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Candida species are the leading cause of invasive fungal infections worldwide and are
associated with acute mortality rates of ~50%. Mortality rates are further augmented in the
context of host immunosuppression and infection with drug-resistant Candida species. In
this review, we outline antifungal drugs already in clinical use for invasive candidiasis and
candidaemia, their targets and mechanisms of resistance in clinically relevant Candida
species, encompassing not only classical resistance, but also heteroresistance and
tolerance. We describe novel antifungal agents and targets in pre-clinical and clinical
development, including their spectrum of activity, antifungal target, clinical trial data and
potential in treatment of drug-resistant Candida. Lastly, we discuss the use of
combination therapy between conventional and repurposed agents as a potential
strategy to combat the threat of emerging resistance in Candida.
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1 INTRODUCTION

Candida species are commensal yeasts of the skin, gastrointestinal tract, and other mucosal surfaces of
healthy humans. These opportunistic pathogens do not pose a risk to healthy individuals yet have the
potential to cause invasive infections in the context of local or generalised reduction in host immune
defences or antibiotic-induced overgrowth. Invasive candidiasis (IC) refers to a group of diseases
initiated by Candida species that comprises candidaemia (bloodstream infection), disseminated and
deep-seated (abdominal) candidiasis (Pappas et al., 2018). Increasing use of broad-spectrumantibiotics,
an ever-expanding range of immunosuppressive disease states (e.g. HIV/AIDS) and treatments (e.g. for
cancer and following solid organ transplantation), and advances in intensive care medicine have led to
rising incidence of IC over the past two decades. IC now represents the fourth most common cause of
nosocomial bloodstream infections and themost common invasive fungal infection in the UK (Pegorie
et al., 2017). IC is associated with a highmortality rate (40-60%) leading to an estimated 400,000 deaths
globally each year (Zaoutis et al., 2005; Pappas et al., 2018).

Candida albicans, Candida glabrata, Candida parapsilosis and Candida tropicalis are the four
Candida species most frequently isolated from IC cases (Toda et al., 2019). Although variation exists
based on age and geography, most likely due to differences in antifungal usage and species
background, C. albicans remains the most frequently clinically isolated species, however the past
decade has witnessed an increase in the proportion of IC caused by non-albicans species (Pfaller et al.,
2011b; Castanheira et al., 2016).
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Murphy and Bicanic Resistance and Treatments in IC
Just three classes of antifungals targeting two unique pathways
only are used as first-line treatment of IC (Pappas et al., 2015). The
polyenes (e.g. amphotericin B) and the azoles (e.g. fluconazole) both
target the major fungal sterol ergosterol, whilst the echinocandins
(e.g. anidulafungin) disrupt the fungal cell wall through inhibition of
b-1,3-glucan synthase (Table 1; Figure 1). In contrast to bacteria
where 15 new antibiotics representing 5 novel drug classes were
approved for use in the past two decades (Hutchings et al., 2019), just
one new antifungal class has been clinically deployed during this
timeframe: theechinocandinshavebeen theonlynewantifungaldrug
class approved for use in IC since the early 2000s (Letscher-Bru and
Herbrecht, 2003) and the azole isavuconazole is the only antifungal
approved for IC in the past decade (Miceli andKauffman, 2015).Due
to their fungicidal activity and favourable safety profile in clinical
trials, the echinocandins are now the first-line antifungal treatment
for IC in clinical guidelines (Pappas et al., 2015).

The emergence of antifungal resistance remains an ever-
present threat to the limited antifungal armamentarium. The
paucity of antifungal drug classes, coupled with the intrinsic
plasticity of the fungal genome promotes fungal adaptation and
survival under antifungal drug stress. An increasing number of
Candida species that are resistant to first line antifungal
treatments (azoles or echinocandins) are being identified
(Pfaller et al., 2011b; Castanheira et al., 2016), particularly in
high antifungal use settings thereby almost eliminating all
current treatment options (Healey et al., 2016). This trend is
paralleled by increased clinical prevalence of multi-drug resistant
isolates (e.g. azole and echinocandin resistant C. glabrata).

Candida auris has emerged as a global pathogen over the past
decade, reported from all continents except Antarctica, with the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
majority of cases associated with ICU outbreaks and high
mortality rates (Chowdhary et al., 2014; Sears and Schwartz,
2017; Vallabhaneni et al., 2017; Lamoth and Kontoyiannis,
2018). C. auris is usually intrinsically resistant to fluconazole
(93%) with varying resistance to the echinocandins (7%) and
polyenes (35%), with 41% of isolates reported as multidrug
resistant (Chowdhary et al., 2013; Calvo et al., 2016; Lockhart
et al., 2017; Vallabhaneni et al., 2017) and 4% of strains pan-
resistant to azoles, polyenes and echinocandins (Lockhart et al.,
2017). Unusually for Candida species, C. auris can spread
through person-to-person contact, persisting on surfaces and
medical devices for months, potentially due to its ability to form
biofilms (Schelenz et al., 2016; Eyre et al., 2018). The high
transmissibility of this pathogen is highlighted in reports of
hospital outbreaks with clonal isolates (Ruiz-Gaitán et al., 2018).

The increasing clinical prevalence ofmultidrug resistantCandida
species such as C. glabrata and C. auris highlights the potential for
fungi to pose a serious future threat if we fail to steward and deploy
existing and novel antifungal treatments in a manner that prevents
the emergence of resistance. In this review, we discuss mechanisms
whereby Candida species evade antifungals and identify promising
novel drugs and therapeutic strategies to tackle this.
2 MECHANISMS OF ANTIFUNGAL
RESISTANCE

2.1 Antifungal Susceptibility Testing
The susceptibility of fungal isolates to antifungal drugs is
quantified by determining the minimum inhibitory
TABLE 1 | Antifungal drug classes, targets and frequently observed mechanisms of resistance.

Drug class Target
pathway

Drug target Mechanism of action Mechanism of
resistance

Species with
reported
resistance

Azoles
(fluconazole,
voriconazole,
itraconazole,
posaconazole,
isavuconazole)

Cell
membrane
(Ergosterol)

Erg11p
(lanosterol 14-a-
demethylase)

Inhibits de novo ergosterol synthesis thereby depleting
membranes of ergosterol and causing accumulation of
toxic sterol precursors

Increased drug efflux
Mutations in Erg11p
Overexpression of Erg11p
Copy number variation
Incorporation of non-
ergosterol sterols into cell
membranes

C. albicans
C. glabrata
C. tropicalis
C. dubliniensis
C. parapsilosis
C. krusei
(intrinsic)
C. auris (almost
universal)

Echinocandins
(caspofungin,
anidulafungin,
micafungin)

Cell wall
(b-1,3-glucan)

b-1,3-glucan
synthase

Inhibits b-1,3-glucan synthesis thereby disrupting cell wall
stability

Mutations in FKS1/2 C. albicans
C. glabrata
C. auris

Polyenes
(amphotericin B)

Cell
membrane
(Ergosterol)

Sterols
(ergosterol)

Major: Sequesters ergosterol out of membranes.
Minor: induces pore formation causing ion leakage

Incorporation of non-
ergosterol sterols into cell
membranes

C. albicans
C. glabrata
C. guillermondii
C. krusei
C. lusitaniae
C. auris

Pyrimidine analogues
(5- fluorocytosine)

DNA
synthesis,
Protein
synthesis

FUMP, FDUMP Inhibits pyrimidine metabolism Mutations in UPRT, FCY1,
FCY2, FUR1

C. albicans
C. glabrata
D
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concentration (MIC) through established CLSI (CLSI, 2017) or
EUCAST methods (Arendrup et al., 2012). To guide clinicians
with treatment selection, the MIC is compared to predetermined
clinical breakpoints specific for a drug-species combination and
classifies the isolate as susceptible, intermediate/susceptible,
dose-dependent, or resistant. Despite the high mortality rate of
IC, resistance in C. albicans remains relatively rare to the
echinocandins and azoles (~1%) (Pfaller et al., 2019)
highlighting the fact that the MIC is one of many factors that
govern treatment success or failure in IC. Risk factors such as
source control (e.g. removal of prosthetic material/devices
associated with biofilm formation), fungal burden, extent and
reversibility of host immunosuppression, penetration of
antifungals into the site of infection, and the potential for
pathogen growth at high MICs that is missed by conventional
MIC methods are all important considerations that have been
extensively covered in other reviews (Pappas et al., 2018; Berman
and Krysan, 2020; Perfect and Ghannoum, 2020).

2.2 Routes to Resistance
Resistance has been reported against all antifungal drug classes,
however the extent of resistance varies between classes and
fungal species. Resistance can be classified as either intrinsic
(resistance without prior antifungal exposure, e.g. C. krusei and
fluconazole) or acquired (developing following antifungal
exposure in a previously susceptible isolate, e.g. C. albicans and
fluconazole) (Dagi et al., 2016). Although the overall rates of
resistance remain low, the frequency at which both intrinsically
and acquired resistant strains are isolated is increasing.

Resistance can occur through any single or concurrent
mechanism (Figure 2).

