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Significant events have taken place shaping the recent industrialization of physiologically based pharmacokinetic in vitro–
in vivo extrapolation (PBPK-IVIVE) use in drug development. Due to our knowledge gaps about drug-independent systems
parameters, there are limitations in the use of purely IVIVE-based (bottom-up) approaches. This has encouraged combining
the classical data analysis (top-down) with PBPK-IVIVE-linked models in order to optimize model parameters by taking
advantage of observed clinical data. This concept, when initiated after clinical observations, can be viewed as “reverse
translation,” since it refers back to available systems information preclinical data before trying to describe the observations.
This review demonstrates the advantages of such strategies in filling knowledge gaps and discusses the perceived hurdles
in widening applications. It is paramount that no clinical data are assessed on their own, but in conjunction with other stud-
ies for that drug in different populations and/or other similar drugs in the same population.

Broader use of drug-independent “system” information is a con-
cept that distinguishes quantitative systems pharmacology (QSP)
from classical descriptive models of observed data using purely
statistical/mathematical models. However, building QSP models
requires a series of drug-dependent parameters that are usually,
but not exclusively, measured in vitro or in species other than
human. Translation of these values within QSP models is associ-
ated with uncertainties related not only to the gaps in system
parameters, but also the accuracy and translatability (scaling) of
the drug parameters. Conversely, the majority of system parame-
ters, particularly those related to physiology and anatomy, as
opposed to biology, are mostly derived directly or indirectly from
human studies (e.g., transit time through various segments of the
gastrointestinal tract, tissue blood flows, renal glomerular filtra-
tion rate, functional turnover rate of enzymes). In the absence of
wide experience in forward translational in vitro–in vivo extrapo-
lation (IVIVE) approaches, qualification for the overarching
model can be obtained by verifying the specific use examples
through reverse translation. This involves fitting the models to
observed data and optimizing the drug or system parameters for
which prior confidence is not high. Needless to say, optimizing
the system parameters is only valid as long as observations from
several independent drugs can be described simultaneously with
such optimized values. Physiologically based pharmacokinetic

(PBPK) models are a branch of QSP models. They share the
common principles with QSP regarding the separation of the sys-
tems data from the drug data. PBPK models rely heavily, but not
exclusively, on the IVIVE process and the data generated from in
vitro systems. Like QSP models, whenever there are information
gaps they resort to combining observed clinical data from human
studies and even preclinical animal studies. The distinction
between PBPK and other QSP models, which sometimes
becomes vague when talking about local kinetics in tissues, is the
fact that PBPK models focus on how the body handles the drugs
rather than the more holistic view of QSP that defines the way
drugs affects the body.
Over the last 6 years and since the publication of reviews on

scientific rationale1 and regulatory benefits of using PBPK-IVIVE
linked models2 in this journal, applications of PBPK models have
increased momentum. Industrialization of PBPK-IVIVE use led
to the publication of draft guidance documents by the European
Medicines Agency (EMA)3 and the US Food and Drug Adminis-
tration (FDA)4 last year. These guidance documents acknowledge
the limitations in the use of a purely IVIVE-driven (bottom-up)
approach while emphasizing the added benefits of PBPK-IVIVE
models in “extrapolation” to conditions that have not yet been
studied. These benefits are not commonly associated with the
classical data analysis of clinical studies (top-down approach).
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Hence, combining the two approaches with the purpose of opti-
mizing model parameters of PBPK-IVIVE models using some
observed clinical data is becoming more popular.
These so-called “middle-out” models, which are also known as

