold TR, as shown in (2):

ISj = Tj ≥ TR (2)

where ISj represents the ignored source j, Tj is the trust degree value of source j and TR is
the user-defined trust threshold.

Sensors 2021, 21, 7035 10 of 30

4.1.2. IoT Data Quality and Freshness Handler

The faults of IoT actuators are crucial in any IoT domain. Thus, managing the cor-
ruption and loss of sensor data to ensure the data quality is essential before any further
processing. Accordingly, STDF initially groups data based on their source. It then sepa-
rately maintains the data per group to detect outliers using the statistical window-based
approach “low–high-pass filter”, which classifies the data as faults or anomalies based
on a user-defined interval dependent on the IoT domain [30]. For each group, STDF then
replaces the missing data and detected outliers per attribute i with the mean value of the at-
tribute Mi. For instance, if there are x attributes, STDF calculates (M1, M2, . . . , Mi, . . . Mx),
as shown in (3) [31]:

Mi =
1
n

j=n

∑
j=1

yji (3)

where Mi is the mean value of only the valid data units of attribute i, n is the number of
only the valid data unit measurements of attribute i and yij is the attribute measurement at
data unit j of attribute i. Moreover, volatile data are a domain-specific feature. For example,
traffic data are fresh for seconds, while geographic data are fresh for months or longer.
Thus, this module handles the data expiry perspective of IoT data by checking that the
generation time of a data unit belongs to a specific time frame specified for each domain.

4.1.3. IoT Data Reducer

This module handles the big IoT data volume by reducing the number of data units
used for fusion using the double-stage cluster sampling technique [30]. In this technique,
the total population is divided into groups (clusters), and a random sample of all groups is
selected rather than selecting the whole elements from one cluster. In this module, the data
units are first clustered into groups based on their Source ID.

Since STDF is a DAI–DAO domain-independent data fusion approach, all IoT sources
are assumed to have the same importance. Instead of selecting all data units of one
cluster, STDF samples each cluster by applying the probability proportional to size (PPS)
sampling method, in which the probability of the selected data unit is proportional to the
size of the cluster, meaning that larger clusters have a higher probability of selection and
smaller clusters have a lower probability [32–34]. Since IoT data sources can generate a
variable number of data units, the clusters’ sizes would be unequal. This contradicts the
sampling concept, which assumes that all data units are equally likely to be chosen [35,36].
For example, if one cluster has 20,000 data units, the probability of a data unit being
selected would be 1/20,000 (0.005%), while if another cluster has 10,000 data units, the
chance of a data unit being selected would be 1/10,000 (0.01%). In order to deal with
such differences, STDF retains the fixed sample size for each cluster by compensating the
unequal probabilities of selection using weights. This ensures that all data units in the
population have the same probability of selection irrespective of their cluster size. PPS
guarantees the same weight value W over all clusters, which is calculated using (4) [37]:

W = 1/(P 1 ∗ P2) (4)

where P1 is the probability of each sampled cluster, and P2 is the probability of each sampled
data unit, which are computed as shown in (5) and (6), respectively:

P1 = (a ∗ d)/b (5)

P2 = c/a (6)

where a is the number of data units in the cluster, b is the total number of all data units, d is
the number of clusters, which represents the number of sources of the data units in STDF,
and c is the number of data units to sample in each cluster, which is a user input.

Sensors 2021, 21, 7035 11 of 30

Algorithm 1 presents the pseudocode of the data reduction mechanism applied in
STDF. This mechanism is performed directly after data acquisition and before submitting
the data units to the processing server. It starts by checking both the data units’ SourceID
and GT. Then, it groups the data units based on the same SourceID. Next, it calculates the
sampling size by determining the sampling parameters (P1, P2 and W) for each group to
sample it.

In case of contingencies, shortage scenarios and searching for fast recovery schemes,
such as large-scale electrical power system recovery, each sensor should be analyzed. This
would contradict the added value of using the IoT Data Reducer, as it might require taking
every bit of data sent by the sensors for recovery purposes.

Algorithm 1: STDF IoT-based Data Features Manager.

Input: Arraylist ‘L’ of acquired data units
Output: HashMap ‘HC’ of key: source id and value: Arraylist of arraylist
1
2
3
4

5
6
7
8
9
10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

31
32
33
34
35
36
37
38
39

Begin
Initialize DL as an empty Arraylist//initialize the list for the sample
For each data unit ‘D’ in L//loop for all received data units

If (IoT Data Source Validator (‘D’) = True and IoT Data Quality and Freshness Handler (‘D’)
= True) then//check if the source ID is valid and data unit is fresh

{Add ‘D’ in DL}//add this data unit to the list as a candidate
End if
End for
Initialize HC as an empty HashMap
For each data unit ‘D’ in DL//loop for all data units to group them based on their source ID

If (source ID of ‘D’ in HC keys) then//check if there is a key in HC equals the source ID
of the current data unit

{Add ‘D’ in HC key}//add the current data unit to this key
Else//create a new key in HC with the value of this source ID
{Set source ID of ‘D’ as a new key
Add ‘D’ in HC key}
End if
End for
For each key in HC//loop for all source IDs in HC to calculate mean value ‘M’ for each attribute
Initialize data_units_List with the current source ID’s data units
Initialize attributes_mean_List as an empty array list
For each attribute ‘AR’ in data_units_List//loop for all attributes
Initialize attribute_sum = 0//The summation of attribute’s values
Initialize data_units_count = 0//The count of data units
Initialize M = 0//Attribute’s mean value
For each data unit ‘D’ in AR//loop for all attribute’s values per each data unit
If (low–high pass filter = True) then//check if there is no outlier or missing value
{attribute_sum = attribute_sum + D
data_units_count = data_units_count + 1}
End if
End for
M = attribute_sum/data_units_count//divide the summation of attribute’s values by
the count of data units
Add M to attributes_mean_List
End For
End for
For each key in HC//loop for all source IDs to clean missing and outlier data units in each group
Initialize data_units_List with the current source ID’s data units
For each data unit ‘D’ in data_units_List//loop for all data units’ candidates
For each attribute ‘AR’ in D//loop for all attributes per each data unit
Get attribute’s mean value ‘M’ from attributes_mean_List
If (low–high pass filter = False) then//check if there is an outlier or missing value

Sensors 2021, 21, 7035 12 of 30

Algorithm 1: Cont.

40

41
42
43
44

45
46
47
48
49

50
51

52
53
54
55
56
57
58
59
60
61

62
63
64
65

{Replace AR of D with M}//Replace the outlier or missing attribute value in
the data unit by the attribute mean value
End if
End for
End For
Update the current source ID’s data units with data_units_List//update each source ID
corrupted data units with the cleansed data units
End for
Initialize population_counter = 0
Initialize sample_size = X
For each key in HC//loop for all source IDs in HC to calculate the population_counter over them

Add count of data units to population_counter//add the data units count of the current
source ID to population counter

End for
For each key in HC//loop for all source IDs in HC to perform sampling and create the attributes
mean vector as the state-estimator
Initialize data_units_List with the current source ID’s data units
Initialize MV as an empty Arraylist//initialize the attributes mean vector
For each attribute ‘AR’ in data_units_List
Calculate AM using all data units of the current source ID//obtain every attribute mean
Add AM in MV//add the attribute mean value to the attributes mean vector
End for

Calculate P1 using the population_counter and the data units of the current source ID
Calculate P2 using the sample size and data units of the current source ID
Calculate Sample weight using P1 and P2 of the current source ID
Apply sampling with PPS using the current sample weight and data units of the current
source ID//reduce the data units of the current source ID

End for
Return HC as a list of pairs (source ID, sampled data units, MV)//return a HashMap of
key: source ID and values: list of sampled data units and the attributes mean vector

End

Accordingly, sampling each cluster while ignoring the other clusters’ population could
lead to serious problems. To handle such operational scenarios, the IoT Data Reducer in
STDF uses a state estimator to estimate the unsampled data units. Since STDF uses the
double-stage clustering technique, it first computes the first stage cluster mean vector MVi
per cluster i as a state estimator [38]. For instance, if there are x clusters, STDF computes
(MV1, MV2, . . . , MVi, . . . , MVx). STDF then attaches an MVi value with the sampled data
units for cluster i to the processing server for further business purposes. MVi, the mean
vector of cluster i, represents all the attributes’ mean values AMj, which is the mean value
of attribute j that considers all data units in the sample after being cleansed in the IoT Data
Quality and Freshness Handler, calculated as shown in (7) and (8). Let z be the number of
attributes in the population, MVi =

[
AM1, AM2, . . . , AMj, . . . , AMz

]
.

Pop =
d11 d12 . . . d1z
d21 d22 . . . d2z
dN1 dN2 . . . dNz

(7)

AMj =
1
N

i=N

∑
i=1

dij, j = 1, . . . , z (8)

where Pop represents the cluster population of N data units with z attributes in the cluster,
and AMj is the mean value of attribute j.

Sensors 2021, 21, 7035 13 of 30

4.2. IoT-Based Data Fusion Manager

This layer lies in the remote server where all the reduced data units resulting from the
IoT-based Data Features Manager are received to manage the spatial and temporal data
fusion process using the following modules.

4.2.1. IoT-Based Spatial Data Handler

After receiving the reduced and grouped data units based on their SourceID, this
module is responsible for handling the spatial feature of the IoT data. It clusters all data
units based on their LocID using the k-means clustering technique [39]. STDF applies
k-means to each group of data units generated from the same data source. Hence, the K
centroids are set to be the location IDs of all data units of the same SourceID. Only one
clustering iteration is needed to cluster the data units according to these fixed K centroids,
since there is no need to update the centroids in this case, by calculating the Euclidean-
based distance Edi between each data unit’s location ID DlocID and all centroids’ Ki in
(K1, K2, . . . Kn), as shown in (9) [40]:

Edi =

√
(DLocID− Ki)

2 (9)

Therefore, each data unit will have n distances with respect to the n centroids. How-
ever, the data unit is assigned to cluster Ki having Edi = zero. This generates clusters of
data units with the same LocID. In some IoT domains, the LocID identifier is not provided
in a discrete number format, e.g., using the GPS system. In such cases, STDF discretizes the
location coordinates by classifying n location IDs into n intervals with a domain-dependent
user-defined cut point (upper and lower bound coordinates). STDF then calculates the
Euclidean-based distance Di between each coordinate (x, y) and the n upper (or lower)
bounds (x1, y1), (x2, y2), ‖(xn, yn), as shown in (10). The bound with the lowest distance
value will hold this coordinate. After discretizing all coordinates into discrete location IDs,
STDF applies the k-means clustering technique [41].

Di =

√
(x− xi)

2 + (y− yi)
2 (10)

Considering the k-means clustering consistency, it could be affected by several fac-
tors including: (1) random selection of centroids, (2) data quality and (3) huge data
volume [42,43]. STDF ensures clustering consistency by setting fixed K centroids, man-
aging data outliers and data loss via the IoT Data Quality and Freshness Handler and
reducing data through the IoT Data Reducer. Thus, the clusters’ consistency is maintained.

4.2.2. IoT-Based Temporal Data Aggregator

Following Dasarathy’s data fusion classification, this module adopts the DAI–DAO
data fusion plan [44]. All data units of all source IDs are globally aggregated at the different
location IDs by applying the Tiny AGgregation (TAG) data aggregation technique [45–47]
on the resultant location-based clustered data units to obtain the freshest data units of the
same SourceID at all visited locations. STDF utilizes TAG to perform a classic hierarchy-
based aggregation process, which structures multiple trees of location IDs (leaves) per
SourceID (root). The minimum Min over the GT is considered as a duplicate-insensitive
aggregation function to query all data units (D 1, D2, . . . Dn) for each LocID and obtain
the freshest data unit at this location FreshestDLocID, as shown in (11):

FreshestDlocID = min
1≤i≤n

(Di.GT) (11)

Figure 4 illustrates the trees’ structure before and after STDF data fusion. For instance,
before data fusion, SourceID1 is connected to LocID1, LocID2 and LocID3, where (D1, D3,
D6), (D8, D9) and D12 are generated, respectively. After data fusion, considering the
minimum GT of the data units at each location, SourceID1 keeps D1, D9 and D12 as the

Sensors 2021, 21, 7035 14 of 30

freshest data units at LocID1, LocID2 and LocID3, respectively. This module is temporal
event triggered, in which the aggregation process fires in STDF when the event of receiv-
ing the location-based clustered multimodal data units occurs. Algorithm 2 presents the
pseudocode of the whole spatiotemporal data fusion process. The data fusion process is
performed at the processing side upon receiving the SourceID and its data units. Consider-
ing that the location IDs are fixed, one iteration of k-means clustering is applied per data
unit of the same ID, in order to be clustered according to the location IDs (fixed K centroids)
to minimize the processing time. Next, all source data units are globally aggregated at all
location IDs using TAG with the minimum aggregation function over the GT of data units
on an event basis to ensure data freshness.