2.2.1 Increased Activity of Drug Efflux Pumps
Increased activity of drug efflux pumps is the most frequently
observed mechanism of azole resistance in clinical Candida
isolates (Sasse et al., 2012; Prasad et al., 2016). Two major efflux
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
families are associated with resistance, the ATP-binding cassette
(ABC) transporters and the major facilitator super family (MFS)
pumps. Gain-of-function mutations in transcriptional regulators
for both families, suchasTAC1 (C.albicans) andPDR1 (C.glabrata)
increase efflux pump expression and therefore lower intracellular
accumulation of drug. These transcriptional regulators have
additional non-protein pump targets that further contribute to
the development of resistance, such as GPX1, a glutathione
peroxidase that enhances oxidative stress responses (Rogers and
Barker, 2002; Liu et al., 2007) andCaCHK1, a histidinekinasewhich
regulates cell wall biosynthesis (Liu et al., 2007; Sasse et al., 2012). A
significantportionof theC.auris genome isdevoted to theABCand
MFS efflux pump families which is consistent with its lack of
response to azoles at typical therapeutic doses (Sharma et al.,
2016; Ben-Ami et al., 2017; Chowdhary et al., 2018).

2.2.2 Overexpression of Target Protein
Overexpression of target protein due to gain-of-function
mutations in transcriptional regulators or gene duplication
overwhelms the inhibitory capacity of the drug. Azole
resistance in C. albicans can be mediated by gain-of-function
mutations in key ERG11 transcriptional regulators, for example
A643V in Upc2, resulting in the constitutive overexpression of
Erg11 and reduced sensitivity to azoles (Flowers et al., 2012).
Overexpression of ERG11 is also noted in the frequently
intrinsically azole resistant species C. auris. The C. auris
genome contains gain-of-function mutations in TAC1 at
comparable regions to azole resistant C. albicans, a transient
duplication of a region in chromosome 1 that contains ERG11
(Bhattacharya et al., 2019), and a duplication of the whole of
chromosome 5 that contains TAC1 (Carolus et al., 2021).

2.2.3 Conformational Changes to the Target Protein
Conformational changes to the target protein due to point
mutations at or adjacent to the binding site also result in
reduced antifungal susceptibility. More than 100 SNPs in
FIGURE 1 | Mechanism and site of action of currently licensed antifungal drugs.
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ERG11 that reduce Candida species sensitivity to azoles have
been described (Flowers et al., 2015). Fluconazole-resistant
C. auris from multiple continents contain amino acid substitutions
in the drug target, Erg11, at known azole-resistant sites (e.g.
F126T, Y132F, K143R) that are also present in resistant, but not
wild-type C. albicans (Lockhart et al., 2017; Chowdhary et al.,
2018; Healey et al., 2018). In contrast to azoles where multiple
mechanisms of resistance have been identified, resistance to
echinocandins in all Candida species is almost always due to a
very limited number of mutations in fks1/2 that encodes the
echinocandin target enzyme, b-1,3-glucan synthase (Perlin,
2015). Mutation in either of two highly conserved hot spot
regions of Fks1 (F641-P649 and R1361) is most frequently the
cause of echinocandin resistance and increases the MIC by up to
100-fold (Garcia-Effron et al., 2009). Mutations in equivalent
regions of Fks2 have been described in C. glabrata (Arendrup
et al., 2012; Arendrup and Perlin, 2014; Jensen et al., 2014).

2.2.4 Alterations to Target Pathway
Azoles and polyenes both target the major yeast sterol,
ergosterol. Alterations to membrane ergosterol content through
accumulation of the precursor sterol 14-a-methyl fecosterol can
occur both through inhibition of Erg11 or reduction in the
intracellular concentration/activity of this enzyme. Both
mechanisms result in functional yeast cells that can bypass the
activity of azoles and polyenes via altered membrane sterol
composition (Haynes et al., 1996; Nolte et al., 1997).

2.2.5 Copy Number Variation
Copy number variation of whole or partial regions of
chromosomes, as well as loss of heterozygosity, also confer
resistance (Coste et al., 2006; Selmecki et al., 2006; Sasse et al.,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
2012; Yang et al., 2013; Yang et al., 2019), occurring at least twice
as frequently as point mutations (Forche et al., 2011). The left
arm of chromosome 5 in C. albicans contains both TAC1 and
ERG11. Duplication of this portion of the chromosome provides
two extra copies of both genes, conferring azole resistance
through increasing the amount of drug target whilst
simultaneously reducing intracellular drug accumulation
(Selmecki et al., 2006). Diploid fungi can undergo loss of
heterozygosity such that they become homozygous for alleles
containing point mutations associated with resistance. In serial
mucosal Candida isolates from an HIV-infected patient on
fluconazole treatment, loss-of-heterozygosity resulted in
homozygosity for a region of chromosome 5 containing a
mutant erg11 allele, and these genetic changes were associated
with persistence of infection for 8 months (White, 1997; Ford
et al., 2015).

Additional mechanisms of resistance identified in C. auris are
driven by physiological differences in cell wall content, sterol
composition, glycerolipids, and sphinoglipids relative to other
Candida species (Zamith-Miranda et al., 2019). Moreover,
biofilm formation is an important property facilitating the
development of resistance through persistence on medical
devices such as intravenous catheters, providing a physical
barrier to antifungal penetration (Borman et al., 2016; Sherry
et al., 2017).

In addition to non-pathogen related factors described above,
other fungal adaptive strategies beyond the classical resistance
mechanisms may precede and facilitate the emergence of
classical resistance. These include subpopulations of cells that
are ‘heteroresistant’ or ‘tolerant’ to antifungals. Heteroresistance
and tolerance are distinct mechanisms of antifungal drug evasion
that are missed by standard clinical MIC testing protocols.
FIGURE 2 | Mechanisms of resistance of currently licensed antifungal drugs. Echinocandin resistance is almost exclusively due to point mutations in three hot spot
regions in FKS1 or less frequently due to mutations in FKS2. The most frequently observed mechanism of azole resistance is reduced intracellular accumulation of
drug through over-expression of efflux pumps (e.g. ABC or MFS transporters). Polyene resistance is due to incorporation of non-ergosterol sterols into cell membranes.
5FC resistance is mediated by point mutations in enzymes controlling its cellular uptake and conversion to 5FU: cytosine permease (FCY), cytosine deaminase (FCA1),
and phosphoribosyl transferase (FUR1).
December 2021 | Volume 11 | Article 759408
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2.2.6 Heteroresistance
Fungi are metabolically and physiologically dynamic which is
essential to their adaptation and survival in diverse habitats.
There is substantial cell-to-cell variation in gene expression even
amongst clonal populations grown at constant environmental
conditions. This standing variation, referred to as bet-hedging, is
a strategy to increase the likelihood of survival of at least some
cells under stress conditions (Levy et al., 2012). Heteroresistance
is defined as a subpopulation (<0.1%) within an apparently
isogenic, susceptible isolate that has an intrinsically higher
MIC compared to the rest of the population. Although
heteroresistance has been widely studied in bacteria (Pournaras
et al., 2005; Nunes et al., 2006; Morand and Mühlemann, 2007;
Hofmann-Thiel et al., 2009), limited attention has been given to
its role in fungal resistance with the majority of research
undertaken on Cryptococcus species (Sionov et al., 2010;
Varma and Kwon-Chung, 2010): a PubMed search using the
terms ‘heteroresistance’ and ‘yeast’ yielded 24 hits, of which just 2
were related to Candida (Claudino et al., 2009; Ben-Ami
et al., 2016).

Heteroresistance can be identified using population analysis
profiling (PAP) assays whereby isolates are cultured on solid
media across a range of drug concentrations (El-Halfawy and
Valvano, 2015). Heteroresistance is an adaptive response such
that when isolates are serially cultured onto drug, each
generation will demonstrate an expansion in the non-
susceptible subpopulation of colonies which can then further
adapt to grow at higher concentrations of drug (Marr et al.,
2001). Heteroresistance is not detected by current susceptibility
testing methods. The implications of failing to consider or detect
this phenomenon may be clinical failure and persistent or
relapsed infection (Ben-Ami et al., 2016).

The variation in intrapopulation drug susceptibility and thus
the degree of heteroresistance of each isolate is likely a
consequence of both genetic and epigenetic mechanisms. To
date, the majority of heteroresistance studies having been
performed with azoles and, at least in Cryptococcus, primarily
occurs via the formation of aneuploidies (Sionov et al., 2010;
Stone et al., 2019). The fungistatic nature of azoles halts fungal
growth and promotes genome instability and consequently the
emergence of heteroresistant colonies (Shor and Perlin, 2015).
Ben-Ami et al. identified upregulation of the ABC transporter
genes CDR1 and PDH1 in heteroresistant C. glabrata isolates,
albeit not to the extent of fully resistant isolates, that was
associated with enhanced fluconazole efflux and persistent
infection in a murine model (Ben-Ami et al., 2016). Studies in
Cryptococcus neoformans demonstrated that fluconazole
monotherapy in patients with cryptococcal meningitis drove
the expansion of aneuploid heteroresistant subpopulations
within just two weeks of fluconazole monotherapy. Disomy of
chromosome 1, containing ERG11 and the efflux pump AFR1,
was most identified as the most common mechanism of
heteroresistance (Stone et al., 2019). Importantly, combination
therapy of fluconazole with 5FC was sufficient to suppress this
resistance emergence. The relevance of heteroresistance in IC,
particularly within the context of treatment with fungicidal
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
echinocandins, is unknown. Future work is needed to
determine the relevance of heteroresistance in clinical disease
progression and the potential of combination therapy to
overcome heteroresistance in IC are both fundamental areas
to research.