hybrid multilevel models, take the advantages and strength of
two other approaches. Therefore, they are not just restricted to
explaining the observed data but they intend to go backwards (in
explaining the clinical observations) in order to go forwards
beyond the perimeters of the initial clinical study using the prior
in vitro and system information. This provides the necessary
“qualification” for the model to be used with confidence for
“Pre”-dictions. This reverse translation approach can begin with
the clinical data (if the purely bottom-up models are not built)
but goes backwards to use that data to create models that were
not previously developed, but can now be readily created, provid-
ing immense benefit in understanding those clinical study results.
Even when the bottom-up model exists, using the clinical data to
revisit some aspects of the system or drug data is beneficial. The
schematics shown in Figure 1a try to capture the separated
bottom-up and top-down modeling in contrast with a combined
approach in Figure 1b, regardless of the starting point in the
loops between clinical and preclinical studies. It should be noted
that the boundary between bottom-up and middle-out as well as
the distinction between top-down and middle-out gets blurry
sometimes. For instance, top-down models may also infer mecha-
nistic meanings for the fitted parameters under investigating a
clinical observation involving drug interactions by fitting func-
tional inhibitory constants against a given enzyme and probe sub-
strate. However, the frequency of using “external” data/
information is less frequent in these models as opposed to
middle-out approach. Similarly, it is rare that a bottom-up model
does not use any clinical data in building the model and there are
always some elements in the model that are derived from some
clinical data.
Combining these models is not a seamless process and is

fraught with issues, as reviewed by Tsamandouras et al. in 2014.5

If viewed purely from a mathematical point of view, these
“middle-out” approaches suffer from structural identifiability
issues. Although it is argued by Agoram6 that this is not the right
perspective when employing QSP models. Nonetheless, the
absence of a unique correspondence between parameter values
and the observed output is concerning for the researcher who
wants to quantify the physiological process only based on a single
observation set rather than considering a matrix of evidence from
various sets (see later sections on fitting models to several datasets
from varying drugs, or the same drug in various populations or
conditions). It should be noted that even structurally identifiable
models may suffer from numerical nonidentifiabilities. This
occurs when clinical observations are made in a space that makes
the model outcome insensitive to changes made to certain model
parameter values (particularly in the face of noise and variations).
Finally, estimating parameter values without considering the cor-
relation between parameters can be an issue. This can also affect
global sensitivity analysis (which is promoted by recent EMA
PBPK draft guidance,3 although the importance of intercorrela-
tions are ignored in all suggested global sensitivity approaches).

The importance of such intercorrelations are exemplified by
some recent research reports on this matter (Doki et al.,7 Liu
et al.8).
QSP models, including PBPK, are now used to simulate and

make inferences for conditions that are not tested (or cannot be
tested easily) clinically (for example, see recent review by Yoshida
et al.9 in this journal). In many cases, these models require inputs
beyond those provided by in vitro or in silico experiments. Param-
eter estimation in these complex models enables reverse transla-
tion of observed clinical data, when available and relevant. The
advantage over simpler empirical compartmental models offered
by such a process is the ability to incorporate prior knowledge of
the system while verifying the model predictions beyond the clin-
ical dataset used to optimize the input values. An overview of
selected examples for a “middle-out” approach are provided
below, followed by a critical analysis of common objections made
to wider applications. The purpose of these examples and the cri-
tique that follows is to demonstrate that “bottom-up” and “top-
down” modeling strategies, which until recently were considered
separate functions, are now being incorporated into each other
more and more, and borrowing strength from each other.

CASE EXAMPLES
Case 1
Purpose: Increasing ability to predict drug disposition in renal
impairment.
Specific question to be addressed: Does renal impairment affect
active secretion as much as glomerular filtration of drugs?
Scotcher et al.10 recently tried to delineate the role of various

factors in renal disposition of digoxin by a reverse translational
modeling that involved application of a physiologically based kid-
ney model to clinically observed data (both on the plasma level of
drug as well as the urinary excretion rate) from renal impairment
populations. The submodel of kidney within PBPK (Mechh-
KiM11) contained many active processes and went beyond the
classical perfusion-limited drug distribution into organs. How-
ever, this was challenged for an inadequacy of fully bottom-up
IVIVE approaches to recover some observed data (retro-diction).
The clinical observations for the modeling exercise came from
divergent patient groups (healthy and renal impairment patients).
Also, the observations were made both at the systemic circulation
level (plasma drug concentrations vs. time) as well as in urine
(rate of elimination). Those, which were coming from different
studies, were assembled for assessment of altered renal secretion
vs. glomerular filtration. Hence, the study combined the in vitro
knowledge of drug affinity and handling by organic anion trans-
porting peptide 4C1 (OATP4C1) and P-glycoprotein (P-gp) to
build components of the model on tubular secretion and investi-
gate the impact of age and renal impairment (moderate to severe)
on renal drug disposition. The observed reduction in digoxin
renal excretion clearance (CLR) in subjects with moderately
impaired renal function relative to healthy was not consistent
with models that assumed changes only in the glomerular filtra-
tion rate (GFR). Two hypotheses were tested based on reduction
in either proximal tubule cell number or the OATP4C1 abun-
dance and they successfully predicted a 59% decrease in renal
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clearance when these changes were proportional to reduction in
GFR. However, the predicted proximal tubule concentration of
the drug was only affected by changes in the transporter