Sensors 2021, 21, x FOR PEER REVIEW 14 of 31

centroids) to minimize the processing time. Next, all source data units are globally aggre-
gated at all location IDs using TAG with the minimum aggregation function over the 𝐺𝑇
of data units on an event basis to ensure data freshness.

Figure 4. The TAG data aggregation technique in STDF.

Figure 5 illustrates the complete processing scenario of STDF, which begins after data
acquisition and ends before business analytics. The scenario assumes that several IoT data
sources, SourceID1, SourceID2 and SourceID3 are continuously generating massive
amounts of data associated with valuable metadata, which are transmitted to the IoT-
based Data Features Manager. The data are acquired and checked for trustworthiness. For
instance, the data units of SourceID3 are ignored because of the invalidity of this source
as per Section 4.1.1, as well as the data freshness of the valid sources as per Section 4.1.2.

Algorithm 2: STDF IoT-based Data Fusion Manager.
Input: HashMap ‘HC’ of key: source id and value: Arraylist of data units
Output: HashMap ‘Final-HC’ of key: source id and value: 2D Arraylist of location ID & data unit

1
2
3
4
5

Begin
Initialize Clustered_HC as an empty HashMap//the HashMap to retain location IDs clustering results
For each key in HC//loop for all received source IDs
Initialize Centroids_List as an empty Arraylist
Initialize data_units_List with the current source ID’s data units

6
7

8
9
10
11

12
13

For each data unit ‘D’ in data_units_List//loop for all data units of the current source ID
If (location ID of ‘D’ is not in Centroids_List) then//check if the location ID of the current
data unit exists in the centroids list
{Add locationID of ‘D’ to Centroids_List}//add location ID if it does not exist}
End if
End for

Cluster with K-means using the current Centroids_List and data_units_List//apply clustering on
the current source ID’s data units using its current centroids
Add key to Clustered_HC//retain the current source ID in the HashMap
Add clustered data units to Clustered_HC//retain the resultant clustered data units for the
current source ID in the HashMap

14
15

End for
Initialize Final-HC as an empty HashMap//the HashMap used for data fusion

Figure 4. The TAG data aggregation technique in STDF.

Figure 5 illustrates the complete processing scenario of STDF, which begins after data
acquisition and ends before business analytics. The scenario assumes that several IoT data
sources, SourceID1, SourceID2 and SourceID3 are continuously generating massive amounts
of data associated with valuable metadata, which are transmitted to the IoT-based Data
Features Manager. The data are acquired and checked for trustworthiness. For instance,
the data units of SourceID3 are ignored because of the invalidity of this source as per
Section 4.1.1, as well as the data freshness of the valid sources as per Section 4.1.2.

Next, the freshest data are reduced as per their trusted source IDs as in Section 4.1.3 by
grouping the data units and sampling each group separately. For example, the sampled data
units at SourceID1 are D1, D3, D6, D8, D9 and D12, and they are D5, D7, D10, D15, D16
and D18 at SourceID2. The sampled data units are then transmitted to the remote process-
ing server, where the IoT-based Data Fusion Manager globally identifies all location IDs
for each source and clusters the received data units per location ID for each source as
in Section 4.2.1. For example, the identified location IDs for SourceID1 are LocID1, LocID2
and LocID3, while SourceID2 is connected to LocID1, LocID5 and LocID6. After cluster-
ing the sampled fresh data units at the trusted SourceID1, LocID1, LocID2 and LocID3
contain (D1, D3, D6), (D8, D9) and D12, respectively. Finally, STDF aggregates all data
units at all sources from different locations as per their GT, preserving the data freshness
as in Section 4.2.2, where D1, D9 and D12 are the freshest data units from SourceID1 at
LocID1, LocID2 and LocID3, respectively, while D5, D10 and D18 are the freshest data units
from SourceID2 at LocID1, LocID5 and LocID6.

Sensors 2021, 21, 7035 15 of 30

Algorithm 2: STDF IoT-based Data Fusion Manager.

Input: HashMap ‘HC’ of key: source id and value: Arraylist of data units
Output: HashMap ‘Final-HC’ of key: source id and value: 2D Arraylist of location ID & data unit
1
2
3
4
5
6
7

8
9
10
11

12
13

14
15
16
17
18
19
20
21
22
23
24

25
26
27

Begin
Initialize Clustered_HC as an empty HashMap//the HashMap to retain location IDs clustering results
For each key in HC//loop for all received source IDs
Initialize Centroids_List as an empty Arraylist
Initialize data_units_List with the current source ID’s data units
For each data unit ‘D’ in data_units_List//loop for all data units of the current source ID
If (location ID of ‘D’ is not in Centroids_List) then//check if the location ID of the current
data unit exists in the centroids list
{Add locationID of ‘D’ to Centroids_List}//add location ID if it does not exist}
End if
End for

Cluster with K-means using the current Centroids_List and data_units_List//apply clustering on
the current source ID’s data units using its current centroids
Add key to Clustered_HC//retain the current source ID in the HashMap
Add clustered data units to Clustered_HC//retain the resultant clustered data units for the
current source ID in the HashMap

End for
Initialize Final-HC as an empty HashMap//the HashMap used for data fusion
For each key in Clustered_HC//loop for all source IDs
Initialize ArrayList Updated-Tree as an empty Arraylist
Initialize ArrayList TAG-Tree with the clustered data units of the current source ID
For each locationID ‘loc’ in TAG-Tree//loop for all location IDs of current source ID
Initialize data_units_List with the data units of the current ‘loc’
Get the ‘Freshest data unit’ with the minimum generation time in data_units_list
Add the current ‘loc’ and its ‘Freshest data unit’ in Updated-Tree
End for

Add the current key and its Updated-Tree to Final-HC//retain the aggregated results on all location
IDs of the current source ID in the final HashMap

End for
Return Final-HC//return a HashMap of key: source ID and values: location IDs and freshest data units

End

Sensors 2021, 21, x FOR PEER REVIEW 15 of 31

16
17
18
19
20
21
22
23
24

25
26
27

For each key in Clustered_HC//loop for all source IDs
Initialize ArrayList Updated-Tree as an empty Arraylist
Initialize ArrayList TAG-Tree with the clustered data units of the current source ID
For each locationID ‘loc’ in TAG-Tree//loop for all location IDs of current source ID
Initialize data_units_List with the data units of the current ‘loc’
Get the ‘Freshest data unit’ with the minimum generation time in data_units_list
Add the current ‘loc’ and its ‘Freshest data unit’ in Updated-Tree
End for

Add the current key and its Updated-Tree to Final-HC//retain the aggregated results on all location
IDs of the current source ID in the final HashMap

End for
Return Final-HC//return a HashMap of key: source ID and values: location IDs and freshest data units

End

Figure 5. The proposed STDF processing scenario.

Next, the freshest data are reduced as per their trusted source IDs as in Section 4.1.3
by grouping the data units and sampling each group separately. For example, the sampled
data units at SourceID1 are D1 , D3, D6, D8, D9 and D12 , and they are D5, D7, D10, D15, D16 and D18 at SourceID2. The sampled data units are then transmitted to the remote pro-
cessing server, where the IoT-based Data Fusion Manager globally identifies all location
IDs for each source and clusters the received data units per location ID for each source as
in Section 4.2.1. For example, the identified location IDs for SourceID1 are LocID1, LocID2
and LocID3, while SourceID2 is connected to LocID1, LocID5 and LocID6. After cluster-
ing the sampled fresh data units at the trusted SourceID1 , LocID1, LocID2 and LocID3
contain (D1, D3, D6), (D8, D9) and D12, respectively. Finally, STDF aggregates all data units
at all sources from different locations as per their 𝐺𝑇, preserving the data freshness as in
Section 4.2.2, where D1, D9 and D12 are the freshest data units from SourceID1 at LocID1, LocID2 and LocID3, respectively, while D5, D10 and D18 are the freshest data units from SourceID2 at LocID1, LocID5 and LocID6.

Figure 5. The proposed STDF processing scenario.

Sensors 2021, 21, 7035 16 of 30

5. The Experimental Evaluation

This section presents the experiments conducted to evaluate the layers of the proposed
STDF approach: the IoT-based Data Features Manager and the IoT-based Data Fusion
Manager, with respect to their performance. The following sub-sections present a detailed
description of the experimental environment, the experimental case study and the used
dataset, as well as the experimental results for both the IoT-based Data Features Manager
and IoT-based Data Fusion Manager modules to demonstrate their appropriateness for IoT
data processing from the processing time and accuracy perspectives.

5.1. IoTSim-Stream Simulator

The STDF approach has been developed on top of the “IoTSim-Stream” simulator,
providing a real-time IoT environment [24,48,49]. IoTSim-Stream is an IoT simulator
for real-time processing of big data that offers an environment to model stream graph
applications in a cloud environment. The IoTSim-Stream simulator leverages the features
of CloudSim by integrating stream processing with workflow scheduling and execution to
execute stream graph applications (SGAs) in the cloud environment, as well as the features
of different scalable (IoT) stream processing solutions and distributed cluster-based stream
processing frameworks [26,27], e.g., spatial partitioning. It supports stream processing
(via IoT-Stream simulation cloud resources and IoT-Stream simulation virtual machine
services) and graph spatial partitioning (via the IoT-Stream simulation service layer). An
SGA is composed of different IoT sources named “services” that initiate data units with an
unknown structure in real time as “streams”. Thus, each stream is identified by its:

• Processed size measured in megabytes (MB);
• Source ID SourceID (that generates the stream);
• Location ID locID (the service ID that transmits the stream);
• Generation time GT (the time when the stream is generated).

Each service generates and receives streams from neighbor services to transmit them
to the cloud data center for processing, maintaining a fast IoT data velocity and preventing
processing bottlenecks in the huge IoT data volume. Thus, numerous IoT sources are
simulated to continuously generate massive data units, associated in real time with their
metadata to be processed on a cloud server, which facilitates the tracking of the processing
time at each layer. However, the simulator does not handle the IoT data features demon-
strated in Section 3. Hence, integrating the two layers of the STDF approach with the
simulator would offer a comprehensive IoT processing environment.

5.2. The Experimental Environment and Dataset

In this section, we present our experimental methodology and the associated cloud
environment and simulation configurations to validate the efficiency of the STDF layers.
The experiments were conducted on a machine with a Core i7, 2.70 GHz, 1T hard disk
space and 8 GB RAM. To model the cloud environment for our experiments, we configured
one cloud data center with 1000 hosts, where each host has 64 cores (PEs) and each PE has
1000 MIPS, and there is 144,000 MB RAM per host. Multiple virtual machines (VMs) were
configured with 2000 MIPS, 8192 MB RAM and 1000 MB/s bandwidth.

Prior to the simulation configuration, we defined three linear stream graph application
files (DAG files) of 10 sources, 20 sources and 40 sources. Each source generates different
amounts of data units per second as follows: 1606, 3212 and 6424 data units per second,
respectively. STDF performs a DAI–DAO fusion irrespective the streams’ data structure to
support a domain-independent IoT data fusion. By setting the simulation time to 15 s, we
generated three datasets with different sizes: a small dataset (D1) with 24,090 data units,
a medium dataset (D2) with 48,180 data units and a large dataset (D3) with 96,360 data
units, with challengeable concerns, such as: containing noisy data, missing readings and
outliers, as well as variable LocID formats, such as discrete location IDs and GPS location
coordinates. These configurations are read by the IoTSim-Stream simulator during the
initialization phase to simulate the given stream graph application file.