2.2.7 Tolerance
Tolerance is another pathogen factor not detected by the MIC
which affects fungal growth in vitro and may play a role in
treatment response and resistance emergence. Tolerance is
distinct from resistance and is defined as a subpopulation of
cells within a susceptible isolate that grow and emerge slowly at
supra-MIC fungistatic drug concentrations (azoles) (Berman and
Krysan, 2020) or survive at supra-MIC fungicidal concentrations
(echinocandins) (Healey and Perlin, 2018; Garcia-Rubio et al.,
2021a; Garcia-Rubio et al., 2021b). Tolerant cells are more able to
overcome drug pressures relative to the non-tolerant population
through enhanced signalling in stress response pathways such as
calcium signalling attenuated by the serine/threonine
phosphatase calmodulin, HOG, Hsp90 and Tor (Cowen and
Steinbach, 2008; Rosenberg et al., 2018). Pharmacological or
genetic inhibition of these pathways reduces tolerance to near
baseline levels irrespective of initial tolerance level, suggesting a
potential role for adjunctive therapies (Cowen et al., 2006;
Cowen et al., 2009; Gong et al., 2017). In addition to enhanced
signalling, environmental conditions can also select for more
highly tolerant strains through increasing cell wall chitin content
or enhanced signalling through pathways such as HOG (Lee
et al., 2012; Walker et al., 2013).

Given the slow growth of these cells, tolerance is missed by
conventional susceptibility assays which generally read the MIC
at 24 hours, however measuring at later timepoints (48-72 hours)
can demonstrate the degree of strain tolerance. Microbroth
dilutions to determine the supra-MIC growth (SMG) or disc
assays to measure the fraction of growth (FoG) within the zone of
inhibition are two methods for measuring the tolerance of a
strain (reviewed in (Berman and Krysan, 2020)). Tolerance has
been reported in multiple Candida species, mostly in the context
of fluconazole (Rosenberg et al., 2018; Kim et al., 2019; Delarze
et al., 2020), although tolerance to echinocandins has also been
observed in C. albicans (Yang et al., 2017), C. glabrata
(Nagayoshi et al., 2014) and C. auris (Nagayoshi et al., 2014).
The contribution of tolerance to antifungal treatment failure has
yet to be determined: a single study demonstrated an association
between highly tolerant C. albicans and persistent candidemia
following azole treatment (Rosenberg et al., 2018).

There is some overlap between mechanisms of resistance and
tolerance. Of note, highly tolerant strains also have lower
intracellular azole accumulation (Rosenberg et al., 2018). Like
resistance, aneuploidy and loss of heterozygosity have also been
identified as mechanisms of tolerance (Selmecki et al., 2009;
Healey et al., 2018). The degree of tolerance varies between
isolates and is likely due to the intrinsic allele diversity at
multiple genetic loci affecting multiple pathways to a differing
degree. Tolerance also varies between cells within an isolate, and
these are likely due to physiological or metabolic shifts (e.g. cell
December 2021 | Volume 11 | Article 759408
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wall content or iron) that are epigenetically mediated. In the
mould Mucor circinelloides, RNA interference-dependent
epimutations that silence the gene targets of FK506 and
rapamycin have been described as mechanisms of tolerance
(Calo et al., 2014; Chang et al., 2019). To date, no work has
conclusively identified epimutant mechanisms of resistance in
Candida species, yet it would not be surprising if isolates with
unidentified mechanisms of resistance or tolerance contain
epimutations parallel to those identified in other species. It
remains to be established whether tolerance exists as an
adaptive mechanism to slow growth in the presence of drug to
provide time for the acquisition of resistance mutation(s)
(Cowen and Lindquist, 2005).

Tolerance and heteroresistance highlight the intrinsic ability of
fungi to adapt to dual stressors of host immune responses and
antifungal drugs beyond our classical understanding of resistance.
Further understanding of heteroresistance and tolerance
mechanisms, and their relevance in clinical settings, is an
important research priority within the field of Candida resistance.
3 NOVEL THERAPEUTIC OPTIONS
FOR CANDIDA

Fungi are eukaryotes and share many evolutionarily conserved
metabolic pathways with humans, which somewhat restricts
available drug targets to pathways essential to fungi only. The
recent emergence and increased prevalence of multidrug
resistant fungal species has propelled research into novel
treatments. Below we give an overview of some of the novel
and repurposed compounds with antifungal activity that are at
various stages of clinical development, as well as discussing the
potential of drug combinations (Figure 3 and Table 2). The list
of compounds in this section is comprehensive, but not
exhaustive. Compounds were selected for discussion based on
either their superior activity against a broad spectrum of resistant
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
Candida, for targeting a novel pathway, or being near to clinical
deployment with a focus on orally delivered drugs.

3.1 New Members of Existing Classes
Although resistance has been identified against the azoles and
echinocandins, they are attractive agents as they target proteins
unique to fungi. Given that off-target effects and drug-drug
interactions are commonly encountered clinical limitations,
optimising these drug classes to enhance fungal-specific, on-
target activity is an appealing option.

3.1.1 Tetrazoles
Off target effects of azoles via their high affinity for haem and
non-specific binding to human CYP450 enzymes (Yates et al.,
2017) lead to drug-drug interactions with agents metabolised via
these enzymes as well as effects on liver, skin and vision (Fischer
et al., 2005). A new generation of azole-like compounds, the
tetrazoles, were rationally designed to target fungal Cyp51 only.
A tetrazole metal binding group replaces the triazole and has
greater specificity for the fungal lanosterol 14-a demethylase
(Erg11) active site over the human Cyp51 isoenzyme (Warrilow
et al., 2014; Warrilow et al., 2016).

3.1.1.1 Mechanism
Like the azoles, tetrazoles reversibly and competitively inhibit
Erg11p to deplete fungal membranes of ergosterol and disrupt
membrane integrity. VT-1129, VT-1598 (quilsecondazole) and
VT-1161 (oteseconazole) (Viamet Pharmaceuticals Inc; now
Mycovia Pharmaceuticals) were identified as part of a screen
for compounds with reduced affinity for human Cyp enzymes
(Hoekstra et al., 2014). VT-1161 is more than 1000 times more
selective for the C. albicans Cyp51 enzyme compared to the
human isoenzyme (Warrilow et al., 2014).

3.1.1.2 Activity
VT-1129, VT-1161, and VT-1598 have potent activity against a
broad range ofCandida species, including azole and echinocandin-
FIGURE 3 | Novel antifungals and potential adjunctive therapies.
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resistant species, at low MICs (Schell et al., 2017a; Break
et al., 2018a).

VT-1161 has a low MIC (0.002 mg/ml) against wild-type,
fluconazole-sensitive C. albicans (Warrilow et al., 2014) and
appears to retain some activity (MIC VT-1161 2 mg/ml) against
resistant fluconazole-resistant isolates (MIC FLC 64 mg/ml) and
echinocandin-resistant C. albicans, C. glabrata, C. krusei (Garvey
et al., 2015; Schell et al., 2017a). In a collection of 68 well-
characterised azole-resistant C. albicans isolates, susceptibility to
VT-1161 was affected by CDR1 andMDR1 overexpression and the
erg11 substitutionsY132F,Y132F andK143R, andY132 andF145L.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
Other isolates in this collection with point mutations at additional
known azole resistance sites retained VT-1161 sensitivity (e.g.
Y132H, F145L) (Nishimoto et al., 2019). Overexpression of CDR1
andMDR1 reduced susceptibility to VT-1161 in C. albicans and C.
glabrata in another study (Monk et al., 2019).

VT-1161 treatment significantly reduced fungal burden in
murine models of vulvovaginal candidiasis (VVC) and IC due to
fluconazole-susceptible and -resistant Candida. VT-1161 was
rapidly absorbed in mouse models and extensively distributed
to tissues with rapid penetration to vaginal tissues with a long
half-life (>48 hours) (Garvey et al., 2015; Break et al., 2018b).
TABLE 2 | Novel antifungals: target, mechanism of action, spectrum, advantages and stage of development.

Antifungal drug class Antifungal drug
name

Cell target
Mechanism of action

Spectrum in
resistant

Candida spp

Clinical advantages Stage of
development

Tetrazole VT1129
VT1161
VT1598

Cell membrane
Inhibition of Erg11/Cyp51
Inhibition of ergosterol
biosynthesis

C. albicans
C. glabrata
C. auris
C. krusei

More specific fungal Cyp51 inhibitor; fewer
drug interactions; oral

Pre-clinical for IC
(Phase I cryptococcal
meningitis)
Phase III VVC
FDA QIDP
Phase I

Echinocandin Rezafungin Cell wall
Inhibition of b-1,3-glucan
synthase

C. albicans
C. glabrata
C. krusei
C. auris

Superior PK/PD – intermittent dosing
penetration (including gut)

Phase III IC and
prophylaxis BMT
FDA QIDP and fast
track aproval

Polyene MAT2203
(encochleated
Amphotericin B)

Organelle membranes
Sequesters ergosterol out of cell
membrane

C. albicans
C. glabrata
C. krusei
C. lusitaniae

Oral; less toxic than IV fromulation Phase II VVC and
CMC
FDA QIDP

Triterpenoids Ibrexafungerp Cell wall
Inhibition of b-1,3-glucan
synthase

C. albicans
C. glabrata
C. auris

Oral; well tolerated;
penetrates gut abscesses;
separate binding site

Phase III IC, VVC and
CMC; C auris

N-
phosphonooxymethylene

Fosmanogepix Cell wall
Inhibits GPI anchored
biosynthesis

C. albicans
C. glabrata
C. auris
C. parapsilosis

Novel mechanism of action;
Oral; Extensive tissue distribution;
Limited cross-resistance