expression. Hence, the model not only provided evidence for
reduction to active secretion (in line with GFR), as it also sug-
gested as possible differentiation of the plausible causes based on

Figure 1 (a,b) The schematics of the differences between purely bottom-up and pure top-down approaches (a), vs. the combined models (b). For com-
bined approach, in recent years we have witnessed many PBPK-IVIVE approaches that are built based on preclinical data and then complemented by a
designed study to qualify the model (Index Study, as it is called in the latest FDA Guidance). However, if for any reason such models are not built, it is still
possible to do a “reverse translation” by taking observed clinical data and building a model that takes into account all prior knowledge about that drug
and the systems information. In reality, the loop between clinical observations and preclinical data might be reiterated several times before a projection
is made for cases which are not studied for a variety of ethical and practical reasons such as conducting drug–drug interaction studies in neonates, renal
or hepatic impairment, pregnancy, the elderly, and so on; even the vulnerability of these patients could be very different from those of healthy volunteer
populations.
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consequences that might be associated with varying tubular con-
centrations in two scenarios. The implications of conditions that
are not studied (“Pre”-diction) were discussed such as those
involving complex cases like transporter-mediated drug–drug
interactions (DDIs) in renal impairment patients.
Conclusions beyond the intended purpose and identified gaps: None
of the above would be possible without combining the PBPK-
IVIVE with analysis of clinically observed data in less compli-
cated patient groups. In addition, the observation of two alterna-
tive models, describing the same set of observations equally well,
highlighted that data where the two models differ from each
other (renal tubular concentrations) would be necessary to distin-
guish between the rival models. However, since such data are not
practical to collect, indirect observations related to epidemiologic
evidence of nephrotoxic effects could be added into future
analysis.

Case 2
Purpose: Increasing ability to predict drug disposition in renal
impairment.
Specific question to be addressed: Is nonrenal elimination (e.g.,
metabolism in liver) affected by the renal impairment?
It is almost two decades since simultaneous modeling of uri-

nary drug: metabolite ratios and urinary recoveries of metabolites
for three different probe drug substrates of CYP2D6 indicated
the possibility of reduced enzyme activity in renal impairment
patients (Rostami-Hodjegan et al.12). Such parallel impairment
in enzyme activity with renal function were included in some of
the PBPK-IVIVE models that demonstrated applicability in non-
renally eliminated drugs such as paroxetine.13 Although it was
claimed that these models may help with defining safe and effec-
tive dosage regimens in patients with renal impairment, particu-
larly when there is a void in availability of clinical data for severe
renal impairment,14 the wider application required a reverse
translational study involving many more drugs. Yoshida et al.15

carried out such an analysis in 2016. The drugs that were subject
of the analysis were selected based on clinical DDI and pharma-
cogenetic studies. This reverse translation study confirmed and
provided confidence in the earlier notion on chronic kidney dis-
ease affecting the pharmacokinetics of nonrenally eliminated
drugs for pathways involving CYP2D6. Nonetheless, the
attempts by the investigators to determine the similar effects on
another drug-metabolizing enzyme, CYP3A4, was inconclusive—
mainly due to lack of information on changes happening to
unbound drug in patients with chronic kidney disease.
Conclusions beyond the intended purpose and identified gaps:
Despite the ability to conclude a longstanding open question on
the issue of changes to CYP2D6 in renal impairment, the reverse
translation attempt on other enzymes was not conclusive. How-
ever, this highlighted the significance of obtaining information
on unbound drug in these patients, not just for understanding
the kinetic changes for that drug but for a higher benefit of
understanding the interplay between kidney and liver by deter-
mining an interfering element (i.e., changes in drug plasma pro-
tein binding). Ongoing studies on other enzymes and
transporters are considering these gaps in going forward.