Sensors 2021, 21, 7035 17 of 30

For all services in the DAG files, the original processing scenario of the “IoTSim-
Stream” simulator starts by generating streams and then transmitting a mixture of the
generated streams and neighbor services’ streams (without a specific basis of stream
selection) to be processed in the cloud data center. This scenario is repeated every second.

Upon STDF integration, the IoT-based Data Features Manager receives a minor dataset
every second to group and sample each SourceID with a specified number of streams and
transmit them for processing at the server. Next, using the IoT-based Data Fusion Manager,
instead of the random stream processing in the cloud data center in the original scenario, all
streams of each SourceID are clustered per the same location ID where they are transmitted.
For example, 80 streams of SourceID = 1 are clustered as 65 streams transmitted from
loc ID = 1, 10 streams transmitted from loc ID = 2 and 5 streams transmitted from loc ID = 3.
Then, a tree of clustered streams per location ID is built for each SourceID to aggregate
the freshest stream (i.e., the stream with the minimum GT) per location. This scenario is
repeated every second, fusing each SourceID fresh stream together from all transmitting
location IDs. Figure 6 presents a modified system architecture of IoTSim-Stream, integrated
with the STDF layers. The IoT-based Data Features Manager layer is added on top of the
“IoT-Stream Simulation User Interface Structures” layer, where the SGA is parsed from the
DAG file and the data units are acquired, whereas the IoT-based Data Fusion Manager
layer is added to the “IoT-Stream Simulation Cloud Services” layer, where the data units
are processed in the cloud server.

Sensors 2021, 21, x FOR PEER REVIEW 17 of 31

readings and outliers, as well as variable 𝐿𝑜𝑐𝐼𝐷 formats, such as discrete location IDs and
GPS location coordinates. These configurations are read by the IoTSim-Stream simulator
during the initialization phase to simulate the given stream graph application file.

For all services in the DAG files, the original processing scenario of the “IoTSim-
Stream” simulator starts by generating streams and then transmitting a mixture of the
generated streams and neighbor services’ streams (without a specific basis of stream se-
lection) to be processed in the cloud data center. This scenario is repeated every second.

Upon STDF integration, the IoT-based Data Features Manager receives a minor da-
taset every second to group and sample each 𝑆𝑜𝑢𝑟𝑐𝑒𝐼𝐷 with a specified number of
streams and transmit them for processing at the server. Next, using the IoT-based Data
Fusion Manager, instead of the random stream processing in the cloud data center in the
original scenario, all streams of each 𝑆𝑜𝑢𝑟𝑐𝑒𝐼𝐷 are clustered per the same location ID
where they are transmitted. For example, 80 streams of 𝑆𝑜𝑢𝑟𝑐𝑒𝐼𝐷 = 1 are clustered as 65
streams transmitted from 𝑙𝑜𝑐 𝐼𝐷 = 1, 10 streams transmitted from 𝑙𝑜𝑐 𝐼𝐷 = 2 and 5
streams transmitted from 𝑙𝑜𝑐 𝐼𝐷 = 3. Then, a tree of clustered streams per location ID is
built for each 𝑆𝑜𝑢𝑟𝑐𝑒𝐼𝐷 to aggregate the freshest stream (i.e., the stream with the mini-
mum GT) per location. This scenario is repeated every second, fusing each 𝑆𝑜𝑢𝑟𝑐𝑒𝐼𝐷
fresh stream together from all transmitting location IDs. Figure 6 presents a modified sys-
tem architecture of IoTSim-Stream, integrated with the STDF layers. The IoT-based Data
Features Manager layer is added on top of the “IoT-Stream Simulation User Interface
Structures” layer, where the SGA is parsed from the DAG file and the data units are ac-
quired, whereas the IoT-based Data Fusion Manager layer is added to the “IoT-Stream
Simulation Cloud Services” layer, where the data units are processed in the cloud server.

Figure 6. The proposed architecture of the spatiotemporal data fusion (STDF) engine on top of the
IoTSim-Stream simulator.

5.3. IoT-Based Data Features Manager Evaluation
This section discusses the performance evaluation of each module in the IoT-based

Data Features Manager layer through the following investigations:

Figure 6. The proposed architecture of the spatiotemporal data fusion (STDF) engine on top of the
IoTSim-Stream simulator.

5.3. IoT-Based Data Features Manager Evaluation

This section discusses the performance evaluation of each module in the IoT-based
Data Features Manager layer through the following investigations:

1. Validating the source IDs’ trust degree via the IoT Data Source Validator to evaluate
the trustworthiness of STDF, ensuring a steady and secure IoT data fusion;

2. Checking the freshness of each stream via the IoT Data Quality and Freshness Handler,
in order to manipulate the fault-less IoT data fusion challenge;

3. Ensuring the data stream quality by handling the data’s missing readings and outliers;

Sensors 2021, 21, 7035 18 of 30

4. Checking the scalability of the proposed STDF IoT data fusion approach by reducing
the amount of streams in the dataset before being transmitted to the cloud server via
the IoT Data Reducer;

5. Checking the accuracy of the IoT Data Reducer for the fault-less IoT data fusion
challenge;

6. Checking the processing time of the IoT Data Reducer to maintain a non-interrupted
data fusion.

5.3.1. Evaluating the Trustworthiness of STDF IoT Data Fusion

An experiment was performed to validate the IoT data sources by comparing each
service’s trust degree Tj to a certain trust threshold TR over D1. For instance, each service
is assumed to have three parameters to consider: the energy rate in watts (PR1j), the
processing size in MB (PR2j) and the storage size in MB (PR3j). Three user-defined values
of 0.2, 0.4 and 0.4 are assigned for the weights WT1, WT2, and WT3 respectively. Table 2
presents the detailed values of PRij, WTi and Tj for each service j. By setting a trust degree
threshold of TR = 1200, Service1 will be excluded to be ISj, and therefore, all of its streams
will be ignored in the entire data fusion process.

Table 2. Tracking the D1 services’ trust degrees.

Service Number
j PR1j WT1 PR2j WT2 PR3j WT3 Tj=

i=3
∑
i=1

WTi·PRij

1 8 0.2 2000 0.4 2500 0.4 1801.6
2 3 0.2 800 0.4 1000 0.4 720.6
3 5 0.2 750 0.4 600 0.4 541
4 4 0.2 1000 0.4 1300 0.4 920.8
5 2.5 0.2 600 0.4 850 0.4 580.5
6 0.5 0.2 1100 0.4 1400 0.4 1000.1
7 1.5 0.2 350 0.4 650 0.4 400.3
8 3 0.2 650 0.4 900 0.4 620.6
9 2 0.2 850 0.4 1050 0.4 760.4

10 4.5 0.2 1150 0.4 1350 0.4 1000.9

5.3.2. Evaluating the Freshness of STDF IoT Data Fusion

After validating all the streams, the experiment in the IoT Data Quality and Freshness
Handler tracks the number of fresh streams passed by their GT using different time
intervals. Hence, the number of fresh streams in D1 (before entering the IoT Data Reducer)
was investigated at the following time intervals: 500 milliseconds (ms), 1000 ms, 2000 ms,
3000 ms and 4000 ms. As presented in Figure 7, the number of fresh streams that passed
at the five predefined time intervals was as follows: 803, 1606, 3212, 4818 and 6424,
respectively, which demonstrates that the number of fresh streams decreases by 50% when
the freshness time interval decreases by 0.5 s, whereas it increases to 100% when the
freshness time interval increases by 1 s. We adopted a freshness time interval of 1000 ms
for all experiments, as the simulator generates and processes streams every second.

Sensors 2021, 21, 7035 19 of 30

Sensors 2021, 21, x FOR PEER REVIEW 19 of 31

The experiment in the IoT Data Quality and Freshness Handler shows how STDF
handles the data’s missing readings and outliers by tracking the processed size generated
per stream, i.e., from Service1 in D1. Service1 generates 139 streams with a processed
size of a minimum of 50 MB and a maximum of 380 MB. However, by applying the low–
high-pass filter on Service1 streams, only 130 streams passed, and 9 corrupted streams
were found. Therefore, STDF replaced the 9 corrupted streams’ processed size with the
mean value of the processed size of 327 MB as a result of adding the processed size of the
remaining 130 streams/130.

5.3.4. Evaluating the Reduction Scalability of STDF IoT Data Fusion
The IoT Data Reducer aims to manage the massive IoT data by reducing the gener-

ated streams using PPS sampling. Thus, this experiment demonstrates the resultant num-
ber of streams per second after applying PPS sampling at three fixed sample sizes of
streams: 80, 100 and 120, for the three datasets (since one service generates between 135
and 175 streams) and a fixed freshness interval of 1000 ms. Table 3 illustrates the applied
PPS approach over D1 per second using a sample size of 80. This approach ensures the
same sampling weight over all the services (clusters) despite their different sizes.

Figure 7. The number of fresh streams with respect to the different freshness time intervals.

Table 3. Tracking PPS parameters per second at a sample size of 80 for D1.

Service Number 𝒂 𝒃 𝒅 𝒄 𝑷𝟏 = (𝒂 ∗ 𝒅) 𝒃 ⁄ 𝑷𝟐 = 𝒄 𝒂 ⁄ 𝑾 = 𝟏 (𝑷𝟏 ∗ 𝑷𝟐) ⁄ Processed Size Mean
1 139 1606 10 80 0.865504359 0.575539568 2.0075 327
2 167 1606 10 80 1.03985056 0.479041916 2.0075 287
3 161 1606 10 80 1.00249066 0.49689441 2.0075 291
4 149 1606 10 80 0.927770859 0.536912752 2.0075 312
5 167 1606 10 80 1.03985056 0.479041916 2.0075 278
6 174 1606 10 80 1.083437111 0.459770115 2.0075 264
7 167 1606 10 80 1.03985056 0.479041916 2.0075 274
8 154 1606 10 80 0.95890411 0.519480519 2.0075 298
9 164 1606 10 80 1.02117061 0.487804878 2.0075 277

10 164 1606 10 80 1.02117061 0.487804878 2.0075 280

As shown in Figure 8, the generated streams per second before sampling were 1606,
3212 and 6424 for the three datasets, D1, D2 and D3 respectively. At a sample size of 80,
800, 1600 and 3200 streams were generated per second for D1, D2 and D3, respectively. At
a sample size of 100, 1000, 2000 and 4000 streams were generated per second, whereas at
a sample size of 120, 1200, 2400 and 4800 streams were generated per second. This indi-

Figure 7. The number of fresh streams with respect to the different freshness time intervals.

5.3.3. Handling IoT Data Quality

The experiment in the IoT Data Quality and Freshness Handler shows how STDF
handles the data’s missing readings and outliers by tracking the processed size generated
per stream, i.e., from Service1 in D1. Service1 generates 139 streams with a processed size of
a minimum of 50 MB and a maximum of 380 MB. However, by applying the low–high-pass
filter on Service1 streams, only 130 streams passed, and 9 corrupted streams were found.
Therefore, STDF replaced the 9 corrupted streams’ processed size with the mean value
of the processed size of 327 MB as a result of adding the processed size of the remaining
130 streams/130.

5.3.4. Evaluating the Reduction Scalability of STDF IoT Data Fusion

The IoT Data Reducer aims to manage the massive IoT data by reducing the generated
streams using PPS sampling. Thus, this experiment demonstrates the resultant number of
streams per second after applying PPS sampling at three fixed sample sizes of streams: 80,
100 and 120, for the three datasets (since one service generates between 135 and 175 streams)
and a fixed freshness interval of 1000 ms. Table 3 illustrates the applied PPS approach over
D1 per second using a sample size of 80. This approach ensures the same sampling weight
over all the services (clusters) despite their different sizes.

Table 3. Tracking PPS parameters per second at a sample size of 80 for D1.