Phase II open label IC/
C auris
FDA fast track
approval

Arylamidines ATI-2307
(formerly T2307)

Mitochondria
Collapses mitochondrial
membrane potential

C. albicans
C. glabrata
C. krusei
C. auris

Novel mechanism of action;
Active against biofilms

Phase I

Hydrazycins BHBM
D0, D13

Cell cycle
Inhibit vesicular trafficking of
sphingolipid precursors

C. glabrata
C. krusei

Novel target Pre-clinical

Trehalose inhibitors Tps1 and Tps2
inhibitors

Fungal virulence
Inhibition of glycolysis

Compound discovery

Acetyl CoA synthetase
inhibitors

AR-12 Disruption of carbon
metabolism, histone acetylation,
ribosome function, autophagy

C. albicans
C. glabrata
C. krusei

Novel mechanism of action;
Active against resistant species;
Well tolerated

Phase I (cancer)

Calcium/calcineurin
inhibitors

Cyclosporin A
and Tacrolimus
(FK506)

Stress response inhibitor
Inhibition of calcineurin

C. albicans
C. glabrata
C. krusei

Inhibit stress-response pathways;
fungicidal in combination with current
antifungals; abrogate tolerance; non
immunosuppressive derivatives developed

Pre-clinical

Hsp90 inhibitors Efungumab and
geldanamycin

Stress response inhibitor
Hsp90 inhibitor

C. albicans Inhibit stress response pathways;
fungicidal in combination with current
antifungals; abrogate tolerance

Phase III IC
(enfungumab): not
granted EMA approval

Histone deacetylase
inhibitors

MGCD290 Nucleus
Inhibition of Hos2 and Hsp90

C. albicans
C. glabrata
C. krusei

Combination with current antifungals;
Abrogate tolerance

Phase II VVC

Antibiotics Colistin Cell membrane
Enhanced ergosterol depletion

C. albicans Combination with current antifungals;
abrogate tolerance

Pre-clinical
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VT-1598 has the broadest spectrum of activity against
fungal species, including fluconazole-resistant C. albicans
(Break et al., 2018a) and C. auris (MIC 0.03-8 mg/ml)
(Wiederhold et al., 2019), with enhanced efficacy in
neutropenic murine models compared to either fluconazole
or caspofungin.

VT-1129 was designed to treat Cryptococcus, but also has
good in vitro activity against many Candida species, including
azole- and echinocandin-resistant C. glabrata and C. krusei
(Desai et al., 2016; Schell et al., 2017a). No further data on
VT-1129 in Candida species are available, however the drug has
received FDA fast track orphan drug status for treatment of
cryptococcal meningitis.

3.1.1.3 Stage of Development
A phase II dose and duration-ranging placebo-controlled
randomised trial (NCT02267382) evaluated the efficacy and
safety of lower (150mg) and higher (300mg) 12 or 24-week
dosing regimens of oral VT-1161 for recurrent VVC (rVVC)
(NCT02267382, 2014). The proportion of subjects with ≥1 acute
VVC episodes was superior at 0-7% across the 4 VT-1161 arms
vs 52% in the placebo arm. VT-1161 was well-tolerated with a
favourable safety profile and importantly, no evidence of
hepatoxicity (Brand et al., 2018). Phase III trials in rVVC
(NCT03562156 and NCT03561701 , VIOLET, and
NCT03840616, ultraVIOLET) are ongoing. A press release on
July 29th 2021 reported preliminary findings from the two
VIOLET trials in 650 women with efficacy of 90% vs 40%
(placebo) against recurrence over 48 weeks and excellent
tolerability. VT-1161 has received FDA qualified infectious
disease product (QIDP) and fast track designation for
treatment of rVVC with full approval expected in the US in
early 2022.

VT-1598 is undergoing pre-clinical and phase I evaluation for
the treatment of C auris, cryptococcal meningitis and
coccidioidomycosis, whilst development of VT-1129 appears to
have been halted.

3.1.1.4 Advantages
The major advantage of the tetrazoles is their enhanced
specificity for fungal Cyp51 making this group of drugs
more tolerable.
3.1.2 Rezafungin (CD101)
Currently licensed echinocandins (caspofungin, micafungin
and anidulafungin) are fungicidal agents against Candida
species, acting via inhibition of the enzyme b-1,3-glucan
synthase, causing destabilisation of the cell wall resulting in
osmotic instability and cell death. Due to their half-life,
echinocandins are given intravenously once daily (24 hours
anidulafungin; 9-11 hours caspofungin; 10-17 hours
micafungin) (Kofla and Ruhnke, 2011). In addition, the
ech inocand ins have l imi t ed pene t ra t ion in to the
gastrointestinal tract, the site of Candida colonisation as well
as intra-abdominal infection, which may have implications for
the development of spontaneous resistance.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
3.1.2.1 Mechanism
Rezafungin (Cidara Therapeutics) is a novel b-1,3-glucan synthase
inhibitor that is a structural analogue of anidulafungin, but with a
much longer half-life, facilitating less frequent dosing.

3.1.2.2 Activity
Rezafungin has similar activity compared to other echinocandins
with potent in vivo pharmacodynamic activity against clinically
relevant Candida species and greater activity against multidrug
resistant strains of C. auris than either caspofungin or
micafungin (Pfaller et al., 2016; Pfaller et al., 2017b; Arendrup
et al., 2018; Lepak et al., 2018b; Lepak et al., 2018a). Rezafungin
retains activity at high doses against echinocandin resistant (fks
mutants) Candida species (Berkow and Lockhart, 2018).
Rezafungin, but not micafungin, accumulated within intra-
abdominal Candida abscesses in a mouse model at a level
above the mutant prevention concentration of the infecting
strain, which may have implications for resistance (Zhao
et al., 2017).

3.1.2.3 Stage of Development
Phase I dose-escalation trials in healthy adults demonstrated that
rezafungin was well tolerated and safe with a long half-life and
high plasma exposures (Sandison et al., 2017). In a phase II
randomised trial (STRIVE) comparing two rezafungin weekly
dosing regimens to caspofungin (with fluconazole stepdown) for
IC, rezafungin was well tolerated, showed rapid Candida
clearance (19.5h) from blood cultures and comparable overall
14-day cure rates (rezafungin 400mg weekly 60.5%, 400mg/
200mg weekly 76.1%, caspofungin 70mg/50mg daily 67.2%)
(Thompson et al., 2020).

An ongoing phase III trial (RESTORE NCT03667690) in IC is
comparing 14-day global cure and 30-day all-cause mortality
between weekly rezafungin and daily caspofungin with
fluconazole stepdown. Fungal-free survival with rezafungin as
prophylaxis against Candida, Aspergillus, and Pneumocytis
infection, compared to oral fluconazole or posaconazole, is
currently being evaluated in a phase III trial (ResPECT,
NCT04368559) in blood or bone marrow transplantation
recipients (Cushion et al., 2016; Ong et al., 2016; Cidara
Therapeutics, 2020).

The FDA has granted rezafungin QIDP, fast track and orphan
drug status for the treatment of candidemia and invasive
candidiasis. The long-term effect of the drug’s PK and its
relationship to resistance emergence has yet to be investigated.

3.1.2.4 Advantages
The major advantage of rezafungin over other echinocandins are
its superior pharmacokinetics. Rezafungin has increased stability
and solubility with more extensive tissue distribution, with
higher plasma exposure and greater gut penetration than other
echinocandins, with minimal urinary excretion (Sandison et al.,
2017; Zhao et al., 2017). Rezafungin has a longer half-life than
any echinocandin (80 hours following a single dose, and 150
hours after three doses) allowing for reduced dosing frequency to
as low as once weekly (Sandison et al., 2017), facilitating its use in
prophylaxis. A higher loading dose of rezafungin improves
efficacy through enhanced killing when fungal burden is
December 2021 | Volume 11 | Article 759408
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greatest and reduces the occurrence of spontaneous fks
mutations compared to either caspofungin or anidulafungin
(Locke et al., 2016; Sandison et al., 2017; Lakota et al., 2018).
However, cross-resistance has been noted between rezafungin
and the other echinocandins (Arendrup et al., 2019).

3.1.3 Encochleated Amphotericin B (MAT2203)
Amphotericin B deoxycholate was the first antifungal licensed in
1959.The drug remains widely used due to its broad spectrum,
fungicidal activity with minimal resistance, however its use is
compromised by a lack of specificity to fungal sterols resulting in
substantial renal toxicity and anaemia (UTZ, 1964; Maddux and
Barriere, 1980). Intravenous lipid formulations of amphotericin
B have partly but not entirely mitigated these toxicities (Hamill,
2013), and both drugs require intravenous administration.
MAT2203 (Matinas BioPharma) is a novel delivery system for
AmB deoxycholate consisting of a spiral cochleate lipid bilayer
which is orally bioavailable due to its stability in acidic pH
(Cuddihy et al., 2019).

3.1.3.1 Mechanism
Like other formulations of amphotericin B, MAT2203 sequesters
sterols from fungal membranes. The cochleate is absorbed from
the GI tract. Once calcium levels within the cochleate drop
sufficiently, the spiral unwinds and releases the drug directly
onto fungal cells on contact thereby increasing drug delivery
directly onto fungal cells and reducing mammalian cell toxicities
(Santangelo et al., 2000). The precise interaction between the
cochleate and the fungal cell is not yet fully understood.