Case 3
Purpose: Increasing ability to predict changes to drug disposition
in pregnancy.
Specific question to be addressed: Does known induction in
CYP3A in liver during pregnancy occur in parallel in the gut
wall?
The capacity of drug-eliminating organs change during preg-

nancy. While most of these are known to increase,16 some also
may go down (e.g., CYP1A2-related metabolism17). However,
since most drugs are taken orally and as gut wall metabolism may
play a significant role in determining overall bioavailability of
drugs metabolized by enzymes such as the CYP3A family, it is
important to know the direction and magnitude of possible
changes in gut wall metabolism in addition to what happens in
the liver. This issue was not tackled until Ke et al.18 analyzed
three different sets of clinical observations with a view to discern
the site of CYP3A induction. Simultaneous modeling of the
three drugs was a reverse translational attempt to provide confi-
dence in future predictions, knowing the existing gap of knowl-
edge regarding what happens to the gut wall during pregnancy.
The selection of three different drugs with varying degrees of gut
and liver metabolism enabled the investigators to explore the site
of CYP3A induction (i.e., liver, intestine, or both). The model
accounted for gestational age-dependent changes in maternal
physiological function and hepatic CYP3A activity. The model
successfully predicted midazolam, nifedipine, and indinavir dispo-
sition during pregnancy when it assumed that CYP3A induction
is most likely hepatic and not intestinal. The model provided
more confidence in applications to other drugs (when there is
contribution from CYP3A).
Conclusions beyond the intended purpose and identified gaps: The
exercise was an indication that relative changes in enzyme levels
in gut are less than those in liver. However, the ability to quanti-
tatively describe the changes would have been stronger if the data
were simultaneously modeled with a formal fitting process as
opposed to sensitivity analysis performed in the study. When
both oral and intravenous (i.v.) data were available for a given
drug in pregnancy, these could be added to the analysis (as in the
case of indinavir, but not for midazolam or nifedipine). Thus,
further refinement of systems information can be obtained by a
larger modeling exercise with additional data from other drugs
and other routes of administration.

Case 4
Purpose: Obtain an indication of CYP3A turnover in human
liver.
Specific question to be addressed: What value of CYP3A turnover
is associated with the best predictability of mechanism-based
inhibition?
One of the mechanisms involved in metabolic DDIs involves

permanent deactivation of the enzyme (tight binding or irrevers-
ible binding of the drug or metabolic product) as opposed to the
more common competition between the drugs to engage with
the enzyme. While the latter (competitive inhibition) is the
most prevalent metabolic interaction, the former, so-called
mechanism-based inhibition (MBI), has a significant and lasting
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impact on handling any substrates for that enzyme, as it removes
the enzyme from the available pool and reduces the capacity until
more enzymes are synthesized.19 Therefore, the turnover rate of
the enzyme is a key factor in determining the magnitude and
duration of the inhibitory effects. However, the data obtained on
the turnover values are sparse at best and have employed various
indirect measures involving both in vitro and in vivo assess-
ment.19 Some of the values for specific enzymes have been ade-
quately consistent (e.g., CYP1A2) despite the methodologies
being different, while some others (e.g., CYP3A) have been very
different. Rowland-Yeo et al. in 201120 used a reverse-translation
approach to obtain the most optimally defined turnover number
for CYP3A based on analyzing a series of drug interaction studies
by incorporating some in vitro data into their analysis. The study
involved prediction of time-dependent metabolic DDIs related to
CYP3A observed in 29 clinical studies. The most predictive
model outcome, considering all studies together, contained a
turnover of 2 days, although the authors emphasized that this is
the best value conditioned upon current methodologies in
obtaining the inactivation constants for the inhibitor.
Conclusions beyond the intended purpose and identified gaps: The
studies investigating the biologic turnover of enzymes involved
the incorporation of [3H]-leucine into the enzyme by preincuba-
tion and chasing the radioactivity in specific enzymes over time.
Although these have generated turnover values using human hep-
atocytes (e.g., 51 h and 44 h for turnover half-life for CYP1A2
and CYP3A4, respectively21,22) they determined using material
from only one individual.19 Hence, the translatability of values
might be questioned. Gathering all seemingly unrelated clinical
studies (such as DDI with different drugs) could produce knowl-
edge that went beyond the specific case: the system parameter val-
ues. Of course, this has not resolved all issues but opened new
frontiers for research into differences in turnover of enzyme in
different tissues (gut vs. liver) or the turnover of enzyme within a
cell that itself turns over and sometimes more rapidly that the
enzyme (e.g., gut23).