Service Number a b d c P1=(a∗d)/b P2=c/a W=1/(P1∗P2) Processed Size Mean

1 139 1606 10 80 0.865504359 0.575539568 2.0075 327
2 167 1606 10 80 1.03985056 0.479041916 2.0075 287
3 161 1606 10 80 1.00249066 0.49689441 2.0075 291
4 149 1606 10 80 0.927770859 0.536912752 2.0075 312
5 167 1606 10 80 1.03985056 0.479041916 2.0075 278
6 174 1606 10 80 1.083437111 0.459770115 2.0075 264
7 167 1606 10 80 1.03985056 0.479041916 2.0075 274
8 154 1606 10 80 0.95890411 0.519480519 2.0075 298
9 164 1606 10 80 1.02117061 0.487804878 2.0075 277
10 164 1606 10 80 1.02117061 0.487804878 2.0075 280

As shown in Figure 8, the generated streams per second before sampling were 1606,
3212 and 6424 for the three datasets, D1, D2 and D3 respectively. At a sample size of 80,
800, 1600 and 3200 streams were generated per second for D1, D2 and D3, respectively. At
a sample size of 100, 1000, 2000 and 4000 streams were generated per second, whereas at a
sample size of 120, 1200, 2400 and 4800 streams were generated per second. This indicates
that as the sample size increases by 25%, the sampled streams increase by 25%, reflecting
the proportional relationship between the sample size and the number of sampled streams.

Sensors 2021, 21, 7035 20 of 30

Sensors 2021, 21, x FOR PEER REVIEW 20 of 31

cates that as the sample size increases by 25%, the sampled streams increase by 25%, re-
flecting the proportional relationship between the sample size and the number of sampled
streams.

In case of contingencies, STDF attaches the attributes’ mean vector as a state estimator
to the data units’ samples. Table 3 presents the attributes’ mean vector per service (clus-
ter). Each stream is identified by the processed size, 𝑆𝑜𝑢𝑟𝑐𝑒𝐼𝐷, 𝐿𝑜𝑐𝐼𝐷 and GT. Only the
processed size is an ordinal attribute; thus, the attributes’ mean vector equals the pro-
cessed size mean as no mean value exists for the nominal attributes 𝑆𝑜𝑢𝑟𝑐𝑒𝐼𝐷, 𝐿𝑜𝑐𝐼𝐷 and
GT [38]. STDF calculates the processed size mean per service by adding all service
streams’ (both sampled and unsampled) processed size values and then dividing them by
the service streams’ count, as shown in (7) and (8). Thus, the processed size mean was 327,
287, 291, 312, 278, 264, 274, 298, 277 and 280 MB for services 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10,
respectively.

Figure 8. The number of sampled streams vs. the sample size.

5.3.5. Evaluating the Reduction Accuracy of STDF IoT Data Fusion
After sampling the streams, this experiment investigated the accuracy of the resultant

samples for an accurate data fusion performance using the variance Var, as shown in (12)
[50]:

𝑉𝑎𝑟 = 1𝑛(𝑛 − 1) ൈ (𝑦 − 𝑀𝑝𝑝𝑠)ଶ
ୀଵ (12)

where n is the number of services per dataset, fixed as 10, 20 and 40 in our experimenta-
tion, yi is the sample mean of service 𝒊, which is calculated as per (13), and Mpps is the
population mean of all services in the dataset, which is calculated as per (14). 𝑦 = 1 𝑚ൗ 𝑦ୀଵ (13)

where m is the number of sampled streams selected from service i, fixed as the three
sample sizes of 80, 100 and 120 in our experimentation, and yj is the processed size value
of stream j in service i.

𝑀𝑝𝑝𝑠 = ൭1𝑛 ൈ 𝑦
ୀଵ ൱ (14)

where n is the number of services per dataset, and yi is the sample mean of service i. As
presented in Figure 9, a sample size of 80 leads to variance values of 4.956, 2.348 and 1.144
over D1, D2 and D3 respectively, while a sample size of 100 leads to variance values of

Figure 8. The number of sampled streams vs. the sample size.

In case of contingencies, STDF attaches the attributes’ mean vector as a state estimator
to the data units’ samples. Table 3 presents the attributes’ mean vector per service (clus-
ter). Each stream is identified by the processed size, SourceID, LocID and GT. Only the
processed size is an ordinal attribute; thus, the attributes’ mean vector equals the processed
size mean as no mean value exists for the nominal attributes SourceID, LocID and GT [38].
STDF calculates the processed size mean per service by adding all service streams’ (both
sampled and unsampled) processed size values and then dividing them by the service
streams’ count, as shown in (7) and (8). Thus, the processed size mean was 327, 287, 291,
312, 278, 264, 274, 298, 277 and 280 MB for services 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10, respectively.

5.3.5. Evaluating the Reduction Accuracy of STDF IoT Data Fusion

After sampling the streams, this experiment investigated the accuracy of the resultant
samples for an accurate data fusion performance using the variance Var, as shown in
(12) [50]:

Var =
1

n(n− 1)
×

n

∑
i=1

(yi −Mpps)2 (12)

where n is the number of services per dataset, fixed as 10, 20 and 40 in our experimentation,
yi is the sample mean of service i, which is calculated as per (13), and Mpps is the population
mean of all services in the dataset, which is calculated as per (14).

yi = 1/m ∑m
j=1 yj (13)

where m is the number of sampled streams selected from service i, fixed as the three sample
sizes of 80, 100 and 120 in our experimentation, and yj is the processed size value of stream
j in service i.

Mpps =

(
1
n
×

n

∑
i=1

yi

)
(14)

where n is the number of services per dataset, and yi is the sample mean of service i. As
presented in Figure 9, a sample size of 80 leads to variance values of 4.956, 2.348 and 1.144
over D1, D2 and D3 respectively, while a sample size of 100 leads to variance values of
9.344, 5.67 and 3.484, and a sample size of 120 leads to variance values of 14.682, 8.472
and 5.728. Therefore, the proportional relationship between the sample size and variance
describes that an increase in the sample size by 25% will increase the sample variance
by an average of 80%. By keeping the sample size constant, the reciprocal relationship
between the dataset size and sample variance proves that increasing the dataset size by
100% decreases the sample variance by an average of 50%.

Sensors 2021, 21, 7035 21 of 30

Sensors 2021, 21, x FOR PEER REVIEW 21 of 31

9.344, 5.67 and 3.484, and a sample size of 120 leads to variance values of 14.682, 8.472 and
5.728. Therefore, the proportional relationship between the sample size and variance de-
scribes that an increase in the sample size by 25% will increase the sample variance by an
average of 80%. By keeping the sample size constant, the reciprocal relationship between
the dataset size and sample variance proves that increasing the dataset size by 100% de-
creases the sample variance by an average of 50%.

Figure 9. STDF sample variance vs. the sample size.

5.3.6. Evaluating the Real-Time Reduction Processing of STDF IoT Data Fusion
This experiment tracked the simulator’s processing time in the cloud data center be-

fore and after sampling the streams for the three datasets to examine the real-time and
non-interrupted processing of STDF. As shown in Figure 10, the processing time before
sampling was 75, 150 and 300 s for D1, D2 and D3 respectively. Upon reduction at a sam-
ple size of 80, the processing time was 25, 50 and 100 s for D1, D2 and D3, respectively. At
a sample size of 100, the time was 35, 70 and 140 s, while at a sample size of 120, the time
was 45, 90 and 180 s. This reveals the proportional relationship between the sample size
and the processing time, in which an increase in the sample size by 25% causes an increase
in the processing time by 40%.

Figure 10. STDF processing time vs. the sample size.

5.4. IoT-Based Data Fusion Manager Evaluation
This section evaluates the IoT data fusion scenario of STDF by examining each mod-

ule in the IoT-based Data Fusion Manager layer through the following investigations:
1. Clustering streams of the same source ID to maintain their spatial feature via the IoT-

based Spatial Data Handler;

Figure 9. STDF sample variance vs. the sample size.

5.3.6. Evaluating the Real-Time Reduction Processing of STDF IoT Data Fusion

This experiment tracked the simulator’s processing time in the cloud data center
before and after sampling the streams for the three datasets to examine the real-time and
non-interrupted processing of STDF. As shown in Figure 10, the processing time before
sampling was 75, 150 and 300 s for D1, D2 and D3 respectively. Upon reduction at a sample
size of 80, the processing time was 25, 50 and 100 s for D1, D2 and D3, respectively. At a
sample size of 100, the time was 35, 70 and 140 s, while at a sample size of 120, the time
was 45, 90 and 180 s. This reveals the proportional relationship between the sample size
and the processing time, in which an increase in the sample size by 25% causes an increase
in the processing time by 40%.

Sensors 2021, 21, x FOR PEER REVIEW 21 of 31

9.344, 5.67 and 3.484, and a sample size of 120 leads to variance values of 14.682, 8.472 and
5.728. Therefore, the proportional relationship between the sample size and variance de-
scribes that an increase in the sample size by 25% will increase the sample variance by an
average of 80%. By keeping the sample size constant, the reciprocal relationship between
the dataset size and sample variance proves that increasing the dataset size by 100% de-
creases the sample variance by an average of 50%.

Figure 9. STDF sample variance vs. the sample size.

5.3.6. Evaluating the Real-Time Reduction Processing of STDF IoT Data Fusion
This experiment tracked the simulator’s processing time in the cloud data center be-

fore and after sampling the streams for the three datasets to examine the real-time and
non-interrupted processing of STDF. As shown in Figure 10, the processing time before
sampling was 75, 150 and 300 s for D1, D2 and D3 respectively. Upon reduction at a sam-
ple size of 80, the processing time was 25, 50 and 100 s for D1, D2 and D3, respectively. At
a sample size of 100, the time was 35, 70 and 140 s, while at a sample size of 120, the time
was 45, 90 and 180 s. This reveals the proportional relationship between the sample size
and the processing time, in which an increase in the sample size by 25% causes an increase
in the processing time by 40%.

Figure 10. STDF processing time vs. the sample size.

5.4. IoT-Based Data Fusion Manager Evaluation
This section evaluates the IoT data fusion scenario of STDF by examining each mod-

ule in the IoT-based Data Fusion Manager layer through the following investigations:
1. Clustering streams of the same source ID to maintain their spatial feature via the IoT-

based Spatial Data Handler;

Figure 10. STDF processing time vs. the sample size.

5.4. IoT-Based Data Fusion Manager Evaluation

This section evaluates the IoT data fusion scenario of STDF by examining each module
in the IoT-based Data Fusion Manager layer through the following investigations:

1. Clustering streams of the same source ID to maintain their spatial feature via the
IoT-based Spatial Data Handler;

2. Maintaining a massive IoT data fusion by aggregating the freshest streams per the
location ID of each source ID via the IoT-based Temporal Data Aggregator;

3. Preserving both spatial and temporal IoT data fusion by tracking the performance of
both the IoT-based Spatial Data Handler and IoT-based Temporal Data Aggregator
over time, which ensures a fault-less and steady IoT data fusion;

4. Checking the processing time of the IoT-based Temporal Data Aggregator to ensure a
non-interrupted IoT data fusion.

Sensors 2021, 21, 7035 22 of 30

5.4.1. Evaluating the Spatiality of STDF IoT Data Fusion

This experiment examined the IoT-based Spatial Data Handler to present the difference
in the location IDs of specific SourceIDs through different sample sizes. Thus, we tracked
the location IDs of service1’s streams using sample sizes of 80, 100 and 120 over D1. There
is no need to perform the same experiment over D2 and D3, as it is a factor of the sample
size only. Hence, increasing the number of streams requires extra services to transmit them
to the cloud data center. Table 4 shows how the sampled streams at a sample size of 80 are
transmitted from four location IDs, while the streams generated at a sample size of 100 are
transmitted from five location IDs, and the streams at a sample size of 120 are transmitted
from six location IDs. Figure 11 visually shows that an increase in the sample size by 25%
increases the number of location IDs by an average of 25%.

Table 4. The location IDs of service1’s streams at sample sizes of 80, 100 and 120 for dataset D1.