3.1.3.2 Activity
The MIC of MAT2203 in C. albicans is equivalent to the
deoxycholate formulation (0.5 mg/ml) (Zarif et al., 2000).
MAT2203 is extensively distributed with good tissue
penetration in murine models, where the liver was shown to
act as a reservoir for slow release of the drug (Segarra et al., 2002).
Mice with systemic candidiasis treated with the encochleated
formulation (0.5-20 mg/kg/day) had improved day 16 survival
(100%) and reduction in kidney and lung fungal burden relative
to intraperitoneal AmB deoxycholeate (70% survival) or
liposomal AmB (90% survival) (Santangelo et al., 2000; Hamill,
2013; Shende et al., 2019). No accumulation was observed in
healthy mice highlighting the improved fungal specificity of the
cochleate formulation.

3.1.3.3 Stage of Development
MAT2203 was well tolerated in healthy volunteers in a single
ascending dose phase I study, with mild gastrointestinal adverse
events noted (Aigner and Lass-Flörl, 2020). A randomised phase
II study (NCT02971007) in women with moderate to severe
VVC refractory or intolerant to current therapy yielded
disappointing results with MAT2203 (200 mg or 400 mg daily
for 5 days) performing poorly compared to a single dose of
fluconazole (150 mg): clinical cure at day 12 was significantly
lower at 52% and 54.5% compared to 75% for fluconazole.
Preliminary data from a small phase II trial (n=16 women)
with refractory mucocutaneous candidiasis using higher (400-
800mg/d) MAT2203 doses for longer durations (>6 months)
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suggests all patients eventually achieved a greater than 50%
improvement in clinical signs and symptoms and the drug was
well tolerated for prolonged periods.

MAT2203 was granted FDA QIDP and fast track status for
the treatment of candidiasis in 2015 (BioPharma, 2014).

3.1.3.4 Advantages
Oral administration of the cochleate and its improved tolerability
profile hold promise, though comparable efficacy to standard of
care oral treatments for mucosal candidiasis has yet to be
demonstrated. Molecular umbrella technology is a promising
method for the development of further formulations of
amphotericin B.

3.2 Same Target, New Class
3.2.1 Ibrexafungerp (SCY-078)
3.2.1.1 Mechanism
Ibrexafungerp (Scynexis) also targets b-1,3-glucan synthase, but
is structurally distinct from the echinocandins and represents the
inaugural member of a novel class of antifungals, the
triterpenoids (Gintjee et al., 2020), which bind at an
independent site on the enzyme (Schell et al., 2017b; Wring
et al., 2017).

3.2.1.2 Activity
Ibrexafungerp has broad spectrum, fungicidal activity against
Candida species with MIC <2 mg/ml for C. albicans, C. glabrata,
C tropicalis, and C. parapsilosis, but no activity against C. krusei
and C. lusitaniae (Pfaller et al., 2013). Whilst ibrexafungerp
retains activity against some echinocandin-resistant Candida
strains (fks1/2 mutants), including C. glabrata (Jiménez-
Ortigosa et al., 2017; Nunnally et al., 2019) and C. auris
(Berkow et al., 2017; Larkin et al., 2017; Pfaller et al., 2017a;
Schell et al., 2017b), presumably due to differential binding on
the enzyme, deletion of F625 in fks1 or F659 in fks2 were
associated with a 40- and 121-fold increase in MIC for
ibrexafungerp in C. glabrata, respectively. Furthermore, W715L
or A1390D substitutions, positioned outside of the hotspot
region in fks2, increase the MIC to ibrexafungerp by 29 and
20-fold, respectively (Jiménez-Ortigosa et al., 2017).

In murine studies, oral and IV formulations of ibrexafungerp
showed extensive distribution and tissue penetration, though not
into the CNS (Wring et al., 2017). Ibrexafungerp accumulates at
sites with a low pH, with extensive accumulation in vaginal tissue
and a necrotic liver abscess in murine models (Larkin et al., 2019;
Lee et al., 2020). Neutropenic murine systemic candidiasis
models have demonstrated efficacy of ibrexafungerp against
C. albicans, C. glabrata and C. parapsilosis, including against
an echinocandin-resistant strain of C. glabrata (Lepak et al.,
2015; Wring et al., 2017; Wiederhold et al., 2018).

3.2.1.3 Stage of Development
Oral ibrexafungerp was well tolerated in phase I studies even at
high doses (up to 1600 mg), with an extensive volume of
distribution and good tissue penetration and improved biofilm
penetration compared to azoles (Wring et al., 2018; Spec et al.,
2019; Azie et al., 2020). A phase II randomised trial
(NCT02679456) in rVVC demonstrated superiority of
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ibrexafungerp relative to fluconazole, with 4-month cure rates of
88% and 65%, respectively, and lower recurrence rates of 4% vs
15% (Helou and Angulo, 2017). A phase II dose-ranging acute
VVC study (NCT03253094) investigated range of ibrexafungerp
dosing regimens compared to single 150 mg dose fluconazole
(NCT03253094, 2017), leading onto two recently completed
phase III trials of ibrexafungerp 300 mg twice daily for 1 day
for the treatment of acute VVC. Ibrexafungerp demonstrated
clinical cure rates of 50-63% by day 8-14 against 29-44% with
placebo, however gastrointestinal adverse events did occur more
commonly in the ibrexafungerp group (VANISH 303
NCT03734991; VANISH 306 NCT03987620). The FDA
approved the drug for treatment of VVC in June 2021,
marketed as Brexafemme.

A PK study of ibrexafungerp 500 mg or 750 mg as stepdown
therapy following IV echinocandin showed that the higher dose
would achieve the target PK exposure, was well tolerated and
achieved comparable responses to fluconazole (Spec et al., 2019).
Two ongoing phase III trials are evaluating ibrexafungerp fungal
diseases (including mucocutaneous and invasive candidiasis)
refractory to or intolerant of standard antifungal treatment
(FURI, NCT03059992, target n=200) and in treating invasive
C. auris infection (CARES, NCT03363841). Ibrexafungerp has
been given QIDP status by the FDA for invasive candidiasis.

3.2.1.4 Advantages
Advantages of ibrexafungerp over the echinocandins include oral
administration, penetration into intraabdominal abscesses and
retained activity against some echinocandin resistant isolates.

3.3 Novel Mechanism of Action
In the context of emerging resistance, the development of
antifungals with a novel mechanism of action against a fungal-
specific pathway and/or potentiating the activity of the current
antifungals is a priority for the research community and the
pharmaceutical industry. Finding novel targets that are unique to
fungi has been a challenge given that up to 80% of hits turn out to
be false positives (Pouliot and Jeanmart, 2016) alongside limited
incentives for pharmaceutical investment in antifungal drug
development due to the comparatively lower number of
patients with invasive fungal infection compared to bacterial
infection. In recent years, several novel agents in the pipeline
targeting unique pathways give grounds for hope.

3.3.1 Fosmanogepix
3.3.1.1 Mechanism
Fosmanogepix (APX001 and E1211, Amplyx Pharmaceuticals) is
the inaugural member of the N-phosphonooxymethylene
prodrugs that is efficiently converted to manogepix (APX001A
and E1210), an inhibitor of fungal glycosylphosphatidylinositol
(GPI) proteins. Manogepix was identified in a screen for
compounds that interfere with the correct localisation of cell
wall GPI-anchored mannoproteins (Tsukahara et al., 2003).
Manogepix is highly specific for fungal, but not human Gwt1,
an enzyme that catalyses the acetylation of inositol, an essential
step in the early stages of GPI anchor biosynthesis (Miyazaki
et al., 2011; Watanabe et al., 2012). Gwt1 is essential for
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
trafficking and anchoring mannoproteins to the cell wall and
outer cell membrane to maintain cell wall integrity, adhesion,
pathogenicity, and evasion of the host immune system.
Inhibition of Gwt1 prevents cell wall reinforcement thereby
reducing hyphal formation, virulence, germ tube formation,
and biofilm formation, in addition to inducing morphological
changes to the cell size and shape resulting in exposure of b-1,3-
glucan to host immune cells and ER stress (Watanabe
et al., 2012).

3.3.1.2 Activity
Fosmanogepix is highly active against many Candida species:
MIC90 C. albicans (0.008-0.06 mg/ml), C. glabrata (0.06-0.12 mg/
ml), C. auris (0.03 mg/ml) (Hata et al., 2011; Miyazaki et al., 2011;
Pfaller et al., 2011a; Watanabe et al., 2012; Hager et al., 2018;
Zhao M. et al., 2018), though lacks activity against C. krusei
(MIC90 ≥ 0.5 mg.ml) (Miyazaki et al., 2011). No cross-resistance
has been reported between the echinocandins, amphotericin B
and fosmanogepix for multiple Candida species (Miyazaki et al.,
2011; Pfaller et al., 2011a; Wiederhold et al., 2015b; Zhao, Y et al.,
2018), with most studies reporting no cross-resistance to
fluconazole-resistant erg11 mutants (Miyazaki et al., 2011;
Pfaller et al., 2011a). There does however appear to be a
correlation with fluconazole MICs, with a 2-8-fold increase in
MIC to fosmanogepix reported in a subset of fluconazole-
resistant Candida isolates (Arendrup et al., 2018; Arendrup
and Jørgensen, 2020). A recent study of the mechanism of
reduced susceptibility to both fosmanogepix and fluconazole
identified increased efflux through Cdr11 and Snq2 as a result
of a gain-of-function mutation in the transcription factor zcf29
in C. albicans and a mitochondrial DNA deletion activating
MDR1 expression in C. parapsilosis (Liston et al., 2020). Despite
MIC increases, the MIC of these isolates remained low. Further
studies are needed to determine the clinical relevance of these
findings and to explore the link with azole cross-resistance
via efflux.