Case 5
Purpose: Define ontogeny of CYP3A in liver from birth to
adulthood.
Specific question to be addressed: What function describes the
change in activity/abundance of CYP3A per gram of tissue and
after accounting for allometrical changes in liver size?
It is now well recognized that in addition to allometric

changes in the size of organs during a human lifetime, the con-
tent and activity of the given content of the tissue, including
enzymes and transporters that handle disposition of drugs,
change as well. It has been shown that some functions are non-
existent or at a negligible level at birth, while others are compara-
ble to that of adults. Understanding the changes that occur with
age regarding abundance and activity of enzymes and transport-
ers (and even receptors and other drug targets), after correcting
for the size differences, helps to account for variation in han-
dling of the drugs and their anticipated effects, particularly at a
younger age. However, despite progress in new methodologies in
measuring abundance of proteins (for review, see Al-Feteisi

et al.)24 the availability of tissue at different age groups, as well as
the possible disconnect between activity and abundance due to
cofactors and their ontogeny, has a major effect. This means that
building confidence in predictive value, beyond a specific drug,
may require reverse translation of observed data from several
sources and its combination with known parameters defining
other biological and physiological phenomena. Salem et al. in
201425 employed such an approach by deconvolution of
observed clearance values from a series of independent clinical
studies. This was to address the reported underprediction of
clearance values for some substrates when purely bottom-up in
vitro values were used to assign ontogeny functions. The new
models developed by the reverse translation was validated based
on improved predictions of the systemic clearances of a drug
that had not been used in derivation of the ontogeny function
(alfentanil). In addition to improving the predictions, the study
also highlighted the importance of considering potential con-
founding factors (e.g., disease) that may affect the physiological
conditions of the patient.
Conclusions beyond the intended purpose and identified gaps: The
sparsity of data and biological samples from neonates and youn-
ger children makes this group particularly relevant to activities of
QSP, PBPK, and reverse translation. Efforts in gathering various
clinical data and analyzing them alongside available information
is a big task in this area, but with rewarding results that informs
many other drugs that have not been part of the study.

PERCEIVED HURDLES TO CONDUCTING REVERSE
TRANSLATION AND INCORPORATING PRIOR SYSTEMS AND
DRUG DATA
As demonstrated by the examples above, all QSP model building,
including PBPK-IVIVE, go through cycles that are defined by the
integration of available experimental data and existing biological
knowledge at a given time (Figure 1b). This is regardless of the
starting point being the preclinical data (which is a recent phe-
nomenon with the advent of PBPK-IVIVE models) or clinical
observations (which is common in the setups where PBPK-
IVIVE modeling is not industrialized or their capacity is limited
and not carried out for all candidates until they reach the later
stages of clinical studies). These, in turn, generate hypotheses and
make predictions that sometimes can be tested prospectively but
sometimes require retrospective analysis of the field data or anec-
dotal evidence. Conducting DDIs in renal impairment or frail
elderly patients or in very young pediatrics are among such exam-
ples where there is adequate system information to hypothesize a
variation in susceptibility to interaction beyond the healthy vol-
unteers, but conducting actual studies might be very challenging
both on practical and ethical grounds. So the issue of “Pre”-
diction and giving guidance on management in such situations is
greatly beneficial to the most vulnerable patients as opposed to
leaving a void in the label.
One may ask the question why these models are not built and

used more commonly then? The list below is by no means com-
prehensive in gathering perceived views on hurdles for a wider
use of reverse-translation and forward projections from PBPK-

          

228 VOLUME 103 NUMBER 2 | FEBRUARY 2018 | www.cpt-journal.com



IVIVE (or any other QSP) models; however, they indicate some
misconceptions associated with these perceived hurdles.