Dataset Sample Size Number of Location IDs Location IDs

D1

80 4 LocID1 LocID2 LocID3 LocID4
100 5 LocID1 LocID2 LocID3 LocID4 LocID5

120 6 LocID1 LocID2 LocID3 LocID4 LocID5
LocID6

Sensors 2021, 21, x FOR PEER REVIEW 22 of 31

2. Maintaining a massive IoT data fusion by aggregating the freshest streams per the
location ID of each source ID via the IoT-based Temporal Data Aggregator;

3. Preserving both spatial and temporal IoT data fusion by tracking the performance of
both the IoT-based Spatial Data Handler and IoT-based Temporal Data Aggregator
over time, which ensures a fault-less and steady IoT data fusion;

4. Checking the processing time of the IoT-based Temporal Data Aggregator to ensure
a non-interrupted IoT data fusion.

5.4.1. Evaluating the Spatiality of STDF IoT Data Fusion
This experiment examined the IoT-based Spatial Data Handler to present the differ-

ence in the location IDs of specific 𝑆𝑜𝑢𝑟𝑐𝑒𝐼𝐷s through different sample sizes. Thus, we
tracked the location IDs of service1’s streams using sample sizes of 80, 100 and 120 over
D1. There is no need to perform the same experiment over D2 and D3, as it is a factor of
the sample size only. Hence, increasing the number of streams requires extra services to
transmit them to the cloud data center. Table 4 shows how the sampled streams at a sam-
ple size of 80 are transmitted from four location IDs, while the streams generated at a
sample size of 100 are transmitted from five location IDs, and the streams at a sample size
of 120 are transmitted from six location IDs. Figure 11 visually shows that an increase in
the sample size by 25% increases the number of location IDs by an average of 25%.

Table 4. The location IDs of service1’s streams at sample sizes of 80, 100 and 120 for dataset D1.

Dataset Sample
Size

Number of Location
IDs

Location IDs

D1

80 4 𝐿𝑜𝑐𝐼𝐷ଵ 𝐿𝑜𝑐𝐼𝐷ଶ 𝐿𝑜𝑐𝐼𝐷ଷ 𝐿𝑜𝑐𝐼𝐷ସ
100 5 𝐿𝑜𝑐𝐼𝐷ଵ 𝐿𝑜𝑐𝐼𝐷ଶ 𝐿𝑜𝑐𝐼𝐷ଷ 𝐿𝑜𝑐𝐼𝐷ସ 𝐿𝑜𝑐𝐼𝐷ହ

120 6 𝐿𝑜𝑐𝐼𝐷ଵ 𝐿𝑜𝑐𝐼𝐷ଶ 𝐿𝑜𝑐𝐼𝐷ଷ 𝐿𝑜𝑐𝐼𝐷ସ 𝐿𝑜𝑐𝐼𝐷ହ 𝐿𝑜𝑐𝐼𝐷

Figure 11. The number of location IDs vs. the sample size.

In some situations, the stream’s 𝑙𝑜𝑐𝐼𝐷 may be represented in longitude and latitude
coordinates using a GPS system. STDF discretizes these location coordinates, as discussed
in the IoT-based Spatial Data Handler. For instance, to cluster a stream (data unit) which
has the location coordinates (29.2392, 32.5983), STDF discretizes these location coordinates
by classifying the 10 services’ location IDs in D1 into 10 intervals with the following cut
points: LocID1: (29.1118, 32.6598); LocID2: (27.2579, 33.8116); LocID3: (25.0676, 34.8790); LocID4: (26.7500, 33.9360); LocID5: (27.9654, 34.3618); LocID6: (29.6725, 32.3370); LocID7:
(29.5933, 32.7178); LocID8 : (27.7833, 33.5666); LocID9 : (27.0370, 33.8523); and LocID10 :
(26.8482, 33.9900). Therefore, by calculating the Euclidean-based distance between
(29.2392, 32.5983) and the cut points, the distances are 0.141467, 2.323284, 4.754349,
2.825873, 2.175431, 0.505991, 0.373721, 1.748499, 2.534206 and 2.766534 for 𝑙𝑜𝑐 𝐼𝐷 = 1, 2,

Figure 11. The number of location IDs vs. the sample size.

In some situations, the stream’s locID may be represented in longitude and latitude
coordinates using a GPS system. STDF discretizes these location coordinates, as discussed
in the IoT-based Spatial Data Handler. For instance, to cluster a stream (data unit) which has
the location coordinates (29.2392, 32.5983), STDF discretizes these location coordinates by
classifying the 10 services’ location IDs in D1 into 10 intervals with the following cut points:
LocID1: (29.1118, 32.6598); LocID2: (27.2579, 33.8116); LocID3: (25.0676, 34.8790); LocID4:
(26.7500, 33.9360); LocID5: (27.9654, 34.3618); LocID6: (29.6725, 32.3370); LocID7: (29.5933,
32.7178); LocID8: (27.7833, 33.5666); LocID9: (27.0370, 33.8523); and LocID10: (26.8482,
33.9900). Therefore, by calculating the Euclidean-based distance between (29.2392, 32.5983)
and the cut points, the distances are 0.141467, 2.323284, 4.754349, 2.825873, 2.175431,
0.505991, 0.373721, 1.748499, 2.534206 and 2.766534 for loc ID = 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10,
respectively. Thus, STDF discretizes the coordinates to LocID1 as per the minimum distance.

5.4.2. Evaluating the Aggregation Scalability of STDF IoT Data Fusion

To manage scalable IoT data, the TAG technique aggregates the streams of a specific
SourceID per its location IDs. Thus, this experiment tracked the number of streams with
respect to the location IDs per SourceID before and after aggregation at the IoT-based
Temporal Data Aggregator. Hence, we investigated the number of streams of the TAG
tree of service1 before and after aggregation at the sample sizes of 80, 100 and 120 over D1.
There is no need to perform the same experiment over D2 or D3, as it is a factor of the
sample size only. Table 5 presents the number of streams per Loc ID before aggregation.

Sensors 2021, 21, 7035 23 of 30

For instance, there are 80 streams at a sample size of 80, which are distributed through four
location IDs as follows: 26, 21, 18 and 15. Using 100 streams at a sample size of 100, the
streams are distributed over five location IDs as follows: 27, 22, 21, 17 and 13. At a sample
size of 120, the streams are distributed over six location IDs as follows: 29, 23, 22, 17, 15
and 14. However, the total number of streams upon aggregating the freshest stream per
location at a sample size of 80 is four streams (one stream per location ID); at a sample size
of 100, the total number of streams is five streams; and at a sample size of 120, the total
number of streams is six streams. Figure 12 shows the number of streams before and after
aggregation, which emphasizes that the aggregation reduces the total number of streams
per SourceID up to 95%.

Table 5. The distribution of the streams of service1 as per the location IDs at sample sizes of 80, 100 and 120 before
aggregation for dataset D1.

Dataset
Sample Size (Number of
Streams per Source ID)

Number of Location
IDs per Source ID

Streams per Location ID

LocID1 LocID2 LocID3 LocID4 LocID5 LocID6

D1
80 4 26 21 18 15 - -

100 5 27 22 21 17 13 -
120 6 29 23 22 17 15 14

Sensors 2021, 21, x FOR PEER REVIEW 23 of 31

3, 4, 5, 6, 7, 8, 9 and 10, respectively. Thus, STDF discretizes the coordinates to LocID1 as
per the minimum distance.

5.4.2. Evaluating the Aggregation Scalability of STDF IoT Data Fusion
To manage scalable IoT data, the TAG technique aggregates the streams of a specific 𝑆𝑜𝑢𝑟𝑐𝑒𝐼𝐷 per its location IDs. Thus, this experiment tracked the number of streams with

respect to the location IDs per 𝑆𝑜𝑢𝑟𝑐𝑒𝐼𝐷 before and after aggregation at the IoT-based
Temporal Data Aggregator. Hence, we investigated the number of streams of the TAG
tree of service1 before and after aggregation at the sample sizes of 80, 100 and 120 over
D1. There is no need to perform the same experiment over D2 or D3, as it is a factor of the
sample size only. Table 5 presents the number of streams per 𝐿𝑜𝑐 𝐼𝐷 before aggregation.
For instance, there are 80 streams at a sample size of 80, which are distributed through
four location IDs as follows: 26, 21, 18 and 15. Using 100 streams at a sample size of 100,
the streams are distributed over five location IDs as follows: 27, 22, 21, 17 and 13. At a
sample size of 120, the streams are distributed over six location IDs as follows: 29, 23, 22,
17, 15 and 14. However, the total number of streams upon aggregating the freshest stream
per location at a sample size of 80 is four streams (one stream per location ID); at a sample
size of 100, the total number of streams is five streams; and at a sample size of 120, the
total number of streams is six streams. Figure 12 shows the number of streams before and
after aggregation, which emphasizes that the aggregation reduces the total number of
streams per 𝑆𝑜𝑢𝑟𝑐𝑒𝐼𝐷 up to 95%.

Table 5. The distribution of the streams of service1 as per the location IDs at sample sizes of 80, 100 and 120 before aggre-
gation for dataset D1.

Dataset
Sample Size (Number of
Streams per Source ID)

Number of Location IDs
per Source ID

Streams per Location ID 𝑳𝒐𝒄𝑰𝑫𝟏 𝑳𝒐𝒄𝑰𝑫𝟐 𝑳𝒐𝒄𝑰𝑫𝟑 𝑳𝒐𝒄𝑰𝑫𝟒 𝑳𝒐𝒄𝑰𝑫𝟓 𝑳𝒐𝒄𝑰𝑫𝟔

D1
80 4 26 21 18 15 - -

100 5 27 22 21 17 13 -
120 6 29 23 22 17 15 14

Figure 12. The number of aggregated streams vs. the sample size.

5.4.3. Evaluating the Spatiotemporality of STDF IoT Data Fusion
This experiment tracked the performance of both the IoT-based Spatial Data Handler

and the IoT-based Temporal Data Aggregator on a time basis to examine the spatiotem-
poral IoT data processing time. We investigated their performance for service1 over the
first three seconds of the simulation. The streams are variable in their processed size, and
they are randomly selected by the PPS sampling step. Thus, the same 𝑆𝑜𝑢𝑟𝑐𝑒𝐼𝐷 has a
different number of location IDs every second, while the sample size is constant. As
shown in Table 6, after sampling the streams of service1 using a sample size of 80, the
streams were transmitted from four, three and four location IDs at the first, second and

Figure 12. The number of aggregated streams vs. the sample size.

5.4.3. Evaluating the Spatiotemporality of STDF IoT Data Fusion

This experiment tracked the performance of both the IoT-based Spatial Data Handler
and the IoT-based Temporal Data Aggregator on a time basis to examine the spatiotemporal
IoT data processing time. We investigated their performance for service1 over the first three
seconds of the simulation. The streams are variable in their processed size, and they are
randomly selected by the PPS sampling step. Thus, the same SourceID has a different
number of location IDs every second, while the sample size is constant. As shown in
Table 6, after sampling the streams of service1 using a sample size of 80, the streams were
transmitted from four, three and four location IDs at the first, second and third seconds,
respectively. At a sample size of 100, the streams were transmitted from five location
IDs over the three seconds, while at a sample size of 120, the streams were transmitted
from six, five and six location IDs at the first, second and third seconds, respectively.
Furthermore, each location ID transmitted a different number of streams every second,
as the streams have different processed sizes despite the constant SourceID and sample
size. After aggregating the streams of service1 using a sample size of 80, four streams were
transmitted from four location IDs at the first second, three streams were transmitted at
the 2nd second and four streams were transmitted at the third second. At a sample size
of 100, five streams were transmitted from five location IDs over the three seconds, while
at a sample size of 120, six streams were transmitted at the first second, five streams were

Sensors 2021, 21, 7035 24 of 30

transmitted at the 2nd second and six streams were transmitted at the third second. This
experiment proves that STDF temporally updates the spatial streams of one source ID.

Table 6. Three seconds of service1’s simulation regarding the IoT-based Spatial Data Handler and the IoT-based Temporal
Data Aggregator.