In vitro serial passage showed an 8-fold rise in MIC in
C. albicans (18 passages) and C. parapilosis (3 passages), with
no increase in MIC for C. glabrata, C. auris and C. tropicalis
(Kapoor et al., 2020). GWT sequencing of isolates with reduced
susceptibility demonstrated a single valine to alanine point
mutation in gwt (V163A C. glabrata; V162A C. albicans)
which appears to be essential for manogepix binding in all Gwt
orthologs. Neither mutation affected susceptibility to
echinocandins or azoles. A further study identified enhanced
efflux as the mechanism of fosmanogepix resistance in
C. parapsilosis and C. albicans that have a 4-8 fold increase in
MIC that were not associated with mutations in the GWT gene
(Liston et al., 2020).

Fosmanogepix is effective at reducing fungal burden and
improving survival in immunosuppressed murine models using
wild type, azole- and echinocandin-resistant Candida, including
C. auris (Hata et al., 2011; Miyazaki et al., 2011; Wiederhold
et al., 2015b; Hager et al., 2018; Zhao et al., 2018). Rodent and
primate studies have demonstrated good oral bioavailability and
safety and extensive tissue penetration (liver, lungs, spleen, brain,
kidney, eye) (Hata et al., 2011; Mansbach et al., 2017).
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In addition, fosmanogepix has demonstrated synergy with the
azoles and echinocandins in animal models (Hata et al., 2011).

3.3.1.3 Stage of Clinical Development
Fosmanogepix has undergone four phase I trials (NCT03333005;
NCT04166669; NCT02956499; NCT02957929) using
intravenous and oral administration, showing a low propensity
for drug-drug interactions, good tolerability and no serious
adverse effects reported in healthy volunteers (Hodges et al.,
2017a; Hodges et al., 2017b), with findings in acute myeloid
leukaemia patients not yet reported.

In an open label phase II trial (NCT03604705), with a
minimum of 3 days’ IV therapy followed by oral stepdown, in
non-neutropenic patients (n=20) with suspected or confirmed
candidemia, 16/20 patients achieved 14-day treatment success
(composite of alive, two negative blood cultures and no rescue
antifungal treatment). In a phase II trial in C. auris candidemia or
IC (NCT04148287, APEX), 9 participants received IV
fosmanogepix on days 1-3 followed by oral fosmanogepix for up
to 42 days. However, this trial was terminated early due to
COVID19. Fosmanogepix has been granted FDA fast track
approval for 7 separate indications including invasive candidiasis.

3.3.1.4 Advantages
Fosmanogepix exploits a novel mechanism of action that has
limited potential for cross-resistance. It is broad spectrum,
effective in animal and early-stage clinical trials, is orally
bioavailable and well tolerated, and shows promise for use in
infections due to multidrug resistant species such as C. auris.

3.3.2 ATI-2307
3.3.2.1 Mechanism
ATI-2307 (Appili Therapeutics), formerly T-2307 (developed by
Toyama Chemical Co), is an arylamidine similar to pentamidine.
Its precise mechanism of action remains elusive, however it is
selectively taken up into fungal cells via the spermidine transport
system (Nishikawa et al., 2010) and initiates the collapse of
mitochondrial membrane potential, ultimately inhibiting
respiration and energy production resulting in fungicidal
activity in C. albicans and C. krusei, but fungistatic activity in
C. glabrata and C. parapsilosis (Nishikawa et al., 2010; Shibata
et al., 2012; Yamashita et al., 2019).

3.3.2.2 Activity
ATI-2307 is active against a broad spectrum of Candida species
including azole and echinocandin-resistant species and C. auris
(Mitsuyama et al., 2008; Yamada et al., 2010; Wiederhold et al.,
2015a; Wiederhold et al., 2016; Wiederhold et al., 2020) with
lower in vitro MICs (0.0005-0.125 mg/ml) compared to azoles,
micafungin, and amphotericin B (Mitsuyama et al., 2008). ATI-
2307 exerted a more potent effect at equivalent doses of
amphotericin B or micafungin in immunocompetent murine
models of systemic wild type C. albicans and echinocandin
resistant infections (Mitsuyama et al., 2008). ATI-2307 also
reduced kidney fungal burden and improved survival in mice
infected with C. auris (Wiederhold et al., 2020), as well as
neutropenic mice infected with C. glabrata harbouring the
Fks2 substitution R1379S (Wiederhold et al., 2016). ATI-2307
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had minimal effect on mitochondrial morphology and potential
of rat liver cells (Nishikawa et al., 2010; Yamada et al., 2010;
Nishikawa et al., 2016).

3.3.2.3 Stage of Development
One report states that ATI-2307 has completed a phase I study in
the USA with no adverse effects noted (Nishikawa et al., 2017),
however these data are not currently publicly available.

3.3.2.4 Advantages
Although this compound remains in the early stages of clinical
development, ATI-2307 shows promise as a fungal-selective
compound (Nishikawa et al., 2010; Nishikawa et al., 2016) and
in vitro and in vivo data highlight its potential in treating a range
of Candida species including more resistant isolates.

3.3.3 Hydrazycins (BHBM, D0, D13)
Sphingolipid biosynthesis is essential for eukaryotic metabolism
as well as fungal pathogenicity (Noble et al., 2010; Oura and
Kajiwara, 2010) thus represents an attractive new antifungal
target given the structural disparity between fungal and
mammalian sphingolipids (Mor et al., 2015; Rollin-Pinheiro
et al., 2016). Glucosylceramide is critical for fungal progression
through the cell cycle and growth at neutral and alkaline pH
(Saito et al., 2006), characteristic of human blood and
cerebrospinal fluid. Antibodies that inhibit glucosylceramide
have demonstrated extensive antifungal effects both in vitro
and in vivo but lack specificity for the fungal sphingolipid
(Rodrigues et al., 2007).

3.3.3.1 Mechanism
The hydrazycins, (E)-N′-(3-bromo-6-hydroxybenzylidene)-2-
methylbenzohydrazide (BHBM) and benzohydrazide (D0) were
identified in a screen for compounds that specifically inhibit the
biosynthesis of fungal glucosylceramide. The hydrazycins inhibit
the vesicular trafficking of ceramide, a precursor lipid of
glucosylceramide, thereby halting glucosylceramide and
sphingolipid biosynthesis and disrupting cell division (Mor
et al., 2015).

3.3.3.2 Activity
BHBM has variable activity against Candida species with
moderate activity against C. krusei and C. glabrata, (MIC 2-32
mg/ml), but poor activity against C. albicans and C parapsilosis
(MIC>32 mg/ml) (Mor et al., 2015). A derivative of BHBM, D13,
was selected from a screen for enhanced specificity to the fungal
target activity and activity, with an MIC of 1 mg/ml in C. albicans
and C. krusei (Lazzarini et al., 2018). Synergy of D13 with
fluconazole was reported for one of two C. krusei strains (FICI
0.31), and with caspofungin for both isolates, but neither
combination was synergistic for fluconazole-sensitive or
-resistant C. albicans (Lazzarini et al., 2018).

Two murine systemic candidiasis model studies evaluated the
in vivo activity of the hydrazycins. One reported a 75% and
62.5% 21-day survival in the D0 and BHBM arms, respectively
(Mor et al., 2015); the other a much lower 20% day 21 survival
with either D13 or BHBM against 0% with fluconazole (Lazzarini
et al., 2018).
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3.3.3.3 Stage of Development
The hydrazycins remain in pre-clinical development.
Sphingolipid metabolism is being explored separately for use in
fungal vaccines.

3.3.3.4 Advantages
BHBM, D0, and D13 are fungal-specific with a novel
sphingolipid target. Although current hydrazycins do not show
sufficient spectrum against clinically relevant Candida species,
the BHBM derivative, D13, represents an improvement and all
congeners have all been reported to re-sensitise some azole-
resistant species to azoles. Screens for additional daughter
compounds of BHBM may identify novel hydrazycins with
superior antifungal activity.

3.3.4 Trehalose Inhibitors
Trehalose is a two glucose non-reducing sugar cleaved to
generate glucose for glycolysis. The trehalose pathway is of
interest due to its fungal specificity and role in fungal growth
and virulence, with trehalose critical for fungal survival at high
temperatures, acting as an antioxidant under oxidative stress and
protecting against other host-induced stressors through
interactions with proteins and phospholipids that reinforce the
cell wall and prevent degradation of cell membrane and
intracellular proteins (Iturriaga et al., 2009).

Although relatively few trehalose-inhibiting compounds have
been identified to date, genetic deletion of either of the primary
synthesising enzymes in this pathway (Tps1 (trehalose-6-
phosphate synthase) and Tps2 (trehalose-6-phosphate
phosphatase)) have been identified as essential for C. albicans
infectivity in mammalian studies, preventing hyphal
development and macrophage survival (Zaragoza et al., 1998;
Van Dijck et al., 2002; Zaragoza et al., 2002; Martıńez-Esparza
et al., 2007). Tps2 inhibition results in the accumulation of its
substrate trehalose-6-phosphate, which is likely toxic to the
fungus at very high concentrations (Perfect et al., 2017).
Uniquely for phosphatases, inhibition of Tps2 was not
associated with any off target activity to other phosphatases
(Perfect et al., 2017). Drug discovery of Tps1 and Tps2
inhibitors is underway via two major strategies. Purified Tps1
and Tps2 enzymes are being used to identify inhibitors in a high
throughput Transcreener UDP fluorescence polarisation assay
(Perfect et al., 2017). Several compounds were identified with
activity against Cryptococcus, however murine studies were
unfavourable: screens for novel trehalose inhibitors against
Candida species are underway. The crystal structures for both
Tps1 and Tps2 were recently solved (Miaoa et al., 2016) and are
now guiding structure-activity compound design.