These models are data hungry!
Typically, those who bring this up as a hurdle do not distinguish
between two separate sets of data that are required in these mod-
els, namely, system information vs. drug data. Systems informa-
tion, although a massive task to gather, curate, and integrate,
needs only be done “once.” The repeated use of the models,
therefore, does not require as extensive data as the objectors have
in mind. The number of drug-related data to inform these mod-
els is limited. In fact, most of the data are gathered during the
drug development procedure anyway, with a key difference being
they are currently viewed in isolation as opposed being part of an
integrated model.

Building these models is time-consuming!
Again, if the intended use was for one drug and one occasion, the
time spent in building these models could not be justified. How-
ever, repeated use for many drugs and extension to applications
to areas not yet explored clinically saves lots of time and effort in
conducting unnecessary studies with uncertain outcomes later on.

Building these models requires expertise!
Most of the required experts are in fact not associated with the
modeling aspect by the deep field information on system attrib-
utes. These are inherently available in companies who develop a
drug in each particular field. There are also many initiatives to
identify the generic (precompetitive) aspects of the models and
build them via a consortia approach up to the level where propri-
ety aspects kick in. The mechanistic nature of these models make
them much easier and intuitive to communicate compared to
classical (empirical) models, which are not perceived by field
experts (nonmodelers) as a reasonable integration of what they
already know. Therefore, these models provide the opportunity
for closer collaborations between various expertise rather than
relying (unduly) on modelers only.

The models require specialist software!
This might be true, however many alternatives always exist. Expect-
ing all modeling and simulation endeavors to remain as an
“individual task” on the back of a piece of paper, or as a piece of a
file in a commonly available tool, is the same as asking for an indi-
vidually packed high-performance liquid chromatography (HPLC)
column for laboratory chemical analysis or manual preparation of
all aspects of gene sequencing! Time moves on and many aspects
of what was originally considered a complex operation becomes
automated, while the experts move to a new frontier. It is often
ignored that the largest investment in shifting to the use of these
models is not the cost of software and modeling team, but the crea-
tion of infrastructure that is aligned with the philosophy of
“integration” rather than “compartmentalization.” Of course, if
there are elements in models that are common (at a precompetitive
level), then getting a global agreement rather than reinventing and
adding variations becomes important to enable comparisons and
consistency.

These models make many assumptions!
There is a complete misconception stemming from the mere fact
of “declaring all assumptions transparently.” Representation of a
complex system in any simple formalism requires many more
assumptions than a more complex model representing the same
biological entity. However, since the simpler models rarely list all
of the (many, many) assumptions they make, to a naive bystand-
ing observer it may look like they have fewer assumptions and
they can take comfort in even “not making any assumption”! No
complex biological phenomenon can be described in a simple
form unless many assumptions are made. Clarity in declaring
assumptions provides a good opportunity to check the validity or
degree of confidence in each assumption and put them to the
test. Complex models make fewer assumptions than simpler
models, as they take known facts and incorporate them into the
models rather than making assumptions about them. Also, when
they make assumptions, they declare them transparently.

Not all aspects are transparent!
This is in contradiction to the previous item; however, what is
usually meant by it is not transparency but accessibility to model-
ers who wish to modify the components. The complex nature of
these models means tracing the changes made (and their conse-
quences), which is not an easy task at all. Hence, these models
require a gatekeeper who ensures that the changes are properly
documented. Some modelers find this frustrating, as they may
wish to have access to all elements and this frustration is mani-
fested in calling the models a “black box” while, as described
above, in relation to declaring assumptions, these models are any-
thing but a black box. In trying to separate the issue of access
ability and transparency, I have recently used the term “glass
box.” The latter conveys the message that all components are visi-
ble (unlike black box), but that at the same time all aspects
within the box are outside the interference by every user and only
certain gatekeepers have access to open the box and change them.
One should realize that without such a quality control system,
assessment of the models, considering their complexity and trace-
ability of any changes, becomes an impossible task. Nonetheless,
it is crucial that the details related to all elements of these large-
scale models are documented and ideally published through the
peer review process. Those modelers who struggle to comprehend
all various components of the large-scale models have to realize
that perhaps one single modeler may never adequately cover the
vast number of submodels in these multiscale models unless they
go through all the relevant publications. This is not an easy task,
and even with the simplest PBPK-IVIVE models there are now
hundreds of publications each dealing with only a very narrow
area of the model.