Second
Sample Size

(# of Streams per Source ID
before Aggregation)

Number of Location
IDs per Source ID

Streams per Location ID # Streams per Source
ID after Aggregation

LocID1 LocID2 LocID3 LocID4 LocID5 LocID6

s1
80 4 26 21 18 15 - - 4
100 5 27 22 21 17 13 - 5
120 6 29 23 22 17 15 14 6

s2
80 3 32 25 23 - - - 3
100 5 31 27 23 15 4 - 5
120 5 32 29 21 23 15 - 5

s3
80 4 25 19 23 13 - - 4
100 5 25 25 20 15 15 - 5

120\ 6 27 23 24 14 20 12 6

5.4.4. Evaluating the Real-Time Aggregation Processing of STDF IoT Data Fusion

The processing time of the simulator in the cloud data center was investigated before
and after the aggregation of all source IDs through the three datasets per second to ensure
the real-time IoT data processing of STDF. As shown in Figure 13, the original processing
time of D1 with neither sampling nor aggregation was 75 s, while it became 7, 10 and 15 s
when using sample sizes of 80, 100 and 120, respectively. Further aggregation reduced the
original processing time by an average of 90%, 86% and 80%, respectively.

Sensors 2021, 21, x FOR PEER REVIEW 24 of 31

third seconds, respectively. At a sample size of 100, the streams were transmitted from
five location IDs over the three seconds, while at a sample size of 120, the streams were
transmitted from six, five and six location IDs at the first, second and third seconds, re-
spectively. Furthermore, each location ID transmitted a different number of streams every
second, as the streams have different processed sizes despite the constant 𝑆𝑜𝑢𝑟𝑐𝑒𝐼𝐷 and
sample size. After aggregating the streams of service1 using a sample size of 80, four
streams were transmitted from four location IDs at the first second, three streams were
transmitted at the 2nd second and four streams were transmitted at the third second. At
a sample size of 100, five streams were transmitted from five location IDs over the three
seconds, while at a sample size of 120, six streams were transmitted at the first second,
five streams were transmitted at the 2nd second and six streams were transmitted at the
third second. This experiment proves that STDF temporally updates the spatial streams
of one source ID.

Table 6. Three seconds of service1’s simulation regarding the IoT-based Spatial Data Handler and the IoT-based Temporal
Data Aggregator.

Second

Sample Size
(# of Streams per
Source ID before

Aggregation)

Number of Loca-
tion IDs per
Source ID

Streams per Location ID
Streams per Source
ID after Aggregation 𝑳𝒐𝒄𝑰𝑫𝟏 𝑳𝒐𝒄𝑰𝑫𝟐 𝑳𝒐𝒄𝑰𝑫𝟑 𝑳𝒐𝒄𝑰𝑫𝟒 𝑳𝒐𝒄𝑰𝑫𝟓 𝑳𝒐𝒄𝑰𝑫𝟔

s1
80 4 26 21 18 15 - - 4

100 5 27 22 21 17 13 - 5
120 6 29 23 22 17 15 14 6

s2
80 3 32 25 23 - - - 3

100 5 31 27 23 15 4 - 5
120 5 32 29 21 23 15 - 5

s3
80 4 25 19 23 13 - - 4

100 5 25 25 20 15 15 - 5
120\ 6 27 23 24 14 20 12 6

5.4.4. Evaluating the Real-Time Aggregation Processing of STDF IoT Data Fusion
The processing time of the simulator in the cloud data center was investigated before

and after the aggregation of all source IDs through the three datasets per second to ensure
the real-time IoT data processing of STDF. As shown in Figure 13, the original processing
time of D1 with neither sampling nor aggregation was 75 s, while it became 7, 10 and 15 s
when using sample sizes of 80, 100 and 120, respectively. Further aggregation reduced the
original processing time by an average of 90%, 86% and 80%, respectively.

Figure 13. Processing time after aggregation vs. sample size.

As for D2, the original processing time was 150 s, while it became 15, 21 and 32 s
when using sample sizes of 80, 100 and 120, respectively. Further aggregation reduced the
original processing time by an average of 90%, 85% and 81%, respectively. Regarding D3,
the original processing time was 300 s, while it became 33, 45 and 60 s when using sample
sizes of 80, 100 and 120, respectively. Further aggregation decreased the original processing
time by an average of 90%, 85% and 81%, respectively.

5.5. STDF Performance Evaluation Compared to the Main IoT Data Fusion Approaches

This section presents a detailed comparison between the proposed STDF approach
using the largest dataset (D3) and the main IoT data fusion approaches presented in
Section 2. Table 7 provides a summarized description of the datasets used in those related

Sensors 2021, 21, 7035 25 of 30

works and thus considered in this section for the comparative evaluation. The comparison
evaluates STDF’s performance with respect to the following aspects: (1) processing time,
(2) accuracy level and (3) the considered IoT data perspectives. Each dataset is identified
by its IoT domain that clarifies the IoT application, data size in gigabytes (GB), time span
in seconds (s), features that indicate the nature of the dataset attributes, the modality, the
specific considered IoT data dimensions that are involved in the dataset and the evaluation
metric applied to the dataset, being either the processing time (PT) or accuracy level (AL).

Table 7. Summarized description of the main considered datasets for the comparative evaluation.

Ref# IoT
Domain

Size
in GB

Time
Span in s

Dataset
Features

Dataset
Modality

Considered IoT Data
Dimensions

Evaluation
Metric

(AL or PT)

[12] Smart healthcare 18 60
Sensor and

remote server
specifications

Structured
Fast generated, imprecise,

diverse, private, informative
and temporal data

PT = 144 s

[13] Smart
mobility 12 - Sensor

specifications Structured Imprecise, diverse,
informative and spatial data AL = 90%

[14] Smart energy 16 60 Sensor
specifications Structured

Fast generated, imprecise,
diverse, temporal and spatial

data
AL = 84%

[15] Domain
independent 8 10

Image and
pixel

specifications
Images Massive, diverse, private,

temporal and spatial data AL = 95%

[16] Smart home 9 - Sensor
specifications Structured Imprecise, diverse, private

and spatial data AL = 93%

[17] Smart healthcare 8 60 Image
specifications Images Massive, diverse, private,

temporal and spatial data PT = 86 s

[18] Smart
environments 13.5 60 Sensor

specifications Structured Imprecise, volatile, private,
temporal and spatial data AL = 90%

[19] Smart energy 14 60 Sensor
specifications Structured Volatile, private, temporal and

spatial data AL = 88%

[20] Smart social
networks 7 - Network

specifications Structured Imprecise, diverse, spatial,
informative and private data AL = 94%

[21] Smart wireless
communication 12 60 Sensor

specifications Structured Imprecise, diverse, temporal,
spatial and informative data AL = 91%

[22] Domain
independent 22 10 Video

specifications Videos

Imprecise, massive, fast
generated, diverse, temporal,
volatile, private and spatial

data

AL = 85%

STDF

DAI–DAO
domain

independent
(D3)

12 15 Stream
specifications Structured

Fast generated, massive,
volatile, private, informative,

temporal and spatial data

AL = 95%
and

PT = 60 s

5.5.1. Processing Time Evaluation

This section considers the maximum achieved processing time as the comparison
metric between STDF and the related works that evaluated their performance using the
processing time, as presented in Table 1. This includes comparing their dataset size, dataset
nature and hardware specifications. The approach in [12] consumed 144 s using an 18-
gigabyte biomedical dataset on a 2.00 GHz Intel Core i7-4510U CPU and 16 GB RAM. In [17],
the approach consumed 86 s using an 8-gigabyte biomedical dataset on a machine with a
2.52 GHz CPU and 3.75 GB RAM. As for STDF, it consumed 60 s using our 12-gigabyte
dataset (D3) on a Core i7, 2.70 GHz and 8 GB RAM.

Sensors 2021, 21, 7035 26 of 30

5.5.2. Accuracy Evaluation

This section compares the accuracy of STDF and the related works that considered the
accuracy metric as per Table 1 and shown in Figure 14. The accuracy metric for the data
fusion approaches depends on the used data fusion method/technique, irrespective of the
IoT domain.

Sensors 2021, 21, x FOR PEER REVIEW 26 of 31

[21]

Smart
wireless

communi-
cation

12 60
Sensor

specifications Structured
Imprecise, diverse, tem-

poral, spatial and informa-
tive data

AL = 91%

[22]
Domain

independ-
ent

22 10 Video
specifications

Videos

Imprecise, massive, fast
generated, diverse, tem-

poral, volatile, private and
spatial data

AL = 85%

STDF

DAI–DAO
domain

independ-
ent (D3)

12 15 Stream
specifications

Structured

Fast generated, massive,
volatile, private, informa-
tive, temporal and spatial

data

AL = 95% and
PT = 60 s

5.5.1. Processing Time Evaluation
This section considers the maximum achieved processing time as the comparison

metric between STDF and the related works that evaluated their performance using the
processing time, as presented in Table 1. This includes comparing their dataset size, da-
taset nature and hardware specifications. The approach in [12] consumed 144 s using an
18-gigabyte biomedical dataset on a 2.00 GHz Intel Core i7-4510U CPU and 16 GB RAM.
In [17], the approach consumed 86 s using an 8-gigabyte biomedical dataset on a machine
with a 2.52 GHz CPU and 3.75 GB RAM. As for STDF, it consumed 60 s using our 12-
gigabyte dataset (D3) on a Core i7, 2.70 GHz and 8 GB RAM.

5.5.2. Accuracy Evaluation
This section compares the accuracy of STDF and the related works that considered

the accuracy metric as per Table 1 and shown in Figure 14. The accuracy metric for the
data fusion approaches depends on the used data fusion method/technique, irrespective
of the IoT domain.

Figure 14. STDF accuracy evaluation.

Since STDF is a DAI–DAO fusion approach, we evaluated the accuracy of STDF using
the formulas presented in (12), (13) and (14) that measure the data out accuracy that results
from the double-stage sampling method. As clarified earlier in Section 2, the scope of our
related works is low-level data fusion that focuses on low-level (raw) IoT data despite the
fusion outcome being data, features or decisions. Therefore, the accuracy of the ap-
proaches in [15,21,22] would be the feature extraction accuracy, as they represent data in–
feature out fusion approaches. The accuracy of the approaches in [13,14,16,18–20] is the

Figure 14. STDF accuracy evaluation.

Since STDF is a DAI–DAO fusion approach, we evaluated the accuracy of STDF
using the formulas presented in (12), (13) and (14) that measure the data out accuracy
that results from the double-stage sampling method. As clarified earlier in Section 2, the
scope of our related works is low-level data fusion that focuses on low-level (raw) IoT data
despite the fusion outcome being data, features or decisions. Therefore, the accuracy of
the approaches in [15,21,22] would be the feature extraction accuracy, as they represent
data in–feature out fusion approaches. The accuracy of the approaches in [13,14,16,18–20]
is the decision making accuracy, as they represent data in–decision out fusion approaches.
Figure 14 presents the maximum accuracy level achieved by each approach using the
data fusion method mentioned in Table 1 as per the intended outcome for the fusion. An
accuracy level of 90% was achieved for detection, 84% for energy pricing estimation, 95%
for recognition, 93% for optimization, 90% for weather forecasting, 88% for detection, 94%
for opinion clustering, 91% for recognition and 85% for feature extraction with respect to
the approaches presented in [13–22], respectively. As for STDF, it achieved an accuracy
level of 95% for the data out that resulted from the double-stage sampling method.

5.5.3. Evaluation of IoT Data Perspectives

STDF and the related works performed low-level data fusion, which focuses on fusing
raw IoT data streams. The main concern of this evaluation is to determine how many
related studies overlooked the deduced challengeable IoT data perspectives discussed in
Section 3, in order to decide their coverage capabilities and tolerance in the IoT environment.
Thus, this section investigates how many times IoT data perspectives were ignored among
the main related works’ approaches. Figure 15 presents every IoT data perspective and the
number of related works’ approaches that ignored it. For example, the big data volume
and velocity were ignored by eight approaches, whereas the big data veracity, big data
variety, IoT data semantics, IoT data expiry, IoT data dynamicity, IoT data time and IoT
data trustworthiness were ignored by two, three, six, six, four, three and two approaches,
respectively, as detailed in Table 1. On the other hand, STDF considered seven IoT data
perspectives, concerning the most neglected ones, such as the big data volume and big
data velocity, while it bypassed only two perspectives, namely, the big data veracity and
big data variety, since STDF does not consider the data nature as it is a DAI–DAO data
fusion approach.