Further characterisation in Candida infections and the
development of trehalose pathway inhibitors pose an
interesting new class of antifungal compounds with potential
as treatments of tolerance.

3.3.5 Turbinmicin
Turbinmicin is a promising new antifungal that was recently
discovered in a high-throughput screen of bacteria isolated from
the microbiome of the sea squirt. Turbinmicin belongs to the
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group of highly oxidised type II polyketides and is produced
by Micromonospora species. Genetic knockdown and
haploinsufficiency screens in S. cerevisiae, along with the
disruption of ER-Golgi vesicular transport to the plasma
membrane identified the essential vesicle transport protein
Sec14 as the most likely target (Zhang et al., 2020). Many
Candida rely on the vesicular delivery of extracellular matrix
components to form extensive biofilms for drug resistance.
Turbinmicin is, therefore, particularly promising as an anti-
biofilm drug through interference with the assembly of the
extracellular matrix: a rat central venous catheter C. albicans
biofilm model demonstrated an almost complete elimination of
biofilm in turbinmicin treated rats relative to buffer treated
controls (Zhao et al., 2021).

Turbinmicin demonstrated broad spectrum, fungicidal
activity in vitro, including against pan-resistant C. auris, MDR
C. glabrata and triazole-resistant Aspergillus fumigatus, with
MICs of 0.5 mg/ml or less (Zhang et al., 2020). Furthermore, a
combination of fluconazole and turbinmicin was more
efficacious at eliminating biofilm than either drug alone,
possibly due to turbinmicin disrupting the extracellular matrix
sufficiently to render cells more vulnerable to the azole (Zhao
et al., 2021). In vitro safety studies in human red blood cells
identified that turbinmicin did not trigger haemolysis even at
concentrations 1000 times the MIC. Turbinmicin treatment
resulted in a 3.6 log reduction of fungi relative to control
vehicle in a disseminated candidiasis mouse model of pan-
resistant C. auris, with good tolerability across a range of doses
up to 256 mg/kg/d (Zhang et al., 2020).

Turbinmicin would represent the inaugural antifungal to
target Sec14, although this protein has similarity to the hsSec14
so further analysis for potential cross-reactivity would be
prudent. Further preclinical development will entail studies in
additional mammalian species and safety monitoring over longer
treatment courses.

3.4 Repurposed
Given the significant resources required for development and
clinical validation of novel compounds, a favoured approach is to
search for antifungal activity in previously approved non-
antifungal therapeutics, which can then potentially be modified
to reduce undesirable off-target effects. Large scale, high-
throughput screens have identified some promising therapeutic
avenues, however in vitro efficacy has not always translated into
clinical efficacy.

3.4.1 AR-12
AR-12 (Arno Therapeutics) is a celecoxib derivative that was
initially developed as an anticancer protein kinase inhibitor, but
also has fungicidal activity at low doses against a range of
Candida isolates, including C. albicans biofilms (Baxter et al.,
2011; Koselny et al., 2016b).

3.4.1.1 Mechanism
Whilst the anticancer properties of AR-12 are attributed to its
kinase inhibition, its antifungal activity is via two distinct routes.
Firstly, by the specific inhibition of the fungal acetyl CoA (Acs2p)
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which has a multitude of effects due to the vast range of processes
that acetyl CoA is involved with (e.g. carbon metabolism, histone
acetylation, ribosome function and autophagy) (Koselny et al.,
2016b). Inhibition of Acs2p ultimately induces cell lysis.
Secondly, AR-12 also enhances the host antifungal immune
response through down-regulation of host chaperone proteins
such as Grp89 and Hsp90, although the precise details have not
yet been determined (Koselny et al., 2016b).

3.4.1.2 Activity
AR-12 is fungicidal against Candida species (MIC C. albicans,
C. glabrata, C. parapsilosis, C. tropicalis, C. krusei 2-4 mg/ml) and
retains activity against strains with intermediate or resistant
fluconazole MICs (MIC > 128 mg/ml) due to gain-of-function
mutations affecting efflux pump activity (Koselny et al., 2016a).
In addition, deletion of neither TAC1 nor MRR1 affected
susceptibility of isolates to AR-12. Combination of AR-12 with
fluconazole re-sensitised some fluconazole-resistant C. albicans
and C. glabrata strains. AR-12 remained active against
echinocandin-resistant strains containing FKS mutations and
synergised with caspofungin in caspofungin-resistant strains of
C. glabrata (Koselny et al., 2016a).

3.4.1.3 Stage of Development
Early phase I studies (NCT00978523) for the anticancer activity
of AR-12 identified good serum concentrations with limited
adverse effects, however development was halted in 2017 when
Arno Therapeutics declared bankruptcy (Koselny et al., 2016b).

3.4.1.4 Advantages
AR-12 has a broad antifungal spectrum in yeasts and moulds and
has been shown to be well tolerated in Phase I human clinical
trials at doses relevant for antifungal activity. Commonly
occurring mechanisms of azole and echinocandin resistance do
not appear to affect susceptibility to AR-12. Combinations with
existing antifungals may show potential in tackling drug-
resistant candidiasis.

3.5 Combination/Adjunctive Therapies
Combination therapy using drugs with distinct targets, including
drugs without direct antifungal activity, holds appeal in terms of
potentially faster fungal clearance and reduction of resistance
emergence, prolonging the longevity of the current antifungal
arsenal. This needs to be evaluated carefully and balanced against
additional cost and potentially additive toxicities.

3.5.1 Flucytosine (5FC)
5FC is an old antifungal with good oral bioavailability, excellent
tissue penetration and fungicidal activity against Candida species
(Pfaller et al., 2012), with a target distinct from the widely used
cell wall and membrane-acting agents. Secondary resistance
develops if used as monotherapy, hence the agent is always
used in combination, with currently a niche role, given with
amphotericin B in Candida meningitis or endocarditis (Perfect
et al., 2010). 5FC has not been widely used to treat candidaemia/
IC due to concern regarding its toxicity, namely bone marrow
suppression due to its metabolite 5-fluorouracil (5FU). These
side effects were more pronounced at the historically higher
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dosage of 150 (or even 200) mg/kg/day (Francis and Walsh,
1992). More recently however, in the treatment of cryptococcal
meningitis, a lower dose of 100 mg/kg/day (25mg/kg four times a
day) given for 14 days was well tolerated and enhanced fungal
clearance when used in combination with either fluconazole or
amphotericin B (Van Der Horst et al., 1997; Day et al., 2013;
Molloy et al., 2018).

PK/PD studies have demonstrated that the activity of 5FC (as
opposed to toxicity) is concentration-independent, and time-
dependent (Hope et al., 2006; Brouwer et al., 2007; Lepak and
Andes, 2015). Given the lower MICs for Candida species (MIC90

~1 mg/mL for C. albicans, as opposed to 8-16 mg/mL for
Cryptococcus), lower doses of 25-50mg/kg/day may be
sufficient to achieve maximal fungicidal activity against most
Candida species. A recent extensive in vitro screen for
combinations of licensed antifungals against a large C. auris
isolate collection identified synergy when 5FC was combined
with echinocandins or amphotericin B, with combinations of
anidulafungin or micafungin with 1mg/L 5FC effectively
inhibiting echinocandin-resistant C. auris isolates (O’Brien
et al., 2020).

The drug is also limited by its four times daily dosing
requirement, however a slow-release formulation has been
developed in conjunction with DNDi (Drugs for Neglected
Diseases initiative) and is entering phase I trials. Combinations
of 5FC with azoles and echinocandins as well as the novel anti-
Candida agents warrant clinical exploration, particularly in the
treatment of IC due to drug resistant Candida species.

3.5.2 Calcineurin and Hsp90 Inhibitors
The serine/threonine phosphatase calcineurin is a conserved
regulator of calcium homeostasis in eukaryotes and activates
many target genes with a variety of cellular functions, including
fungal growth, morphological transition, cell wall integrity and
host survival (Sanglard et al., 2003; Reedy et al., 2010; Juvvadi
et al., 2014; Juvvadi et al., 2017). Calcineurin is essential for
fungal adaptation to multiple environments, including survival
to antifungal drugs, with resistance in many strains linked to the
calcium-calcineurin pathway (Brand et al., 2007; Zhang et al.,
2012). Furthermore, inhibitors of calcineurin (e.g. FK506 and
cyclosporin) synergistically enhance the antifungal properties of
fluconazole, rendering fungicidal activity against C. albicans
(Marchetti et al., 2000a; Cruz and Goldstein, 2002; Onyewu
et al., 2003). Deletion of either of the catalytic or regulatory
subunits of calcineurin in C. albicans enhances susceptibility to
multiple stressors, including disruptors of the cell membrane
(e.g. azoles) or cell wall (e.g. echinocandins), serum and alkaline
pH, and is associated with hypovirulence in murine models of
disseminated candidiasis (Cruz and Goldstein, 2002; Bader et al.,
2003; Sanglard et al., 2003; Bader et al., 2006), though not in
vaginal candidiasis (Bader et al., 2006). Therefore, inhibition of
calcineurin signalling to disrupt fungal virulence represents an
attractive adjunctive therapy option.