The effort does not match the added value!
This could have been argued several years ago when there was not
abundant evidence on the use and acceptability of these models to
accelerate the drug development and improve the informative
nature of the drug labels.9 Nonetheless, it is difficult to measure
and attach a value to making “right” (most optimal) decisions con-
sidering that the great majority of the use of reverse translation
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occurs during the internal decisions for drug development. It is
hard to imagine a system that does not integrate available informa-
tion (in a formal way) that will produce a better outcome than a
formalization of integrated knowledge. Hence, the argument is
whether the time and effort justifies the improvement. This will
remain an open question, however, as the drug regulatory authori-
ties start to accept the outcome of qualified models as an alterna-
tive to leaving gaps in drug labeling or even avoiding certain
studies (which are deemed to be predictable based on the models;
see Wagner et al.26 on DDI for instance). Indications of financial
value as well as health impact (to include guidance on dosage for
groups which were not previously served; see Jadhav et al.14) are
starting to emerge and encourage the use of models further.

Other modeling types can be applied
Most of the other types of models (classical data analysis using
empirical models) will continue to be used, but in many cases
these models are starting to include some elements of physiology
and biology and the distinction between the empirical and mech-
anistic models are slowly fading. Realization that “extrapolation”
beyond the initial dataset is not possible and “interpolation”
within the parameter space of observed clinical studies will not
satisfy the needs of the healthcare community to address permu-
tation of conditions that are not previously studied, has brought
the two communities of modelers closer to each other. Some
communication barriers still exist when the two groups refer to
the same impression and word but they mean different things.
Examples of these are discussed in the final part of this review in
relation to the use of word “pre-diction.”

Confidence in the output is not high!
The frequency of use will bring this confidence over time. How-
ever, it is worth noting that the alternatives involve less rigorous
and subjective gathering of various pieces of information in an
informal process that can be named an “in cerebro” modeling, as
opposed to formal model-based integration under “in silico”
modeling. Confidence in areas where many examples of tested
and qualified cases exist (such as CYP-related DDI) is high, par-
ticularly when the complexity prevents a more confident “in
cerebro” judgment to be made. Some other areas are slowly gain-
ing such a level of confidence (such as ADME in young pediatrics
or special subpopulations), while many gaps are identified in
other areas that define the research directions. So it can be argued
that this will just be a matter of time, and unless the models are
tried we will not find out about their performance.

WHAT IS THE WORD? QUALIFICATION VS. VERIFICATION
VS. VALIDATION AND MIDDLE-OUT VS. REVERSE
TRANSLATION
Following the publication of the draft guidance by the EMA on
PBPK models, substantial discussions have been taking place at
various events regarding the qualification of PBPK models. These
are useful discussions, which have implications beyond PBPK.
The latter, as described in the introduction, is a subdivision within
the larger family of QSP models; therefore, any conclusions
reached with regard to PBPK may equally apply to all QSP