Sensors 2021, 21, 7035 27 of 30

Sensors 2021, 21, x FOR PEER REVIEW 27 of 31

decision making accuracy, as they represent data in–decision out fusion approaches. Fig-
ure 14 presents the maximum accuracy level achieved by each approach using the data
fusion method mentioned in Table 1 as per the intended outcome for the fusion. An accu-
racy level of 90% was achieved for detection, 84% for energy pricing estimation, 95% for
recognition, 93% for optimization, 90% for weather forecasting, 88% for detection, 94% for
opinion clustering, 91% for recognition and 85% for feature extraction with respect to the
approaches presented in [13–22], respectively. As for STDF, it achieved an accuracy level
of 95% for the data out that resulted from the double-stage sampling method.

5.5.3. Evaluation of IoT Data Perspectives
STDF and the related works performed low-level data fusion, which focuses on fus-

ing raw IoT data streams. The main concern of this evaluation is to determine how many
related studies overlooked the deduced challengeable IoT data perspectives discussed in
Section 3, in order to decide their coverage capabilities and tolerance in the IoT environ-
ment. Thus, this section investigates how many times IoT data perspectives were ignored
among the main related works’ approaches. Figure 15 presents every IoT data perspective
and the number of related works’ approaches that ignored it. For example, the big data
volume and velocity were ignored by eight approaches, whereas the big data veracity, big
data variety, IoT data semantics, IoT data expiry, IoT data dynamicity, IoT data time and
IoT data trustworthiness were ignored by two, three, six, six, four, three and two ap-
proaches, respectively, as detailed in Table 1. On the other hand, STDF considered seven
IoT data perspectives, concerning the most neglected ones, such as the big data volume
and big data velocity, while it bypassed only two perspectives, namely, the big data ve-
racity and big data variety, since STDF does not consider the data nature as it is a DAI–
DAO data fusion approach.

Figure 15. Evaluation of IoT data perspectives.

6. Discussion
Our experimental study conveys that STDF efficiently manages different IoT data

processing challenges, such as security, reliability, scalability, accuracy and latency,
through uniquely considering most of the IoT data perspectives such as the big data vol-
ume, big data velocity, IoT data semantics, IoT data expiry, IoT data dynamicity, IoT data
time and IoT data trustworthiness, which are ignored by most of the previous IoT data
fusion approaches, as shown in Figure 15. STDF ensures secure processing by conducting
a validation review of the source IDs of all acquired streams before processing. It also
ensures reliable processing by guaranteeing streams' freshness over different time inter-
vals. Since data freshness is domain dependent, the experimental evaluation of data fresh-
ness shows that increasing the interval of the freshness time increases the number of

Figure 15. Evaluation of IoT data perspectives.

6. Discussion

Our experimental study conveys that STDF efficiently manages different IoT data
processing challenges, such as security, reliability, scalability, accuracy and latency, through
uniquely considering most of the IoT data perspectives such as the big data volume, big
data velocity, IoT data semantics, IoT data expiry, IoT data dynamicity, IoT data time
and IoT data trustworthiness, which are ignored by most of the previous IoT data fusion
approaches, as shown in Figure 15. STDF ensures secure processing by conducting a
validation review of the source IDs of all acquired streams before processing. It also
ensures reliable processing by guaranteeing streams’ freshness over different time intervals.
Since data freshness is domain dependent, the experimental evaluation of data freshness
shows that increasing the interval of the freshness time increases the number of streams
for processing. STDF preserves the spatial IoT data feature by clustering the streams of
one service on their transmitting services to ensure reliable processing, assuming that any
fault that occurs in any stream at a specific loc ID will affect only the streams at this loc ID
rather than those at other locations. Considering the perspectives of the scalability and
latency challenges, STDF utilizes both cluster sampling and aggregation techniques for
data reduction. Table 8 summarizes the number of streams and processing times that
resulted from experimenting with the combination of both techniques on dataset D3.

Table 8. Comparison of data reduction techniques for dataset D3.

Reduction Technique Sample Size Number of
Streams

Processing Time
(Seconds)

Without reduction - 6424 300

Cluster sampling before
aggregation

80 3200 100
100 4000 140
120 4800 200

Cluster sampling followed
by aggregation

80 167 33
100 215 45
120 258 60

The original dataset D3 had 6424 streams and was processed in 300 s before reduction.
Using cluster sampling, 3200, 4000 and 4800 streams were generated per second, with
processing times of 100, 140 and 200 s with sample sizes of 80, 100 and 120, respectively.
The summary table demonstrates that cluster sampling reduces the number of streams
in the original dataset by an average of 50%, 40% and 35%, which decreases the original
processing time by 70%, 55% and 34%, respectively. Furthermore, after utilizing aggregation
for fusion, the number of streams was reduced to 167, 215 and 258, with processing times

Sensors 2021, 21, 7035 28 of 30

of 33, 45 and 60 s and sample sizes of 80, 100 and 120, respectively. Hence, aggregation
reduces the sampled number of streams by an average of 95% and reduces the processing
time by an average of 70% with respect to cluster sampling.

Thus, applying sampling followed by aggregation using STDF returns the lowest
processing time value compared to the main IoT data fusion approaches discussed in the
Related Works section. Moreover, to ensure reliable processing, STDF updates the fusion
scenario every second to grant the renewed fresh streams at the updated location IDs.
Finally, accuracy is guaranteed in STDF via the cluster sampling accuracy that reaches its
minimum value with an average of 85% at D1, which increases by increasing the dataset
size, achieving the highest accuracy value compared to the main IoT data fusion approaches
presented in the Related Works section. In addition, preserving the spatial IoT data feature
by utilizing constant centroids while clustering the streams improves STDF’s accuracy.

Considering the conducted experiments and the obtained results, STDF is a DAI–DAO
fusion approach that incorporates real problems and challenges. It handles data loss and
outliers that result from sensor faults via the IoT Data Quality and Freshness Handler,
it considers different location formats through the IoT-based Spatial Data Handler and
it supports the processing of massive data amounts via the IoT Data Reducer module,
appended with a state estimator for contingencies. Moreover, it guarantees real-time
processing of data streams.

7. Conclusions and Future Work

Data fusion in IoT-based systems encounters many processing challenges due to
the unprecedent features associated with IoT data. In this paper, we proposed the IoT-
based spatiotemporal data fusion (STDF) approach as a domain-independent data in–data
out (DAI–DAO) data fusion approach that maintains different IoT data features prior
to any business analytics by introducing two layers: (1) the IoT-based Data Features
Manager, and (2) the IoT-based Data Fusion Manager. The first layer directly proceeds
after data acquisition to ensure the data trustworthiness, quality and freshness, and to
reduce the IoT data volume using the cluster sampling technique, managing IoT processing
security, reliability, accuracy, latency and scalability challenges. The second layer lies in
the processing server to preserve the spatial IoT data feature using the k-means clustering
technique and to reduce the IoT data volume using the Tiny AGgregation (TAG) technique
by aggregating the IoT sources’ data in the freshest data per location. STDF’s processing
scenario is repeated on a time basis to cope with the temporal IoT data feature. The
experimental results of the proposed STDF approach indicate an efficient performance,
where it reduced the IoT data volume by an average of 95% and decreased the processing
time by an average of 80%, with a 90% average accuracy level for the largest used dataset.
Our future work is to consider the variable IoT data multi-modality feature by extending
the DAI–DAO STDF approach to fuse IoT data features, being dedicated to a specific
domain, as well as considering high-level and middle-level data fusion.

Author Contributions: D.F.: conceptualization, methodology, software, validation, formal analysis,
investigation, resources, data curation, writing—original draft preparation. S.M.: conceptualization,
methodology, validation, formal analysis, investigation, writing—review and editing, visualization,
supervision, project administration. N.B.: supervision. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2021, 21, 7035 29 of 30

References
1. Resende, C.; Folgado, D.; Oliveira, J.; Franco, B.; Moreira, W.; Oliveira, A., Jr.; Cavaleiro, A.; Carvalho, R. TIP4.0: Industrial

Internet of Things Platform for Predictive Maintenance. Sensors 2021, 21, 4676. [CrossRef]
2. Munari, A.; Clazzer, F. Spectral Coexistence of QoS-Constrained and IoT Traffic in Satellite Systems. Sensors 2021, 21, 4630.

[CrossRef] [PubMed]
3. Azzedin, F.; Ghaleb, M. Internet-of-Things and Information Fusion: Trust Perspective Survey. Sensors 2019, 19, 1929. [CrossRef]

[PubMed]
4. Yehia, L.; Darwish, A.; Elngar, A.; Khedr, A. Artificial Neural Network and C4. 5 Algorithms for Tamper Detection Model of

Healthcare Applications in Internet of Things. Int. J. Intell. Comput. Inf. Sci. 2017, 17, 51–63.
5. Rezvani, S.M.; Abyaneh, H.Z.; Shamshiri, R.; Balasundram, S.; Dworak, V.; Goodarzi, M.; Sultan, M.; Mahns, B. IoT-Based Sensor

Data Fusion for Determining Optimality Degrees of Microclimate Parameters in Commercial Greenhouse Production of Tomato.
Sensors 2020, 20, 6474. [CrossRef]

6. Tawalbeh, L.; Muheidat, F.; Tawalbeh, M.; Quwaider, M. IoT Privacy and Security: Challenges and Solutions. Appl. Sci. 2020, 10,
4102. [CrossRef]

7. Bustamante, A.L.; Patricio, M.A.; Molina, J.M. Thinger. Io: An Open Source Platform for Deploying Data Fusion Applications in
IoT Environments. Sensors 2019, 19, 1044. [CrossRef]

8. Himeur, Y.; Alsalemi, A.; Al-Kababji, A.; Bensaali, F.; Abbes, A. Data Fusion Strategies for Energy Efficiency in Buildings:
Overview, Challenges and Novel Orientations. Inf. Fusion 2020, 64, 99–120. [CrossRef]

9. Meng, T.; Jing, X.; Yan, Z.; Pedrycz, W. A Survey on Machine Learning for Data Fusion. Inf. Fusion 2020, 57, 115–129. [CrossRef]
10. Alam, F.; Mehmood, R.; Katib, I.; Albogami, N.N.; Albeshri, A. Data Fusion and IoT for Smart Ubiquitous Environments: A

Survey. IEEE Access 2017, 5, 9533–9554. [CrossRef]
11. Dautov, R.; Distefano, S. Three-Level Hierarchical Data Fusion through the IoT, Edge, and Cloud Computing. In Proceedings of

the 1st International Conference on Internet of Things and Machine Learning, New York, NY, USA, 17–18 October 2017; pp. 1–5.
[CrossRef]

12. Dautov, R.; Distefano, S.; Buyya, R. Hierarchical Data Fusion for Smart Healthcare. J. Big Data 2019, 6, 1–23. [CrossRef]
13. Guo, P.; Kim, H.; Virani, N.; Xu, J.; Zhu, M.; Liu, P. RoboADS: Anomaly Detection against Sensor and Actuator Misbehaviors in

Mobile Robots. In Proceedings of the 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks,
DSN 2018, Luxembourg, 25–28 June 2018; pp. 574–585. [CrossRef]

14. Izumi, S.; Azuma, S. Real-Time Pricing by Data Fusion on Networks. IEEE Trans. Ind. Informatics 2017, 14, 1175–1185. [CrossRef]
15. Tan, C.; Sun, Y.; Li, G.; Jiang, G.; Chen, D.; Liu, H. Research on Gesture Recognition of Smart Data Fusion Features in the IoT.

Neural Comput. Appl. 2019, 32, 1–13. [CrossRef]
16. Sung, W.-T.; Tsai, M.-H. Data Fusion of Multi-Sensor for IOT Precise Measurement Based on Improved PSO Algorithms. Comput.