3.5.2.1 Mechanism
External stressors induce an influx of calcium ions into the fungal
cytoplasm, which bind to the calcium-binding protein
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calmodulin. Calcineurin binds to the calcium-calmodulin
complex inducing a conformational change in the phosphatase
that removes the autoinhibitory domain, thus activating
calcineurin. Calcineurin transmits calcium signals via the
dephosphorylation and subsequent nuclear translocation of
the transcription factor Crz1 which in turn activates the
transcription of calcineurin-dependent genes involved in
cellular signalling, growth, vesicular trafficking, and cell wall
integrity (Karababa et al., 2006).

FK506 and cyclosporin bind to immunophilins forming a
potent calcineurin inhibitor complex thereby preventing the
activation of its phosphatase activity and subsequent activation
of Crz1 (Liu et al., 1991; Thewes, 2014).

3.5.2.2 Activity
Calcineurin inhibitors abrogate tolerance in Candida and
enhance the antifungal activity of current antifungals:
Combination of a calcineurin inhibitor with fluconazole
renders fungicidal activity in many Candida species with
varying levels of tolerance (Marchetti et al., 2000a; Marchetti
et al., 2000b; Cruz and Goldstein, 2002; Onyewu et al., 2003).
In vitro screens against C. albicans, C. glabrata, and C. krusei
using drugs for non-mycological conditions with antifungals
identified cyclosporin A and FK506 (tacrolimus) as synergistic
with both azole and non-azole inhibitors of ergosterol
biosynthesis (e.g. terbinafine). However, cyclosporin A and
FK506 are potent immunosuppressants typically prescribed
following solid organ transplantation and could thus enhance
host susceptibility to Candida infection. FK506 analogues that
lack immunosuppressive activity yet retain synergy with
antifungals have demonstrated promising in vitro and in vivo
results (Lee et al., 2018; Jung and Yoon, 2020).

Calcineurin activity can also be inhibited through depletion of
the molecular chaperone heat shock protein 90 (Hsp90). Hsp90
is implicated in the emergence of resistance to fluconazole and
echinocandins in C. albicans and C. glabrata and potentiates its
activity through binding to the catalytic subunit of calcineurin
(Cowen and Lindquist, 2005; Cowen et al., 2006). Hsp90
inhibitors (e.g. geldanamycin and efungumab) induce the
degradation of the downstream protein calcineurin and also
synergise with azoles and echinocandins in vitro (Singh et al.,
2009; Singh-Babak et al., 2012). Moreover, Hsp90 represents a
favourable target as it interacts with approximately 10% of the
proteome, therefore inhibition could disrupt multiple essential
pathways (McClellan et al., 2007). Efungumab (previously
Mycograb) is a monoclonal antibody targeting Hsp90
developed by NeuTec Pharma and subsequently acquired by
Novartis. Mycograb combined with a lipid formulation of AmB
was reported as resulting in faster fungal clearance, improved
d10 response rates and reduced mortality in a phase III trial in IC
compared to AmB alone (Pachl et al., 2006). However, the study
methodology was questioned (Herbrecht et al., 2006) and the
European Medicines Agency has subsequently twice refused
marketing authorisation for Mycograb, citing product safety
and quality issues. Hsp90 inhibitors are currently in
development as anti-cancer drugs, however these are precluded
from human use due to host toxicities, but recent identification
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of specific inhibitors of the C. albicans Hsp90 nucleotide binding
domain offer a path towards fungal selectivity (Whitesell
et al., 2019).

3.5.2.3 Advantages
Calcineurin and Hsp90 are promising targets due to their central
role in many fungal growth and invasion pathways, priming host
cells to antifungal drugs and antifungal immunity. Combinations
of azoles with inhibitors or these pathways renders azoles
fungicidal and may limit the development of resistance.
Calcineurin and Hsp90 are both structurally highly conserved
throughout fungal species offering an opportunity for
development of a broad-spectrum, non-immunosuppressive
derivative of currently licensed inhibitors.

3.5.3 MGCD290
Histone deacetylases (HDACs) deacetylate lysine residues on
histones and cellular proteins, thereby controlling transcription,
cell proliferation and cell motility. Again, this class of drugs are
cytotoxic and are in use as anti-cancer agents (Eckschlager
et al., 2017).

3.5.3.1 Mechanism
HDAC inhibitors (trichostatin A, apicidin and sodium butyrate)
induce apoptosis and cell cycle arrest (Grozinger and Schreiber,
2002). MGCD290 (MethylGene, Mirati Therapeutics) inhibits
the fungal histone deacetylase 2 (Hos2) with an additional target
through inhibition of the deacetylation of fungal Hsp90, involved
in fungal stress adaptation (Robbins et al., 2012) and may have a
role in addressing fungal tolerance. Like, MGCD290,
Trichostatin A reduced tolerance and inhibited upregulation of
C. albicans ERG11 and CDR when co-administered with
fluconazole, itraconazole and terbinafine (inhibitors of sterol
synthesis), but had little effect on a fluconazole-resistant isolate
(Smith and Edlind, 2002).

3.5.3.2 Activity
MGCD290 only has modest antifungal activity against Candida
species as monotherapy (MIC 0.5–16 mg/ml for C. albicans,
C. glabrata, C. krusei), however synergises with azoles and
echinocandins at low doses in susceptible as well as azole- and
some echinocandin- resistant Candida species (Pfaller et al.,
2009; Pfaller et al., 2015). MGCD290 in combination with
fluconazole increased survival and significantly reduced fungal
burden in the kidney in murine and rat models of systemic
candidiasis relative to fluconazole alone (Besterman et al., 2015).

3.5.3.3 Stage of Development
Four phase I trials in healthy volunteers of oral MGCD290 alone or
in combination with fluconazole for 14 days demonstrated a good
safety profile and favourable PK (Besterman, 2012). Despite
compelling in vitro data, MGCD290’s promising antifungal
activity failed to translate: a phase II trial of MGCD20 in
combination with fluconazole for VVC showed no significant
benefit of the combination over fluconazole alone (NCT01497223).

3.5.3.4 Advantages
MGCD290 is an oral agent with a novel target demonstrating
potential in vitro through its impact on tolerance, but whose
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clinical potential has not been realised. Inhibition of Hsp90
through preventing its deacetylation is potentially more
attractive given the immunosuppressive consequences of direct
Hsp90 pharmacological inhibition.

3.5.4 Colistin
Colistin (polymyxin B) is a positively charged lipopeptide that is
bactericidal through binding of membrane lipids and used in
treatment of highly resistant gram-negative bacteria but is
associated with significant nephrotoxcicity. Although colistin
itself has minimal antifungal activity in Candida species (Zhai
et al., 2010), it is fungicidal when combined with low doses of
fluconazole, an effect that is particularly pronounced in highly
azole tolerant strains (Bibi et al., 2021). Colistin enhances the
ergosterol-depleting activity of fluconazole through binding to
membrane lipids (PS, PI, PE), which was particularly
pronounced in ergosterol-depleted cells following fluconazole
treatment or genetic knockout of erg11 erg3 erg24. The
combination was superior to fluconazole monotherapy in the
Galleria mellonella model infected with highly tolerant C.
albicans. Colistin also synergises with echinocandins in
echinocandin-sensitive, but not -resistant C. albicans (Zeidler
et al., 2013) and with caspofungin, but not micafungin in C. auris
(Bidaud et al., 2020). It is currently unclear whether colistin has
synergy with polyenes or with fluconazole in non-albicans
Candida species.
4 CONCLUSION

With the increasing use of antifungal agents in prophylaxis,
empiric, or targeted treatment of invasive candidiasis in an ever-
expanding range of susceptible hosts, Candida species have
evolved a myriad of resistance mechanisms to established
antifungals. For example, poor response to the fungistatic azoles,
where either heteroresistance and tolerance may preclude the
development of resistance, is most frequently associated with
SNPs or aneuploidy-mediated mechanisms that increase the
amount of target protein, alter the conformation of the drug
binding site, or act to reduce intracellular drug accumulation.
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Following slow progress since the early 2000s when the
echinocandins were developed, the past decade has witnessed
exciting developments and clinical trial progression of novel
anti-Candida drugs based on different binding sites on the same
target (ibrexafungerp) or completely new targets (fosmanogepix),
as well as improved formulations of existing compounds
(encochleated amphotericin B, rezafungin, tetrazoles). Other
advantages of many novel agents are oral formulations, broad-
spectrum anti-Candida activity including effectiveness against
drug-resistant Candida species and a lack of cross-resistance
with established antifungals. A number of repurposed agents
with minimal intrinsic antifungal activity may hold promise as
adjunctive therapies providing they can be reconfigured to
minimise their off-target effects and toxicities. The old agent
flucytosine is an under-utilised partner drug in the treatment
of invasive candidiasis, including drug-resistant infections.
Additional pathways emerging as promising target pathways
have been well reviewed elsewhere (Nguyen et al., 2021).

Future priorities for academia are to better understand the
mechanisms of resistance for the novel antifungal drug classes
and how these might best be deployed in the clinic to prevent the
development of resistance, including optimising PK/PD against
resistant species and combination therapy with drugs with
distinctive antifungal targets or mechanisms of action.
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