modeling too. In every-day conversation, we use “qualification”
frequently by referring to someone or some organization that are
permitted to conduct certain procedures because through some
means they have passed what is required for such qualifications
(take a General Practitioner Physician (family doctor), a certified
lawyer, a pharmacist, an accountant or accountancy firm, etc.).
The mere fact that a person or an organization is “qualified” does
not guarantee that what they do would be correct, flawless, or
optimal (best in class); it only legislates for the fact that they have
passed through several tests and they are distinguished from others
(who have not passed the test and hence not qualified/certified).
The qualification process gives comfort (by a huge margin) in
using the individual or organization for the intended purpose.
Nonetheless, knowing that even within the qualified group there
exists some variations; we seek advice and take recommendations
from those who have used the person or firm based on prior per-
formance, even though this performance may not exactly replicate
what we want to get from the service. Taking recommendations
and looking into past (postqualification) performance might be
seen as “verification.” Both qualification and verification, albeit at
different levels of expectations (importance of the decision), are
indicators of “predictive power.” However, “validation,” with
respect to prediction, is almost useless, as it is always after the
event. Of course, validation can be used as an added verification
for a subsequent expectation from the model and increases the
trust in the model and likelihood of its predictive value. Setting
standards for qualification are absolutely necessary; however, one
should realize that, like professional qualification, the standards
change with time. What was expected from a qualified pharmacist
half a century ago is totally different from what is expected now.
Hence, revising these standards and upgrading them with the min-
imum level of added knowledge and skill are essential too (in the
same way that checking capabilities through continuous educa-
tional credits is set for a profession). In the context of expectations
from the model after qualification (mainly predictive power),
understanding alternatives is important and a matter of a wealth
of evidence on verified cases they have handled.
Another item that is worth mentioning is the relationship

between the middle-out approach and reverse translation. If we
start with forward translation, the issue may become clearer.
When the in vitro drug data and prior knowledge of a system is
put together to make a projection, we are conducting forward
translation that contains a bottom-up model. On our way and as
we gather clinical data, we may conduct middle-out modeling to
verify assumptions and obtain optimal values (of system or drug).
However, if we have not done such projections and landed in a
set of clinical observations that cannot be described (easily), then
we may wish to go back (reverse) and gather all the peripheral
information that we had missed and might be of relevance to our
observations until we make sense of what we have observed
(translation). This will include, again, middle-out modeling.
Thus, reverse (or forward) translation is the philosophy of the
activity, while the middle-out approach is a tool. While the
middle-out approach is commonly used in the forward transla-
tion for verification and individual cases, they can be used in a
wider context for modeling series of studies on various drugs, or
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the same drug in various conditions, or clinical studies of system
with no drugs, all simultaneously.

EPILOGUE
The new FDA commissioner, Scott Gottlieb, on his blog posted on
July 7, 2017,27 outlined his views on how the FDA is going to capi-
talize on advances in science for the benefit of consumers. He
highlighted, as an example, investing in and expanding on innova-
tions in the use of in silico tools for improving drug development and
making regulation more efficient. This matches with the approved
PDUFA reauthorization performance goals and procedures for fiscal
years 2018 through 2022,28 where enhancing benefit–risk assessment
in regulatory decision-making gets a specific mention and the role of
modeling is explicitly defined. Of particular interest is the emphasis
on developing a regulatory science and review expertise and capacity
for “Model-Informed Drug Development” (MIDD) and the encour-
agement for defining best practices in conducting:

(1) physiologically based pharmacokinetic modeling;
(2) design analysis and inferences from dose–exposure–response
studies;
(3) disease progression model development, including natural
history and trial simulation;
(4) immunogenicity and correlates of protection for evaluating.

It is important to note that these elements are a continuum and
are not separate from each other, while in the current development
practice, each are handled in isolation rather than as a coherent
and interwoven package. Part of the challenge in overcoming the
barriers is defining a common language. For instance, while many
population pharmacokinetic modelers are debating the various
technical elements of so-called “visual predictive checks” (VPC),
for the PBPK modeling community there is nothing “Pre”-dictive
about these tests, since they are a mere reflection of consistency
between the proposed model and the data from which these mod-
els were derived from. Similarly, while classical modelers will be
horrified by a twofold difference between model outcome and
observed data, PBPK modelers will see that as triumph! This fol-
lows since the first group do not realize that the observed data actu-
ally were not used to make the prediction (true meaning of the
“Pre”-diction, i.e., saying something about an event or result before
it is known). Thus, reverse translation could be seen as an opportu-
nity where the meaning of “predict” (saying or estimating that a
specified thing will happen in the future; made known beforehand)
can be commonly defined and a separation made between its pur-
pose vs. “postdiction” (explanation after the fact) or “retrodiction”
(making a “prediction” about the past events but without using the
observed data involved in that event—through blinding, etc). It is
true that reverse translation takes us backwards, but it is only with
the view to integrate independent sources of information with the
observed data and move forward faster and with confidence.
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