Math. Appl. 2012, 64, 1450–1461. [CrossRef]
17. Dawar, N.; Kehtarnavaz, N. A Convolutional Neural Network-Based Sensor Fusion System for Monitoring Transition Movements

in Healthcare Applications. In Proceedings of the IEEE 14th International Conference on Control and Automation (ICCA), IEEE,
Anchorage, AK, USA, 12–15 June 2018; pp. 482–485. [CrossRef]

18. Liang, F.; Gao, M.; Xiao, Q.; Carmichael, G.R.; Pan, X.; Liu, Y. Evaluation of a Data Fusion Approach to Estimate Daily PM2. 5
Levels in North China. Environ. Res. 2017, 158, 54–60. [CrossRef] [PubMed]

19. Chen, F.-C.; Jahanshahi, M.R. NB-CNN: Deep Learning-Based Crack Detection Using Convolutional Neural Network and Naïve
Bayes Data Fusion. IEEE Trans. Ind. Electron. 2018, 65, 4392–4400. [CrossRef]

20. Yan, Z.; Jing, X.; Pedrycz, W. Fusing and Mining Opinions for Reputation Generation. Inf. Fusion 2017, 36, 172–184. [CrossRef]
21. Chen, S.; Zhang, Y.; He, Z.; Nie, J.; Zhang, W. A Novel Attention Cooperative Framework for Automatic Modulation Recognition.

IEEE Access 2020, 8, 15673–15686. [CrossRef]
22. Muhammad, K.; Hussain, T.; Tanveer, M.; Sannino, G.; De Albuquerque, V.H.C. Cost-Effective Video Summarization Using Deep

CNN with Hierarchical Weighted Fusion for IoT Surveillance Networks. IEEE Internet Things J. 2019, 7, 4455–4463. [CrossRef]
23. Zhang, C.; Zhang, H.; Qiao, J.; Yuan, D.; Zhang, M. Deep Transfer Learning for Intelligent Cellular Traffic Prediction Based on

Cross-Domain Big Data. IEEE J. Sel. Areas Commun. 2019, 37, 1389–1401. [CrossRef]
24. Barika, M.; Garg, S.; Chan, A.; Calheiros, R.; Ranjan, R. IoTSim-Stream: Modelling Stream Graph Application in Cloud Simulation.

Futur. Gener. Comput. Syst. 2019, 99, 86–105. [CrossRef]
25. Barika, M.; Garg, S.; Chan, A.; Calheiros, R. Scheduling Algorithms for Efficient Execution of Stream Workflow Applications in

Multicloud Environments. arXiv 2019, arXiv:1912.08392. [CrossRef]
26. Apache Kafka. Available online: https://kafka.apache.org (accessed on 2 September 2021).
27. Guo, N.; Xiong, W.; Wu, Y.; Chen, L.; Jing, N. A geographic meshing and coding method based on adaptive Hilbert-Geohash.

IEEE Access 2019, 7, 39815–39825. [CrossRef]
28. Karmakar, G.C.; Rajkumar, D.; Kamruzzaman, J. Iot sensor numerical data trust model using temporal correlation. IEEE Internet

Things J. 2019, 7, 2573–2581. [CrossRef]
29. Sun, G.; Zhang, Z.; Zheng, B.; Li, Y. Multi-sensor data fusion algorithm based on trust degree and improved genetics. Sensors

2019, 19, 2139. [CrossRef] [PubMed]

http://doi.org/10.3390/s21144676
http://doi.org/10.3390/s21144630
http://www.ncbi.nlm.nih.gov/pubmed/34300369
http://doi.org/10.3390/s19081929
http://www.ncbi.nlm.nih.gov/pubmed/31022920
http://doi.org/10.3390/s20226474
http://doi.org/10.3390/app10124102
http://doi.org/10.3390/s19051044
http://doi.org/10.1016/j.inffus.2020.07.003
http://doi.org/10.1016/j.inffus.2019.12.001
http://doi.org/10.1109/ACCESS.2017.2697839
http://doi.org/10.1145/3109761.3158388
http://doi.org/10.1186/s40537-019-0183-6
http://doi.org/10.1109/DSN.2018.00065
http://doi.org/10.1109/TII.2017.2776251
http://doi.org/10.1007/s00521-019-04023-0
http://doi.org/10.1016/j.camwa.2012.03.092
http://doi.org/10.1109/ICCA.2018.8444326
http://doi.org/10.1016/j.envres.2017.06.001
http://www.ncbi.nlm.nih.gov/pubmed/28599195
http://doi.org/10.1109/TIE.2017.2764844
http://doi.org/10.1016/j.inffus.2016.11.011
http://doi.org/10.1109/ACCESS.2020.2966777
http://doi.org/10.1109/JIOT.2019.2950469
http://doi.org/10.1109/JSAC.2019.2904363
http://doi.org/10.1016/j.future.2019.04.004
http://doi.org/10.1109/TSC.2019.2963382
https://kafka.apache.org
http://doi.org/10.1109/ACCESS.2019.2906871
http://doi.org/10.1109/JIOT.2019.2957201
http://doi.org/10.3390/s19092139
http://www.ncbi.nlm.nih.gov/pubmed/31072068

Sensors 2021, 21, 7035 30 of 30

30. Anuroop, G.; Wilkin, T.; Angelova, M.; Gaddam, J. Detecting sensor faults, anomalies and outliers in the internet of things: A
survey on the challenges and solutions. Electronics 2020, 9, 511.

31. Zhu, Q.; Tan, V. Thompson sampling algorithms for mean-variance bandits. In Proceedings of the 37th International Conference
on Machine Learning, Vienna, Austria, 12–18 July 2020; pp. 11599–11608.

32. Latpate, R.V.; Kshirsagar, J.K. Two-Stage Negative Adaptive Cluster Sampling. Commun. Math. Stat. 2020, 8, 1–21. [CrossRef]
33. Qureshi, M.N.; Kadilar, C.; Hanif, M. Estimation of Rare and Clustered Population Mean Using Stratified Adaptive Cluster

Sampling. Environ. Ecol. Stat. 2020, 27, 151–170. [CrossRef]
34. Gattone, S.A.; Giordani, P.; Battista, T.D.; Fortuna, F. Adaptive Cluster Double Sampling with Post Stratification with Application

to an Epiphytic Lichen Community. Environ. Ecol. Stat. 2018, 25, 125–138. [CrossRef]
35. Sharma, G. Pros and Cons of Different Sampling Techniques. Int. J. Appl. Res. 2017, 3, 749–752.
36. Singh, A.S.; Masuku, M.B. Sampling Techniques & Determination of Sample Size in Applied Statistics Research: An Overview.

Int. J. Econ. Commer. Manag. UK 2014, 2, 1–22.
37. Latpate, R.V.; Kshirsagar, J.K. Negative Adaptive Cluster Sampling. Model Assist. Stat. Appl. 2019, 14, 65–81. [CrossRef]
38. Abadi, N.M.; Rahmani, A.T.; Nematollahi, N. Using Judgment Post Stratification in Two Stage Cluster Sampling. Math. Res. 2021,

7, 399–414.
39. Wang, S.; Li, M.; Hu, N.; Zhu, E.; Hu, J.; Liu, X.; Yin, J. K-Means Clustering with Incomplete Data. IEEE Access 2019, 7, 69162–69171.

[CrossRef]
40. Hossain, Z.; Akhtar, N.; Ahmad, R.B.; Rahman, M. A Dynamic K-Means Clustering for Data Mining. Indones. J. Electr. Eng.

Comput. Sci. 2019, 13, 521–526. [CrossRef]
41. Sinai, B.Y.; Hoyer, S.; Hickey, J.; Brenner, M.P. Learning data-driven discretizations for partial differential equations. Proc. Natl.

Acad. Sci. USA 2019, 116, 15344–15349. [CrossRef] [PubMed]
42. Gupta, M.K.; Chandra, P. An Empirical Evaluation of K-Means Clustering Algorithm Using Different Distance Similarity Metrics.

In Lecture Notes in Electrical Engineering; Springer: Cham, Switzerland, 2020; pp. 884–892.
43. Maxim, L.G.; Rodriguez, J.I.; Wang, B. Euclidean Distance Degree of the Multiview Variety. J. Appl. Algebr. Geom. 2020, 4, 28–48.

[CrossRef]
44. Rashinkar, P.; Krushnasamy, V.S. An Overview of Data Fusion Techniques. In Proceedings of the International Conference on

Innovative Mechanisms for Industry Applications (ICIMIA), Bengaluru, India, 21–23 February 2017; pp. 694–697.
45. Pourghebleh, B.; Navimipour, N.J. Data Aggregation Mechanisms in the Internet of Things: A Systematic Review of the Literature

and Recommendations for Future Research. J. Netw. Comput. Appl. 2017, 97, 23–34. [CrossRef]
46. Lu, R.; Heung, K.; Lashkari, A.H.; Ghorbani, A.A. A Lightweight Privacy-Preserving Data Aggregation Scheme for Fog

Computing-Enhanced IoT. IEEE Access 2017, 5, 3302–3312. [CrossRef]
47. Yu, R.; Quddus, M.; Wang, X.; Yang, K. Impact of Data Aggregation Approaches on the Relationships between Operating Speed

and Traffic Safety. Accid. Anal. Prev. 2018, 120, 304–310. [CrossRef]
48. Muniswamaiah, M.; Agerwala, T.; Charles, T. Energy Consumption for IoT Streaming Applications. In Proceedings of the 6th

IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom), New York, NY, USA, 1–3 August 2020;
pp. 174–177.

49. Bambrik, I. A Survey on Cloud Computing Simulation and Modeling. SN Comput. Sci. 2020, 1, 249. [CrossRef]
50. Ren, H.; Zhao, S.; Ermon, S. Adaptive Antithetic Sampling for Variance Reduction. In Proceedings of the 36th International

Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 5420–5428.

http://doi.org/10.1007/s40304-018-0151-z
http://doi.org/10.1007/s10651-019-00438-z
http://doi.org/10.1007/s10651-017-0388-9
http://doi.org/10.3233/MAS-180452
http://doi.org/10.1109/ACCESS.2019.2910287
http://doi.org/10.11591/ijeecs.v13.i2.pp521-526
http://doi.org/10.1073/pnas.1814058116
http://www.ncbi.nlm.nih.gov/pubmed/31311866
http://doi.org/10.1137/18M1233406
http://doi.org/10.1016/j.jnca.2017.08.006
http://doi.org/10.1109/ACCESS.2017.2677520
http://doi.org/10.1016/j.aap.2018.06.007
http://doi.org/10.1007/s42979-020-00273-1

	Introduction
	Related Works
	Problem Definition and Main Contributions
	IoT Data Features
	Common Features of Big Data Characteristics
	IoT-Specific Data Features

	IoT Data Processing Open Issues
	Massive Data Support
	Non-Interrupted Data Fusion
	Fault-Less Data Fusion
	Steady Data Fusion

	The Main Contributions
	Domain-Independent and Spatial-Related IoT Data Fusion
	Temporal and Renewed IoT Data Fusion
	Trusted and Scalable IoT Data Fusion
	Accurate and Real-Time IoT Data Fusion

	The Proposed Spatiotemporal Data Fusion (STDF) Approach
	IoT-Based Data Features Manager
	IoT Data Source Validator
	IoT Data Quality and Freshness Handler
	IoT Data Reducer

	IoT-Based Data Fusion Manager
	IoT-Based Spatial Data Handler
	IoT-Based Temporal Data Aggregator

	The Experimental Evaluation
	IoTSim-Stream Simulator
	The Experimental Environment and Dataset
	IoT-Based Data Features Manager Evaluation
	Evaluating the Trustworthiness of STDF IoT Data Fusion
	Evaluating the Freshness of STDF IoT Data Fusion
	Handling IoT Data Quality
	Evaluating the Reduction Scalability of STDF IoT Data Fusion
	Evaluating the Reduction Accuracy of STDF IoT Data Fusion
	Evaluating the Real-Time Reduction Processing of STDF IoT Data Fusion

	IoT-Based Data Fusion Manager Evaluation
	Evaluating the Spatiality of STDF IoT Data Fusion
	Evaluating the Aggregation Scalability of STDF IoT Data Fusion
	Evaluating the Spatiotemporality of STDF IoT Data Fusion
	Evaluating the Real-Time Aggregation Processing of STDF IoT Data Fusion

	STDF Performance Evaluation Compared to the Main IoT Data Fusion Approaches
	Processing Time Evaluation
	Accuracy Evaluation
	Evaluation of IoT Data Perspectives

	Discussion
	Conclusions and Future Work
	References

